How To Find Out How To Build An Elliptic Curve Over A Number Field

Size: px
Start display at page:

Download "How To Find Out How To Build An Elliptic Curve Over A Number Field"

Transcription

1 Numbers Volume 2015, Article ID , 4 pages Research Article On the Rank of Elliptic Curves in Elementary Cubic Extensions Rintaro Kozuma College of International Management, Ritsumeikan Asia Pacific University, Oita , Japan Correspondence should be addressed to Rintaro Kozuma; rintaro@apu.ac.jp Received 21 July 2015; Accepted 6 September 2015 Academic Editor: Andrej Dujella Copyright 2015 Rintaro Kozuma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We give a method for explicitly constructing an elementary cubic extension L over which an elliptic curve E D :y 2 +Dy=x 3 (D Q ) has Mordell-Weil rank of at least a given positive integer by finding a close connection between a 3-isogeny of E D and a generic polynomial for cyclic cubic extensions. In our method, the extension degree [L : Q] often becomes small. 1. Introduction Let E be an elliptic curve defined over a number field F.Itis well-known that the Mordell-Weil group E(F) of F-rational points on E forms a finitely generated abelian group, and its rank rank E(F) = dim Q E(F) Z Q is of great interest in arithmetic geometry. The present paper is motivated by the following general problem: To understand the behavior of ranks of elliptic curves in towers of finite extensions over F. This problem dates back at least to [1], which first introduced an Iwasawa theory for elliptic curves. In the context of Iwasawa theory, Kurcanov [2] showed that if an elliptic curve E over Q without complex multiplication has good reduction at a prime number p > 3 satisfying a mild condition then E has infinite rank in a certain Z p -extension, and Harris [3] showed that if E is a modular elliptic curve over F having good ordinary reduction at p and a specific F-rational point arisingfromthemodularcurvethenthereisap-adic Lie extension of F in which the rank of E grows infinitely. On the other hand, Kida [4] constructed a tower of elementary 2-extensions in which the rank of y 2 = x 3 n 2 x becomes arbitrarily large by using a result in theory of congruent numbers. Also, Dokchitser [5] proved that for any elliptic curve E over F there are infinitely many cubic extensions K/F so that the rank of E increases in K/F. In the present paper, we consider the specific curve E D :y 2 +Dy=x 3, D Q, (1) and give an explicit construction of an elementary cubic extension over which the elliptic curve E D is of rank of at least a given positive integer l by finding a close connection between a 3-isogeny of E D and a generic polynomial for cyclic cubic extensions. We shall call an extension K/F an elementary cubic extension if K is a finite compositum of cubic extensions over F. Compared with related results as above, in our method, the extension degree [L : Q] often becomes small. The question of finding a small elementary cubic extension with rank l seems to be of independent interest. 2. Main Results Let S D ={b Z D=a 2 +3ab+9b 2 (a, b Z, b>0), where a is relatively prime to b}. We denote by F a fixed algebraic closure of F. LetF( 3 S D ) denote the field obtained by adjoining a real number 3 b for each b S D to F. SincethesetS D is finite, the extension F( 3 S D )/F is also finite. The main result of the paper is the following theorem. Theorem 1. Let D be any square-free product of distinct primes p 1,...,p k Z satisfying p i 1(mod.Then,foranypositive (2)

