ETSI TS V1.1.1 ( )
|
|
|
- Chester Wilkinson
- 10 years ago
- Views:
Transcription
1 TS V1.1.1 ( ) Technical Specification Access and Terminals (AT); Digital Broadband Cable Access to the Public Telecommunications Network; IP Multimedia Time Critical Services; Part 6: Media Terminal Adapter (MTA) device provisioning
2 2 TS V1.1.1 ( ) Reference DTS/AT Keywords access, broadband, cable, IP, multimedia, PSTN 650 Route des Lucioles F Sophia Antipolis Cedex - FRANCE Tel.: Fax: Siret N NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N 7803/88 Important notice Individual copies of the present document can be downloaded from: The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on printers of the PDF version kept on a specific network drive within Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other documents is available at If you find errors in the present document, send your comment to: [email protected] Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. European Telecommunications Standards Institute All rights reserved.
3 3 TS V1.1.1 ( ) Contents Intellectual Property Rights...5 Foreword...5 Introduction Scope References Definitions and abbreviations Definitions Abbreviations Overview of the IPCablecom system and goals Service Goals Specification goals IPCablecom Reference Architecture Components and Interfaces MTA MTA Security Requirements MTA SNMPv3 Requirements Provisioning Server Telephony Syslog Server MTA to DHCP Server MTA to Provisioning Application MTA to CMS MTA to Security Server (TGS) MTA and Configuration Data File Access DHCP extensions for MTA Provisioning Provisioning Overview Device Provisioning Endpoint Provisioning Provisioning State Transitions Provisioning Flows Backoff, Retries and Timeouts Embedded-MTA Power-On Initialization Flows Post Initialization Incremental Provisioning Synchronization of Provisioning Attributes with Configuration File Enabling Services on an MTA Endpoint Disabling Services on an MTA Endpoint Modifying Services on an MTA Endpoint MTA Replacement Temporary Signal Loss DHCP Options Code 177: IPCablecom Servers Option Service Provider's DHCP Server Address (sub-option 1 and sub-option 2) Service Provider's SNMP Entity Address (sub-option 3) DNS system (sub-option 4 and sub-option 5) Code 60: Vendor Client Identifier MTA Provisionable Attributes MTA Configuration File Name MTA Configuration File Device Level Configuration Data Device Level Service Data Per-Endpoint Configuration Data... 27
4 4 TS V1.1.1 ( ) 9 MTA Device Capabilities...30 Annex A (informative): Bibliography...31 History...33
5 5 TS V1.1.1 ( ) Intellectual Property Rights IPRs essential or potentially essential to the present document may have been declared to. The information pertaining to these essential IPRs, if any, is publicly available for members and non-members, and can be found in SR : "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to in respect of standards", which is available from the Secretariat. Latest updates are available on the Web server ( Pursuant to the IPR Policy, no investigation, including IPR searches, has been carried out by. No guarantee can be given as to the existence of other IPRs not referenced in SR (or the updates on the Web server) which are, or may be, or may become, essential to the present document. Foreword This Technical Specification (TS) has been produced by Technical Committee Access and Terminals (AT). The present document is part 6 of a multi-part deliverable supporting real-time multimedia services, as identified below: Part 1: Part 2: Part 3: Part 4: Part 5: Part 6: Part 7: Part 8: Part 9: Part 10: Part 11: Part 12: Part 13: Part 14: "General"; "Architectural framework for the delivery of time critical services over cable Television networks using cable modems"; "Audio Codec Requirements for the Provision of Bi-Directional Audio Service over Cable Television Networks using Cable Modems"; "Network Call signalling Protocol"; "Dynamic Quality of Service for the Provision of Real Time Services over Cable Television Networks using Cable Modems"; "Media Terminal Adapter (MTA) device provisioning"; "Management Information Base (MIB) Framework"; "Media Terminal Adapter (MTA) Management Information Base (MIB)"; "Network Call Signalling (NCS) MIB Requirements"; "Event Message Requirements for the Provision of Real Time Services over Cable Television Networks using Cable Modems"; "Security"; "Internet Signalling Transport Protocol"; "Trunking Gateway Control Protocol"; "Operation System Support". NOTE 1: The above list is complete for the first version of this Technical Specification (TS) (V ). Additional parts are being proposed and these will be added to the list in future versions. The present part is part 6 of the above-mentioned series of deliverables and describes the IPCablecom MTA device initialization and provisioning process for an embedded MTA device. The present document part also defines the format of the configuration file used for MTA device provisioning. It is limited to the provisioning of an IPCablecom embedded-mta device by a single provisioning and network management provider. NOTE 2: The choice of a multi-part format for this deliverable is to facilitate maintenance and future enhancements.
6 6 TS V1.1.1 ( ) Introduction The cable industry in Europe and across other Global regions have already deployed broadband cable television hybrid fibre coax (HFC) data networks running the Cable Modem Protocol. The cable industry is in the rapid stages of deploying IP Voice and other time critical multimedia services over these broadband cable television networks. The cable industry has recognized the urgent need to develop Technical Specifications aimed at developing interoperable interface specifications and mechanisms for the delivery of end to end advanced real time IP multimedia time critical services over bi-directional broadband cable networks. IPCablecom is a set of protocols and associated element functional requirements developed to deliver Quality-of-Service (QoS) enhanced secure IP multimedia time critical communications services using packetized data transmission technology to a consumer's home over the broadband cable television Hybrid Fibre/Coaxial (HFC) data network running the Cable Modem protocol. IPCablecom utilizes a network superstructure that overlays the two-way data-ready cable television network. While the initial service offerings in the IPCablecom product line are anticipated to be Packet Voice, the long-term project vision encompasses packet video and a large family of other packet-based services. The cable industry is a global market and therefore the standards are developed to align with standards either already developed or under development in other regions. The Specifications are consistent with the CableLabs/PacketCable set of specifications as published by the SCTE. An agreement has been established between and SCTE in the US to ensure, where appropriate, that the release of PacketCable and IPCablecom set of specifications are aligned and to avoid unnecessary duplication. The set of IPCablecom specifications also refers to ITU-SG9 draft and published recommendations relating to IP Cable Communication. The whole set of multi-part deliverables to which the present document belongs specify a Cable Communication Service for the delivery of IP Multimedia Time Critical Services over a HFC Broadband Cable Network to the consumers home cable telecom terminal. "IPCablecom" also refers to the working group program that shall define and develop these deliverables.
7 7 TS V1.1.1 ( ) 1 Scope The present set of documents specify IPCablecom, a set of protocols and associated element functional requirements. These have been developed to deliver Quality-of-Service (QoS), enhanced secure IP multimedia time critical communication services, using packetized data transmission technology to a consumer's home over a cable television Hybrid Fibre/Coaxial (HFC) data network. NOTE 1: IPCablecom set of documents utilize a network superstructure that overlays the two-way data-ready cable television network, e.g. as specified within ES and ES While the initial service offerings in the IPCablecom product line are anticipated to be Packet Voice and Packet Video, the long-term project vision encompasses a large family of packet-based services. This may require in the future, not only careful maintenance control, but also an extension of the present set of documents. NOTE 2: The present set of documents aims for global acceptance and applicability. It is therefore developed in alignment with standards either already existing or under development in other regions and in International Telecommunications Union (ITU). 2 References The following documents contain provisions which, through reference in this text, constitute provisions of the present document. References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For a specific reference, subsequent revisions do not apply. For a non-specific reference, the latest version applies. RFC 821 (1982): "Simple Mail Transfer Protocol". RFC 1157 (1990): "A Simple Network Management Protocol (SNMP)". RFC 2131: "Dynamic Host Configuration Protocol". RFC 2132 (1997): "DHCP Options and BOOTP Vendor Extensions". TS : "Access and Terminals (AT); Digital Broadband Cable Access to the Public Telecommunications Network; IP Multimedia Time Critical Services; Part 2: Architectural framework for the delivery of time critical services over cable Television networks using cable modems". TS : "Access and Terminals (AT); Digital Broadband Cable Access to the Public Telecommunications Network; IP Multimedia Time Critical Services; Part 4: Network Call signalling Protocol". TS : "Access and Terminals (AT); Digital Broadband Cable Access to the Public Telecommunications Network; IP Multimedia Time Critical Services; Part 5: Dynamic Quality of Service for the Provision of Real Time Services over Cable Television Networks using Cable Modems". TS : "Access and Terminals (AT); Digital Broadband Cable Access to the Public Telecommunications Network; IP Multimedia Time Critical Services; Part 8: Media Terminal Adaptor (MTA) Management Information Base (MIB)". TS : "Access and Terminals (AT); Digital Broadband Cable Access to the Public Telecommunications Network; IP Multimedia Time Critical Services; Part 9: Network Call Signalling (NCS) MIB Requirements". TS : "Access and Terminals (AT); Digital Broadband Cable Access to the Public Telecommunications Network; IP Multimedia Time Critical Services; Part 11: Security". ES : "Data-Over-Cable Service Interface Specifications Radio Frequency Interface Specification".