2 2 Numbers Table 1: rank k. D L rank Q Q Q Q Q( 17) Q( Q( 61) Q( Q( 307) 3 3 integer l( k),wecanconstructasubfieldl of Q( 3 S D ) such that rank l, [L :Q] 3 l. ( As we will see in Section 4, the field L in Theorem 1 is effectively computable from the decomposition of the primes p 1,...,p k in Z[ζ 3 ],whereζ 3 denotes a primitive cube root of unity. See Remark 4 for this computation. It will also turn out in Section 4 that the field L is constructed using certain products of prime elements in Z[ζ 3 ] above each prime p i, and in particular L depends only on the primes p 1,...,p k ( 1(mod ) and a positive integer l( k). One question arises here: how small can [L : Q] be when p 1,...,p k vary through the set of all primes p 1(mod for a fixed integer l( k)? We give some examples in the case l=k(table 1). Corollary 2. Let D be any square-free product of distinct primes p 1,...,p k Z satisfying p i 1(mod.Then,forany positive integer l,wecanconstructasubfieldl of Q( 3 S dd, 3 d) with some integer d such that rank E D (L ) l, [L : Q] 3 l+1. (4) Note that our construction in Theorem1 (resp., Corollary 2) differs from Dokchitser s [5], and the extension degree [L : Q] (resp., [L : Q])isoftensmallerthanorequal to 3 l 1 (resp., 3 l ). 3. A Connection between the Elliptic Curve E D and a Generic Polynomial for Cyclic Cubic Extensions In this section, let F be a perfect field with characteristic not equal to 3,andletD be any element in F.Theellipticcurve E D has a rational 3-torsion point (0, 0) and admits a 3-isogeny φ:e D E D =E D / (0, 0) over F.The3-isogeny φ can be explicitly written as φ:e D E D (x, y) ( x3 +D 2 Dx 2, ( y/d)3 + 3 ( y/d) 1 ( y/d) ( y/d 1) ). (5) The isogenous elliptic curve is given by the form E D :t 2 +3t+9=Ds 3. (6) Taking Galois cohomology of the short exact sequence 0 φ E D [φ] E D E D 0yields a Kummer map E D (F) φ(e D (F)) H1 (F, E D [φ]) (7) P {σ φ 1 (P) σ 1 }. Combining this map with the map H 1 (F, E D [φ]) = Hom (Gal ( F, Z 3Z ) Gal ( C 3 ξ F Ker ξ, where Gal(C 3 /F) denotes the set of all cyclic cubic extensions over F together with F, Gal ( C 3 := { K F : a Galois extension in F Gal (K C 3 Z 3Z }, we have a map δ F : E D (F) φ(e D (F)) Gal (C 3 P F (φ 1 (P)). (8) (9) (10) It is well-known that the set Gal(C 3 /F) is parametrized by a generic polynomial for C 3 -extensions [6] g (x; t) =x 3 +tx 2 (t+ x+1 with t F, (11) which has discriminant (t 2 +3t+9) 2.WeshalldenotebyK t the minimal splitting field of g(x; t) over F 0 (t), wheref 0 stands for the prime field in F. Bythepropertyofg(x; t), forany K/F Gal(C 3 /F) there is some t Fso as to be K=K t F in F. The following proposition is the key observation in the present paper. Proposition 3. The connecting homomorphism δ F is given by δ F (s, t) = K t F for any (s, t) E D (F). Furthermore,inthe case where F is a number field, for any prime ideal p of F not dividing 3,thep-component of the conductor of K t F/F is p if ] p (Ds 3 )>0, ] p (D) 0(mod (12) 1 otherwise. Here ] p :F p Z denotes the normalized valuation of the p-adic completion F p.

3 Numbers 3 Proof. For any (s, t) E D (F), takeapoint(x, y) on E D satisfying φ(x, y) = (s, t). Bytheformofthey-coordinate of (5), the splitting field K t coincides with F 0 (t, y). Here F(x, y) = F(x) = F(y). Thelatterpartoftheproposition follows from the equation t 2 +3t+9 = Ds 3 by using Proposition 8.1 in [7]. 4. A Method for Constructing an Elementary Cubic Extension From now on, let D be a square-free product of distinct primes p 1,...,p k Z satisfying p i 1(mod, and let l be a positive integer k. RecallaresultofKomatsu[8]thatthesetofallcycliccubic fields (i.e., cyclic cubic extensions over Q) of conductor D= p 1 p k has a one-to-one correspondence to the subset of the algebraic torus T(Q) =Q { } consisting of 2 k 1 elements of the form c p1 ± T c p2 ± T ± T c pk 1 ± T c pk, (1 where + T is the composition of T(Q) given by a/b+ T c/d = (a/b c/d 1)/(a/b + c/d + 1), T denotes the inverse of + T given by T a/b = a/b 1, andc pi =e pi /f pi T(Q) is a rational number so that the pair (e pi,f pi ) of integers is unique in the sense of Lemma 2.1 in [8] (especially f pi 0(mod, whichwillbeusedinthefollowing)andsatisfies e 2 p i +e pi f pi +f 2 p i =(e pi ζ 3 )(e pi ζ 2 3 )=p i. (14) There is a group isomorphism φ : T G m mapping t to (t ζ 3 )/(t ζ 1 3 ),whereg m denotes the multiplicative group. Then the composition + T is written as a/b+ T c/d = φ 1 (φ(a/b)φ(c/d)). Now, let π i := e pi ζ 3, which is a prime element in Z[ζ 3 ] dividing p i,andletα denote the complex conjugation of α.foreachi(1 i l),let t i := { 3(c p1 + T + T c pk ) if i=1 { 3(c { p1 + T + T c pi 1 T c pi + T c pi+1 + T + T c pk ) if i =1. (15) Since f pi 0(mod for each i, there exist unique integers a i, b i so that a i 3b i ζ 3 = { π 1 π k if i=1 { π { 1 π i 1 π i π i+1 π k if i =1, (16) where a i is relatively prime to 3b i.thenφ(t i / = (a i 3b i ζ 3 )/(a i 3b i ζ 3 ),andthust i =3 φ 1 (φ(t i /) = a i /b i. Let L:=Q({ 3 b i 1 i l}). Remark 4. In order to calculate t i =a i /b i,wehaveonlyto know the values c pi by the definition of t i. For example, one can use Table 5.1 in [8], in which the values c p for p < 1000 arelisted.fromtheconstructionofl,thefieldl depends only on D=p 1 p k and a positive integer l( k). Lemma 5. Every prime number p i (1 i l)is unramified in L. Proof. Since p i does not divide 3b 1 b l and is unramified in Q(ζ 3 ),itturnsoutthatp i is unramified in Q(ζ 3,{ 3 b i 1 i l}) by Kummer theory. Hence, p i is also unramified in L=Q({ 3 b i 1 i l}). Proposition 6. K ti L Im δ L {L} for any i(1 i l). Proof. Since (a i 3b i ζ 3 )(a i 3b i ζ 3 )=D,wehave t 2 i +3t i +9=D( 3 b i 2 ) 3. (17) Thus ( b 3 2 i,ti ). ItfollowsfromProposition3that δ L ( b 3 2 i,ti ) = K ti L, and hence K ti L Im δ L.Combining Proposition 3 with Lemma 5 yields K ti L =L. Proposition 7. dim /φ() l. Proof. One can easily verify that (0, 3ζ 3 ) is a 3-torsion point in E D (L(ζ 3 )), and the rational function f:=(t 3ζ 3 )/D 2 on E D has a zero of order 3 at (0, 3ζ 3 ) and a pole of order 3 at infinity and satisfies f φ=( y Dζ 3 3 Dx ). (18) Then there exists an injective homomorphism (see [9] for details): E D (L (ζ 3 )) φ(e D (L (ζ 3 ))) L(ζ L(ζ 3 ) 3 (s, t) D (t 3ζ 3 )L(ζ 3 ) 3 (0, 3ζ 3 ) D 2 L(ζ 3 ) 3. (19) Combining this with the natural map φ() E D (L (ζ 3 )) φ(e D (L (ζ 3 ))), (20) we have the homomorphism φ() L(ζ L(ζ 3 ) 3 (21) (s, t) D (t 3ζ 3 )L(ζ 3 ) 3. By Proposition 6, the point ( b 3 2 i,ti ) corresponds to D(t i 3ζ 3 )L(ζ 3 ) 3 = D(a i 3b i ζ 3 )L(ζ 3 ) 3 via the above homomorphism. It thus suffices to show that {D(a i 3b i ζ 3 ) 1 i l}is linearly independent in L(ζ 3 ) /L(ζ 3 ) 3.Thenthe points {( b 3 2 i,ti ) 1 i l}must be linearly independent in /φ(). Assume that γ:= {D (a i 3b i ζ 3 )} r i L(ζ 3 ) 3 (22) 1 i l

4 4 Numbers for some integers {r i } 1 i l.foreachi, letp i be a prime ideal of L(ζ 3 ) above the prime element π i Q(ζ 3 ).Forany prime ideal p of L(ζ 3 ), we denote by ] p : L(ζ 3 ) p Z the normalized (additive) valuation of the p-adic completion L(ζ 3 ) p.bylemma5,wehave] pi (π i )=1.Then l r { i 0(mod i=1 ] pj (γ) = l if j=1 { r i +r j 0(mod if j =1, { i=1 (2 and hence r i 0(mod for each i.thisprovesthat{d(a i 3b i ζ 3 ) 1 i l}is linearly independent in L(ζ 3 ) /L(ζ 3 ) 3. Let φ : E D E D be the dual isogeny to φ. Sincethe composition φ φ(resp., φ φ) is the multiplication-by-3 map on E D (resp., E D ), we have an exact sequence of F 3 -vector spaces 0 and thus [ φ] φ( [3]) 0, φ() rank = dim dim φ() φ [3] φ() + dim F 3 φ() [ φ] φ( [3]) dim [3]. (24) (25) Since ζ 3 L,thegroup[ φ] is trivial and the group [3] is generated by the point (0, 0).Weseethat rank = dim φ() + dim F 3 φ() 1. (26) ProofofCorollary2. By Theorem 1, we have only to consider the case l>k.(inthecasewherel k,taked=1.) Take distinct prime numbers {q 1,...,q l k } not dividing D with q i 1(mod. Letd:=q 1 q l k. Then, applying Theorem 1 to the elliptic curve E dd,thereexistssomesubfieldl Q( 3 S dd ) so as to be rank E dd (L) l with [L : Q] 3 l.letl := L( 3 d). Then, it is easily seen that E dd is isomorphic over L to E D. Therefore, rank E D (L )=rank E dd (L ) rank E dd (L) l. Here [L : Q] 3 [L:Q] 3 l+1. Conflict of Interests The author declares that there is no conflict of interests regarding the publication of this paper. Acknowledgment The author is supported by APU Academic Research Subsidy. References [1] B. Mazur, Rational points of abelian varieties with values in towers of number fields, Inventiones Mathematicae, vol. 18, pp , [2] P. F. Kurcanov, Elliptic curves of infinite rank over Γ- extensions, Mathematics of the USSR-Sbornik, vol. 19, no. 2, pp , [3] M. Harris, Systematic growth of Mordell-Weil groups of abelian varieties in towers of number fields, Inventiones Mathematicae,vol.51,no.2,pp ,1979. [4] M. Kida, On the rank of an elliptic curve in elementary 2-extensions, Japan Academy. Proceedings A. Mathematical Sciences,vol.69,no.10,pp ,1993. [5] T. Dokchitser, Ranks of elliptic curves in cubic extensions, Acta Arithmetica,vol.126,no.4,pp ,2007. [6] J.-P. Serre, Topics in Galois Theory, Second Edition,vol.1of Research Notes in Mathematics,CRCPress,2007. [7] R. Kozuma, Elliptic curves related to cyclic cubic extensions, International Number Theory, vol.5,no.4,pp , [8] T. Komatsu, Cyclic cubic field with explicit Artin symbols, Tokyo Mathematics, vol. 30, no. 1, pp , [9]J.H.Silverman,The Arithmetic of Elliptic Curves, vol.106of Graduate Texts in Mathematics, Springer, ProofofTheorem1. By Proposition 7, it suffices to show that (0, 0) φ().then dim φ() 1, and hence rank l. (27) Assume that there exists some point Q such that φ(q) = (0, 0). ThenQ [3]. Itfollowsfromthe3- division polynomial 3x(x 3 27D 2 ) for E D that there is no nontrivial 3-torsion point in. Therefore, Q must be the trivial element in [3]. This contradicts the assumption, and hence (0, 0) φ().