8 8 TS V1.1.1 ( ) ES : "Digital Video Broadcasting (DVB); DVB interaction channel for Cable TV distribution systems (CATV)". ITU-T Recommendation J.112: "Transmission systems for interactive cable television services". ITU-T Recommendation X.509: "Information technology - Open Systems Interconnection - The Directory: Public-key and attribute certificate frameworks". 3 Definitions and abbreviations 3.1 Definitions For the purposes of the present document, the following terms and definitions apply: Access Node: layer two termination device that terminates the network end of the ITU-T Recommendation J.112 connection NOTE: It is technology specific. In ITU-T Recommendation J.112, annex A, it is called the INA while in annex B it is the CMTS. Cable Modem: layer two termination device that terminates the customer end of the J.112 connection IPCablecom: working group project that includes an architecture and a series of Specifications that enable the delivery of real time services (such as telephony) over the cable television networks using cable modems 3.2 Abbreviations For the purposes of the present document, the following abbreviations apply: AN CM CMS DHCP DNS FQDN HFC HTTP IP IPSEC MAC MTA QoS PSTN SNMP TFTP TGS Access Node Cable Modem Call Management Server Dynamic Host Configuration Protocol Domain Naming System Fully Qualified Domain Name Hybrid Fibre/Coaxial HyperText Transfer Protocol Internet Protocol Internet Protocol Security Media Access Control Media Terminal Adaptor Quality of Service Public Switched Telephone Network Signalling Network Management Protocol Trivial File Transfer Protocol Ticket Granting Server 4 Overview of the IPCablecom system and goals 4.1 Service Goals Cable operators are interested in deploying high-speed data communications systems on cable television networks. The intended service enables voice communications, video and data services based on bidirectional transfer of Internet Protocol (IP) traffic, between the cable system headend and customer locations, over an all-coaxial or hybrid-fibre/coax (HFC) cable network, defined by ITU-T Recommendations J.83 and J.112. This is shown in simplified form in Figure 1.
9 9 TS V1.1.1 ( ) Wide-Area Network Access Node AN AN Network Side Interface Cable Network Cable Modem (CM) Transparent IP Traffic Through the System CM Customer Premises Equipment Interface Customer Premises Equipment T (118827) Figure 1: Transparent IP Traffic Through the Data-Over-Cable System The transmission path over the cable system is realized at the headend by an Access Node (AN), and at each customer location by a CM. 4.2 Specification goals Requirements relevant to device provisioning are: A single physical device (e.g. embedded-mta) will be completely provisioned and managed by a single business entity. This provider may establish business relationships with additional providers for services such as data, voice communications and other services. An embedded-mta is a IPCablecom MTA combined with a CM. Both CM and IPCablecom device provisioning steps MUST be performed for this embedded-mta device to be provisioned. The embedded-mta MUST have two IP addresses; an IP address for the CM component and a different IP address for the MTA component. The embedded-mta MUST have two MAC addresses, one MAC address for the CM component and a different MAC address for the MTA-component. IPCablecom requires a unique FQDN for the MTA-component in the embedded-mta. This FQDN MAY be included in the DHCP offer to the MTA-component. IPCablecom makes no additional FQDN requirements on the CM component in the embedded-mta beyond those required by ITU-T Recommendation J.112. If the FQDN is NOT included in the DHCP offer, then the FQDN MUST be included in the MTA configuration file and mapping of the FQDN to IP address MUST be configured in the network DNS server and be available to the rest of the network. IPCablecom embedded-mta provisioning MUST support two separate configuration files, an ITU-T Recommendation J.112 specified configuration file for the CM component and a IPCablecom-specified configuration file for the MTA component. The embedded-mta is outside the IPCablecom network trust boundary as defined in the IPCablecom architecture document TS The CM software download process supports the downloading of the software image to the embedded MTA. IPCablecom MUST support use of SNMPv3 security for network management operations. IPCablecom embedded-mta provisioning minimizes the impact to ITU-T Recommendation J.112 devices (CM and AN) in the network. Standard server solutions (TFTP, SNMP, DNS, etc.) must be supported. It is understood that an application layer may be required on top of these protocols to co-ordinate IPCablecom embedded-mta provisioning. Where appropriate, the ITU-T Recommendation J.112 management protocols are supported.