5 Operations Research Decision Sciences Applied Mathematics Algebra Probability and Statistics The Scientific World Journal International Differential Equations Submit your manuscripts at International Combinatorics Mathematical Physics Complex Analysis International Mathematics and Mathematical Sciences Mathematical Problems in Engineering Mathematics Discrete Mathematics Discrete Dynamics in Nature and Society Function Spaces Abstract and Applied Analysis International Stochastic Analysis Optimization

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

Alex, I will take congruent numbers for one million dollars please

Alex, I will take congruent numbers for one million dollars please Alex, I will take congruent numbers for one million dollars please Jim L. Brown The Ohio State University Columbus, OH 4310 jimlb@math.ohio-state.edu One of the most alluring aspectives of number theory

More information

Galois representations with open image

Galois representations with open image Galois representations with open image Ralph Greenberg University of Washington Seattle, Washington, USA May 7th, 2011 Introduction This talk will be about representations of the absolute Galois group

More information

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

More information

Factoring of Prime Ideals in Extensions

Factoring of Prime Ideals in Extensions Chapter 4 Factoring of Prime Ideals in Extensions 4. Lifting of Prime Ideals Recall the basic AKLB setup: A is a Dedekind domain with fraction field K, L is a finite, separable extension of K of degree

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

Cyclotomic Extensions

Cyclotomic Extensions Chapter 7 Cyclotomic Extensions A cyclotomic extension Q(ζ n ) of the rationals is formed by adjoining a primitive n th root of unity ζ n. In this chapter, we will find an integral basis and calculate

More information

3 1. Note that all cubes solve it; therefore, there are no more

3 1. Note that all cubes solve it; therefore, there are no more Math 13 Problem set 5 Artin 11.4.7 Factor the following polynomials into irreducible factors in Q[x]: (a) x 3 3x (b) x 3 3x + (c) x 9 6x 6 + 9x 3 3 Solution: The first two polynomials are cubics, so if

More information

Monogenic Fields and Power Bases Michael Decker 12/07/07

Monogenic Fields and Power Bases Michael Decker 12/07/07 Monogenic Fields and Power Bases Michael Decker 12/07/07 1 Introduction Let K be a number field of degree k and O K its ring of integers Then considering O K as a Z-module, the nicest possible case is

More information

Ideal Class Group and Units

Ideal Class Group and Units Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

More information

Field Fundamentals. Chapter 3. 3.1 Field Extensions. 3.1.1 Definitions. 3.1.2 Lemma

Field Fundamentals. Chapter 3. 3.1 Field Extensions. 3.1.1 Definitions. 3.1.2 Lemma Chapter 3 Field Fundamentals 3.1 Field Extensions If F is a field and F [X] is the set of all polynomials over F, that is, polynomials with coefficients in F, we know that F [X] is a Euclidean domain,

More information

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples

On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples On the generation of elliptic curves with 16 rational torsion points by Pythagorean triples Brian Hilley Boston College MT695 Honors Seminar March 3, 2006 1 Introduction 1.1 Mazur s Theorem Let C be a

More information

it is easy to see that α = a

it is easy to see that α = a 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

More information

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013 D. R. Wilkins Copyright c David R. Wilkins 1997 2013 Contents A Cyclotomic Polynomials 79 A.1 Minimum Polynomials of Roots of

More information

EMBEDDING DEGREE OF HYPERELLIPTIC CURVES WITH COMPLEX MULTIPLICATION

EMBEDDING DEGREE OF HYPERELLIPTIC CURVES WITH COMPLEX MULTIPLICATION EMBEDDING DEGREE OF HYPERELLIPTIC CURVES WITH COMPLEX MULTIPLICATION CHRISTIAN ROBENHAGEN RAVNSHØJ Abstract. Consider the Jacobian of a genus two curve defined over a finite field and with complex multiplication.

More information

Group Theory. Contents

Group Theory. Contents Group Theory Contents Chapter 1: Review... 2 Chapter 2: Permutation Groups and Group Actions... 3 Orbits and Transitivity... 6 Specific Actions The Right regular and coset actions... 8 The Conjugation

More information

GROUPS ACTING ON A SET

GROUPS ACTING ON A SET GROUPS ACTING ON A SET MATH 435 SPRING 2012 NOTES FROM FEBRUARY 27TH, 2012 1. Left group actions Definition 1.1. Suppose that G is a group and S is a set. A left (group) action of G on S is a rule for

More information

Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and

Breaking The Code. Ryan Lowe. Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and Breaking The Code Ryan Lowe Ryan Lowe is currently a Ball State senior with a double major in Computer Science and Mathematics and a minor in Applied Physics. As a sophomore, he took an independent study

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

11 Ideals. 11.1 Revisiting Z

11 Ideals. 11.1 Revisiting Z 11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

More information

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction

IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL. 1. Introduction IRREDUCIBLE OPERATOR SEMIGROUPS SUCH THAT AB AND BA ARE PROPORTIONAL R. DRNOVŠEK, T. KOŠIR Dedicated to Prof. Heydar Radjavi on the occasion of his seventieth birthday. Abstract. Let S be an irreducible

More information

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points

Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a

More information

A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number

A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number Number Fields Introduction A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number field K = Q(α) for some α K. The minimal polynomial Let K be a number field and

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

More information

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

More information

minimal polyonomial Example

minimal polyonomial Example Minimal Polynomials Definition Let α be an element in GF(p e ). We call the monic polynomial of smallest degree which has coefficients in GF(p) and α as a root, the minimal polyonomial of α. Example: We

More information

Research Article The General Traveling Wave Solutions of the Fisher Equation with Degree Three

Research Article The General Traveling Wave Solutions of the Fisher Equation with Degree Three Advances in Mathematical Physics Volume 203, Article ID 65798, 5 pages http://dx.doi.org/0.55/203/65798 Research Article The General Traveling Wave Solutions of the Fisher Equation with Degree Three Wenjun

More information

SOLVING POLYNOMIAL EQUATIONS BY RADICALS

SOLVING POLYNOMIAL EQUATIONS BY RADICALS SOLVING POLYNOMIAL EQUATIONS BY RADICALS Lee Si Ying 1 and Zhang De-Qi 2 1 Raffles Girls School (Secondary), 20 Anderson Road, Singapore 259978 2 Department of Mathematics, National University of Singapore,

More information

r + s = i + j (q + t)n; 2 rs = ij (qj + ti)n + qtn.

r + s = i + j (q + t)n; 2 rs = ij (qj + ti)n + qtn. Chapter 7 Introduction to finite fields This chapter provides an introduction to several kinds of abstract algebraic structures, particularly groups, fields, and polynomials. Our primary interest is in

More information

Generic Polynomials of Degree Three

Generic Polynomials of Degree Three Generic Polynomials of Degree Three Benjamin C. Wallace April 2012 1 Introduction In the nineteenth century, the mathematician Évariste Galois discovered an elegant solution to the fundamental problem

More information

Two classes of ternary codes and their weight distributions

Two classes of ternary codes and their weight distributions Two classes of ternary codes and their weight distributions Cunsheng Ding, Torleiv Kløve, and Francesco Sica Abstract In this paper we describe two classes of ternary codes, determine their minimum weight

More information

FINITE FIELDS KEITH CONRAD

FINITE FIELDS KEITH CONRAD FINITE FIELDS KEITH CONRAD This handout discusses finite fields: how to construct them, properties of elements in a finite field, and relations between different finite fields. We write Z/(p) and F p interchangeably

More information

OSTROWSKI FOR NUMBER FIELDS

OSTROWSKI FOR NUMBER FIELDS OSTROWSKI FOR NUMBER FIELDS KEITH CONRAD Ostrowski classified the nontrivial absolute values on Q: up to equivalence, they are the usual (archimedean) absolute value and the p-adic absolute values for

More information

7. Some irreducible polynomials

7. Some irreducible polynomials 7. Some irreducible polynomials 7.1 Irreducibles over a finite field 7.2 Worked examples Linear factors x α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α k [1] of

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS

FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS International Electronic Journal of Algebra Volume 6 (2009) 95-106 FACTORING CERTAIN INFINITE ABELIAN GROUPS BY DISTORTED CYCLIC SUBSETS Sándor Szabó Received: 11 November 2008; Revised: 13 March 2009

More information

ON HENSEL S ROOTS AND A FACTORIZATION FORMULA IN Z[[X]]

ON HENSEL S ROOTS AND A FACTORIZATION FORMULA IN Z[[X]] #A47 INTEGERS 4 (204) ON HENSEL S ROOTS AND A FACTORIZATION FORMULA IN Z[[X]] Daniel Birmaer Department of Mathematics, Nazareth College, Rochester, New Yor abirma6@naz.edu Juan B. Gil Penn State Altoona,

More information

Galois Theory III. 3.1. Splitting fields.