10 10 TS V1.1.1 ( ) 4.3 IPCablecom Reference Architecture Figure 2 shows the reference architecture for the IPCablecom Network. Refer to the architecture document TS for more detailed information on this reference architecture. Embedded MTA MTA Cable Modem HFC access network AN Call Management Server (CMS) Media Servers Announcement Servers Conference Mixing Bridges... Managed IP Backbone Media (QoS Features) (Headend, Local, Regional) PSTN Controller PSTN Embedded MTA MTA Cable Modem HFC access network AN Signalling Gateway T (118827) OSS Backoffice Billing Provisioning Problem Resolution DHCP Servers TFTP Servers... Figure 2: IPCablecom Network Component Reference Model (partial) 4.4 Components and Interfaces The basic IPCablecom embedded-mta provisioning reference architecture is shown in Figure 3. This figure represents the components and interfaces discussed in the present document. DNS Server TFTP or HTTP Server TGS DHCP Server pkt-p3 pkt-p4 pkt-p5 CMS pkt-p2 pkt-p6 Provisioning Server pkt-p1 Embedded- MTA pkt-p7 SYSLOG Server T (118827) Figure 3: IPCablecom Provisioning Interfaces MTA The MTA MUST conform to the following requirements during the provisioning sequence.
11 11 TS V1.1.1 ( ) MTA Security Requirements The MTA MUST conform to the following security requirements during the provisioning sequence: The MTA MUST generate a random number that will be exchanged as part of the device capability data to the Provisioning Application. This mechanism is referred to as "using nonce". This mechanism is required to ensure correctness of the provisioning configuration data file downloaded to the MTA. The nonce MUST be regenerated every time the MTA power-on initialization occurs. The MTA MUST generate a correlation number that will be exchanged as part of the device capability data to the Provisioning Application. This value is used as an identifier to correlate related events in the MTA provisioning sequence. The MTA MUST obtain an MTA Telephony Certificate (X.509 certificate) for each network operator's Call Management Server(s) (CMS) assigned to an MTA's voice communications endpoint. This certificate MUST be provided to the MTA as part of the MTA's provisioning data. If the MTA Telephony certificate was issued by a Local System CA, then the corresponding Local System Certificate MUST also be provided. Please refer to TS for further information. If the MTA Telephony certificate was issued by a Local System CA, then the corresponding Local System Certificate MUST also be provided. The MTA MUST obtain a Service Provider Certificate (X.509 certificate) from the network operator that "owns" the CMS assigned to an MTA's voice communications endpoint. This certificate MUST be provided to the MTA as part of the MTA's provisioning data. The MTA MUST fail the provisioning operation if ever a CMS is assigned to an MTA's voice communications endpoint without the MTA having been provisioned with both the MTA Telephony Certificate and the Telephony Service Provider Certificate. The MTA MUST fail provisioning operation if ever one of its endpoints is assigned an MTA Telephony Certificate that is signed by a Local System CA and the corresponding Local System Certificate is not provisioned for that endpoint. The MTA device MIB is structured to represent the assignment of an MTA endpoint to a CMS. However, the security association between an MTA and a CMS is on a per-device basis. For each unique pair of CMS Kerberos principal Name/Kerberos Realm assigned to an endpoint, the MTA MUST obtain a single Kerberos ticket per TS If the MTA already has a valid Kerberos ticket for that CMS, the MTA MUST NOT request an additional Kerberos ticket for that CMS. (Unless the expiration time of the current Kerberos ticket <= current time + PKINIT Grace Period, in which case the MTA MUST obtain a fresh ticket for the same CMS.) In the case that a CMS FQDN maps to multiple IP addresses, the MTA MUST initially establish a pair of IPSEC Security Associations (inbound and outbound) with one of the IP addresses returned by the DNS server. The MTA MAY also initially establish IPSEC Security Associations with the additional CMS IP addresses. (RFC 2131) During the MTA initialization, if the MTA already has a pair of active Security Associations (inbound and outbound) with a particular CMS IP address, the MTA MUST NOT attempt to establish additional Security Associations with the same IP address MTA SNMPv3 Requirements The MTA MUST conform to the following SNMPv3 requirements during the provisioning sequence: MTA SNMPv3 security is separate and distinct from CM SNMPv3 security. USM security information (authentication and privacy keys, and other USM table entries) is setup separately. SNMPv3 initialization MUST be completed prior to the provisioning enrolment inform. SNMPv3 security will not be available until after successful processing of the configuration file.
12 12 TS V1.1.1 ( ) Provisioning Server The Provisioning Server is made up of the following components: Provisioning Application - The Provisioning Application is responsible for co-ordinating the embedded-mta provisioning process. This application has an associated SNMP Entity. Provisioning SNMP Entity - The provisioning SNMP entity includes a trap handler for provisioning enrolment and the provisioning status traps as well as an SNMP engine for retrieving device capabilities and setting the TFTP filename and access method. Refer to the IPCablecom MTA MIB TS for a description of the MIB accessible MTA attributes. The interface between the Provisioning Application and the associated SNMP Entity is not specified in IPCablecom and is left to vendor implementation. The interface between the Provisioning Server and the TFTP Server is not specified in IPCablecom and is left to vendor implementation Telephony Syslog Server The IPCablecom Telephony Syslog server allows the MTA to report network or device events MTA to DHCP Server This interface identifies specific requirements in the DHCP server and the client for IP assignment during the MTA initialization process: Both the DHCP server and the embedded-mta MUST support DHCP option code 60 and DHCP option code 177 as defined in the present document. The DHCP server MUST accept and support broadcast and unicast messages from the MTA DHCP client. The DHCP server MAY include the MTA's assigned FQDN in the DHCP offer message to the MTA-component of the embedded-mta. Refer to RFC 2132 for details describing the DHCP offer message MTA to Provisioning Application This interface identifies specific requirements for the Provisioning Application to satisfy MTA initialization and registration. The Provisioning Application requirements are: The Provisioning Application MUST provide the MTA with its MTA configuration data file. The MTA configuration file is specific to the MTA-component of the embedded-mta and separate from the CM-component's configuration data file. The configuration data file format is TLV binary data suitable for transport over the specified TFTP or HTTP access method. The Provisioning Application MUST have the capability to configure the MTA with different data and voice service providers. The Provisioning Application MUST provide secure SNMP access to the device. The Provisioning Application MUST support online incremental device/subscriber provisioning using SNMP with security enabled MTA to CMS Signalling is the main interface between the MTA and the CMS. Refer to the IPCablecom signalling document TS for a detailed description of the interface. The CMS MUST accept signalling and bearer channel requests from an MTA that has an active security association.
13 13 TS V1.1.1 ( ) The CMS MUST NOT accept signalling and bearer channel requests from an MTA that does not have an active security association MTA to Security Server (TGS) The interface between the MTA and the Ticket Granting Server (TGS) MUST conform to the IPCablecom security specification TS MTA and Configuration Data File Access The present document part allows for more than one access method to download the configuration data file to the MTA: The MTA MUST support the TFTP access method for downloading the MTA configuration data file. The device will be provided with the URL-encoded TFTP server address and configuration filename via an SNMPv3 SET from the provisioning server. The MTA MAY support HTTP access method for downloading the MTA configuration data file. The device will be provided with the URL-encoded HTTP server address and configuration filename via an SNMPv3 SET from the provisioning server DHCP extensions for MTA Provisioning The present document part requires that the following additions to DHCP be supported for MTA auto-provisioning: A new DHCP offer message option code 177 and the associated procedures MUST be implemented in DHCP. 5 Provisioning Overview Provisioning is a subset of configuration management control. The provisioning aspects include, but are not limited to, defining configurable data attributes, managing defined attribute values, resource initialization and registration, managing resource software, and configuration data reporting. The resource (also referred to as the managed resource) always refers to the MTA device. Further, the associated subscriber is also referred to as a managed resource. 5.1 Device Provisioning Device provisioning is the process by which an embedded-mta device is configured to support voice communications service. For example, a network provider MAY decide to configure unassociated MTAs to provide a short code service for in-band subscriber enrolment, or possibly emergency service. In either case, device provisioning involves the MTA obtaining its IP configuration required for basic network connectivity, announcing itself to the network and downloading of its configuration data from its provisioning server. The MTA device MUST be able to verify the authenticity of the configuration file it downloads from the server. Privacy of the configuration data is also necessary. Thus, the configuration data will be "signed and sealed" by packaging the data into an MTA device sealed object. Please refer to TS for further information. Please refer to clause for provisioning rules related to security associations. 5.2 Endpoint Provisioning Endpoint provisioning is when a provisioned MTA authenticates itself to the CMS and establishes a security association with that server prior to becoming fully provisioned. Device registration allows subsequent call signalling to be protected under the established security association. Device registration will employ the Kerberos CMS Ticket the MTA obtained during subscriber enrolment. Please refer to TS for further information.