Galois Theory III. 3.1. Splitting fields. Galois Theory III. 3.1. Splitting fields. We know how to construct a field extension L of a given field K where a given irreducible polynomial P (X) K[X] has a root. We need a field extension of K where

More information

A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field.

A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field. A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field Jean-Pierre Serre Let k be a field. Let Cr(k) be the Cremona group of rank 2 over k,

More information

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

More information

10 Splitting Fields. 2. The splitting field for x 3 2 over Q is Q( 3 2,ω), where ω is a primitive third root of 1 in C. Thus, since ω = 1+ 3

10 Splitting Fields. 2. The splitting field for x 3 2 over Q is Q( 3 2,ω), where ω is a primitive third root of 1 in C. Thus, since ω = 1+ 3 10 Splitting Fields We have seen how to construct a field K F such that K contains a root α of a given (irreducible) polynomial p(x) F [x], namely K = F [x]/(p(x)). We can extendthe procedure to build

More information

ADDITIVE GROUPS OF RINGS WITH IDENTITY

ADDITIVE GROUPS OF RINGS WITH IDENTITY ADDITIVE GROUPS OF RINGS WITH IDENTITY SIMION BREAZ AND GRIGORE CĂLUGĂREANU Abstract. A ring with identity exists on a torsion Abelian group exactly when the group is bounded. The additive groups of torsion-free

More information

On the largest prime factor of x 2 1

On the largest prime factor of x 2 1 On the largest prime factor of x 2 1 Florian Luca and Filip Najman Abstract In this paper, we find all integers x such that x 2 1 has only prime factors smaller than 100. This gives some interesting numerical

More information

The van Hoeij Algorithm for Factoring Polynomials

The van Hoeij Algorithm for Factoring Polynomials The van Hoeij Algorithm for Factoring Polynomials Jürgen Klüners Abstract In this survey we report about a new algorithm for factoring polynomials due to Mark van Hoeij. The main idea is that the combinatorial

More information

Introduction to Finite Fields (cont.)

Introduction to Finite Fields (cont.) Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number

More information

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY

CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.

More information

CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC. 1. Introduction

CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC. 1. Introduction Acta Math. Univ. Comenianae Vol. LXXXI, 1 (2012), pp. 71 77 71 CURVES WHOSE SECANT DEGREE IS ONE IN POSITIVE CHARACTERISTIC E. BALLICO Abstract. Here we study (in positive characteristic) integral curves

More information

Chapter 13: Basic ring theory

Chapter 13: Basic ring theory Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring

More information

Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization

Research Article Stability Analysis for Higher-Order Adjacent Derivative in Parametrized Vector Optimization Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 510838, 15 pages doi:10.1155/2010/510838 Research Article Stability Analysis for Higher-Order Adjacent Derivative

More information

A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries

A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE. 1. Introduction and Preliminaries Acta Math. Univ. Comenianae Vol. LXVI, 2(1997), pp. 285 291 285 A REMARK ON ALMOST MOORE DIGRAPHS OF DEGREE THREE E. T. BASKORO, M. MILLER and J. ŠIRÁŇ Abstract. It is well known that Moore digraphs do

More information

NOTES ON CATEGORIES AND FUNCTORS

NOTES ON CATEGORIES AND FUNCTORS NOTES ON CATEGORIES AND FUNCTORS These notes collect basic definitions and facts about categories and functors that have been mentioned in the Homological Algebra course. For further reading about category

More information

6. Fields I. 1. Adjoining things

6. Fields I. 1. Adjoining things 6. Fields I 6.1 Adjoining things 6.2 Fields of fractions, fields of rational functions 6.3 Characteristics, finite fields 6.4 Algebraic field extensions 6.5 Algebraic closures 1. Adjoining things The general

More information

G = G 0 > G 1 > > G k = {e}

G = G 0 > G 1 > > G k = {e} Proposition 49. 1. A group G is nilpotent if and only if G appears as an element of its upper central series. 2. If G is nilpotent, then the upper central series and the lower central series have the same

More information

8.1 Examples, definitions, and basic properties

8.1 Examples, definitions, and basic properties 8 De Rham cohomology Last updated: May 21, 211. 8.1 Examples, definitions, and basic properties A k-form ω Ω k (M) is closed if dω =. It is exact if there is a (k 1)-form σ Ω k 1 (M) such that dσ = ω.

More information

ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM

ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM ELLIPTIC CURVES AND LENSTRA S FACTORIZATION ALGORITHM DANIEL PARKER Abstract. This paper provides a foundation for understanding Lenstra s Elliptic Curve Algorithm for factoring large numbers. We give

More information

The Ideal Class Group

The Ideal Class Group Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned

More information

Evaluating large degree isogenies and applications to pairing based cryptography

Evaluating large degree isogenies and applications to pairing based cryptography Evaluating large degree isogenies and applications to pairing based cryptography Reinier Bröker, Denis Charles, and Kristin Lauter Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA reinierb@microsoft.com,

More information

SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS

SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS Ivan Kolář Abstract. Let F be a fiber product preserving bundle functor on the category FM m of the proper base order r. We deduce that the r-th

More information

Prime Numbers and Irreducible Polynomials

Prime Numbers and Irreducible Polynomials Prime Numbers and Irreducible Polynomials M. Ram Murty The similarity between prime numbers and irreducible polynomials has been a dominant theme in the development of number theory and algebraic geometry.

More information

THE CONGRUENT NUMBER PROBLEM

THE CONGRUENT NUMBER PROBLEM THE CONGRUENT NUMBER PROBLEM KEITH CONRAD 1. Introduction A right triangle is called rational when its legs and hypotenuse are all rational numbers. Examples of rational right triangles include Pythagorean

More information

EXERCISES FOR THE COURSE MATH 570, FALL 2010

EXERCISES FOR THE COURSE MATH 570, FALL 2010 EXERCISES FOR THE COURSE MATH 570, FALL 2010 EYAL Z. GOREN (1) Let G be a group and H Z(G) a subgroup such that G/H is cyclic. Prove that G is abelian. Conclude that every group of order p 2 (p a prime

More information

Elements of Abstract Group Theory

Elements of Abstract Group Theory Chapter 2 Elements of Abstract Group Theory Mathematics is a game played according to certain simple rules with meaningless marks on paper. David Hilbert The importance of symmetry in physics, and for

More information

First and raw version 0.1 23. september 2013 klokken 13:45

First and raw version 0.1 23. september 2013 klokken 13:45 The discriminant First and raw version 0.1 23. september 2013 klokken 13:45 One of the most significant invariant of an algebraic number field is the discriminant. One is tempted to say, apart from the

More information

k, then n = p2α 1 1 pα k

k, then n = p2α 1 1 pα k Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

More information

RESULTANT AND DISCRIMINANT OF POLYNOMIALS

RESULTANT AND DISCRIMINANT OF POLYNOMIALS RESULTANT AND DISCRIMINANT OF POLYNOMIALS SVANTE JANSON Abstract. This is a collection of classical results about resultants and discriminants for polynomials, compiled mainly for my own use. All results

More information

QUADRATIC RECIPROCITY IN CHARACTERISTIC 2

QUADRATIC RECIPROCITY IN CHARACTERISTIC 2 QUADRATIC RECIPROCITY IN CHARACTERISTIC 2 KEITH CONRAD 1. Introduction Let F be a finite field. When F has odd characteristic, the quadratic reciprocity law in F[T ] (see [4, Section 3.2.2] or [5]) lets

More information

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

More information

Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 22 RAVI VAKIL CONTENTS 1. Discrete valuation rings: Dimension 1 Noetherian regular local rings 1 Last day, we discussed the Zariski tangent space, and saw that it

More information

FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set

FACTORING IN QUADRATIC FIELDS. 1. Introduction. This is called a quadratic field and it has degree 2 over Q. Similarly, set FACTORING IN QUADRATIC FIELDS KEITH CONRAD For a squarefree integer d other than 1, let 1. Introduction K = Q[ d] = {x + y d : x, y Q}. This is called a quadratic field and it has degree 2 over Q. Similarly,

More information

The cyclotomic polynomials

The cyclotomic polynomials The cyclotomic polynomials Notes by G.J.O. Jameson 1. The definition and general results We use the notation e(t) = e 2πit. Note that e(n) = 1 for integers n, e(s + t) = e(s)e(t) for all s, t. e( 1 ) =

More information

On the number-theoretic functions ν(n) and Ω(n)

On the number-theoretic functions ν(n) and Ω(n) ACTA ARITHMETICA LXXVIII.1 (1996) On the number-theoretic functions ν(n) and Ω(n) by Jiahai Kan (Nanjing) 1. Introduction. Let d(n) denote the divisor function, ν(n) the number of distinct prime factors,

More information

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007)

Linear Maps. Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) MAT067 University of California, Davis Winter 2007 Linear Maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (February 5, 2007) As we have discussed in the lecture on What is Linear Algebra? one of

More information

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 16

INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 16 INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 16 RAVI VAKIL Contents 1. Valuation rings (and non-singular points of curves) 1 1.1. Completions 2 1.2. A big result from commutative algebra 3 Problem sets back.

More information

1 Sets and Set Notation.

1 Sets and Set Notation. LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

More information

Unique Factorization

Unique Factorization Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

Invertible elements in associates and semigroups. 1

Invertible elements in associates and semigroups. 1 Quasigroups and Related Systems 5 (1998), 53 68 Invertible elements in associates and semigroups. 1 Fedir Sokhatsky Abstract Some invertibility criteria of an element in associates, in particular in n-ary

More information

Factorization Algorithms for Polynomials over Finite Fields

Factorization Algorithms for Polynomials over Finite Fields Degree Project Factorization Algorithms for Polynomials over Finite Fields Sajid Hanif, Muhammad Imran 2011-05-03 Subject: Mathematics Level: Master Course code: 4MA11E Abstract Integer factorization is

More information

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

More information

Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN. Part II: Group Theory

Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN. Part II: Group Theory Solutions to TOPICS IN ALGEBRA I.N. HERSTEIN Part II: Group Theory No rights reserved. Any part of this work can be reproduced or transmitted in any form or by any means. Version: 1.1 Release: Jan 2013

More information

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

More information

ALGEBRA HW 5 CLAY SHONKWILER

ALGEBRA HW 5 CLAY SHONKWILER ALGEBRA HW 5 CLAY SHONKWILER 510.5 Let F = Q(i). Prove that x 3 and x 3 3 are irreducible over F. Proof. If x 3 is reducible over F then, since it is a polynomial of degree 3, it must reduce into a product

More information

ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS

ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS ABSTRACT ALGEBRA: A STUDY GUIDE FOR BEGINNERS John A. Beachy Northern Illinois University 2014 ii J.A.Beachy This is a supplement to Abstract Algebra, Third Edition by John A. Beachy and William D. Blair

More information

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS

POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS POLYNOMIAL RINGS AND UNIQUE FACTORIZATION DOMAINS RUSS WOODROOFE 1. Unique Factorization Domains Throughout the following, we think of R as sitting inside R[x] as the constant polynomials (of degree 0).

More information

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS

COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS Bull Austral Math Soc 77 (2008), 31 36 doi: 101017/S0004972708000038 COMMUTATIVITY DEGREES OF WREATH PRODUCTS OF FINITE ABELIAN GROUPS IGOR V EROVENKO and B SURY (Received 12 April 2007) Abstract We compute

More information

Factoring Polynomials

Factoring Polynomials Factoring Polynomials Sue Geller June 19, 2006 Factoring polynomials over the rational numbers, real numbers, and complex numbers has long been a standard topic of high school algebra. With the advent

More information

FACTORING AFTER DEDEKIND

FACTORING AFTER DEDEKIND FACTORING AFTER DEDEKIND KEITH CONRAD Let K be a number field and p be a prime number. When we factor (p) = po K into prime ideals, say (p) = p e 1 1 peg g, we refer to the data of the e i s, the exponents

More information

Galois Theory. Richard Koch

Galois Theory. Richard Koch Galois Theory Richard Koch April 2, 2015 Contents 1 Preliminaries 4 1.1 The Extension Problem; Simple Groups.................... 4 1.2 An Isomorphism Lemma............................. 5 1.3 Jordan Holder...................................

More information

ALGEBRAIC NUMBER THEORY AND QUADRATIC RECIPROCITY

ALGEBRAIC NUMBER THEORY AND QUADRATIC RECIPROCITY ALGEBRAIC NUMBER THEORY AND QUADRATIC RECIPROCITY HENRY COHN, JOSHUA GREENE, JONATHAN HANKE 1. Introduction These notes are from a series of lectures given by Henry Cohn during MIT s Independent Activities

More information

FIBER PRODUCTS AND ZARISKI SHEAVES

FIBER PRODUCTS AND ZARISKI SHEAVES FIBER PRODUCTS AND ZARISKI SHEAVES BRIAN OSSERMAN 1. Fiber products and Zariski sheaves We recall the definition of a fiber product: Definition 1.1. Let C be a category, and X, Y, Z objects of C. Fix also

More information

MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

The Brauer Manin obstruction for curves having split Jacobians

The Brauer Manin obstruction for curves having split Jacobians Journal de Théorie des Nombres de Bordeaux 00 (XXXX), 000 000 The Brauer Manin obstruction for curves having split Jacobians par Samir SIKSEK Résumé. Soit X A un morphism (qui n est pas constant) d une

More information

RINGS WITH A POLYNOMIAL IDENTITY

RINGS WITH A POLYNOMIAL IDENTITY RINGS WITH A POLYNOMIAL IDENTITY IRVING KAPLANSKY 1. Introduction. In connection with his investigation of projective planes, M. Hall [2, Theorem 6.2]* proved the following theorem: a division ring D in

More information

COHOMOLOGY OF GROUPS

COHOMOLOGY OF GROUPS Actes, Congrès intern. Math., 1970. Tome 2, p. 47 à 51. COHOMOLOGY OF GROUPS by Daniel QUILLEN * This is a report of research done at the Institute for Advanced Study the past year. It includes some general

More information