14 14 TS V1.1.1 ( ) 5.3 Provisioning State Transitions The following represents logical device states and the possible transitions across these logical states. This representation is for illustrative purposes only, and is not meant to imply a specific implementation. Definitions of these logical states are above and beyond ITU-T Recommendation J.112 State definitions, except the DHCP sequence, which is the same for both a CM and an MTA. The following state transitions do not specify the number of retry attempts or retry time out values: RETRY UNKNOWN dhcp fail RESET/INIT dhcp ok RETRY KNOWN Config data FAIL UN-PROVISIONED Config data ok RETRY PROVISIONED Security Exchange FAIL UN- AUTHENTICATED Security Exchange ok T (118827) AUTHENTICATED Figure 4: Device States and State Transitions 6 Provisioning Flows 6.1 Backoff, Retries and Timeouts Backoff mechanisms help the network to throttle device registration during a typical or mass registration condition when the MTA client requests are not serviced within the protocol specified timeout values. The details of provisioning behaviour under mass-registration is beyond the scope of IPCablecom, however this clause provides the following specifications and requirements: Throttling of registrations MAY be based on specifications provided by the access network media access control protocol. The MTA MUST follow DHCP (RFC 2131) and HTTP specification timeout and retry mechanisms. TheMTAMUSTuseanadaptivetimeoutforTFTP. The MTA MUST follow backoff and retry specifications that are defined in the security specification (TS ) for the security message flows.
15 15 TS V1.1.1 ( ) 6.2 Embedded-MTA Power-On Initialization Flows Following is the representative message flow that the embedded-mta device follows during power-on initialization. Note that these flows are informative and for reference only. It is understood that these flows do not imply implementation or limit functionality. Although these flows show the MTA configuration file download from a TFTP Server, the descriptive text details the requirements to support the MTA configuration file download from an HTTP Server. Note in the flow details below that certain steps may appear to be a loop in the event of a failure. In other words, the step to proceed to if a given step fails, is to retry that step again. However, it is recommended that if the desired number of backoff and retry attempts does not allow the step to successfully complete, the device detecting the failure should generate a failure event notification. Table 1: Embedded-MTA Power-On Initialization Flow Description Flow CM1 CM2 CM3 CM4 CM5- CM10 MTA1 MTA2 MTA3 Embedded-MTA Power-On Initialization Flow Description The client device begins device registration by having the CM component send a broadcast DHCP discover message. Included in this message is a device identifier (option code 60) to identify the device as either a CM only device or a CM device with an embedded MTA. The remainder of this message MUST conform to the DHCP discover data as defined in ITU-T Recommendation J.112. One or more DHCP servers may respond with a DHCP offer message. To be considered a valid DHCP offer for IPCablecom voice communications, the offer message MUST contain the IPCablecom option code 177 with sub-option 1, the offer message MUST contain the IPCablecom option code 177 with sub-option 1 and MAY contain sub-option 2. The client device MUST select a single DHCP offer that includes the IPCablecom code 177 values as defined in clause 7.1 to function as a IPCablecom voice communications-enabled device. The client device may select the first valid DHCP offer, or it may use its own internal selection rules to determine which valid DHCP offer to accept. The client device sends the appropriate DHCP server a DHCP REQUEST message to accept the DHCP offer. Refer to RFC 2131 for more details concerning the DHCP protocol. The DHCP server sends the client device CM component a DHCP ACK message to confirm acceptance of the offered data. The client device's CM component completes the remainder of the CM specified registration sequence. This includes downloading the CM configuration file, requesting time of day registration and registering with the AN. The MTA sends a unicast DHCP DISCOVER message to the DHCP server address specified in the CM-level DHCP Offer Message (Option code 177 from CM2 above). Included in this message is a device identifier (option code 60) to identify the device as a CM device with an embedded MTA. (Refer to clause 7.2.) Only the specified DHCP server will respond with a DHCP offer message. This offer will contain the IP address to be used for the client device's MTA component. It will also include the IPCablecom Option Code 177 with sub-option 2 and optionally sub-options 3 and 4 if the network is DNS-enabled. The client device's MTA component MUST select this DHCP offer. The client device's MTA component MUST select a DHCP offer as specified in sub-options 1 and 2 sent in CM-2. If sub-option 1 contains , then the MTA uses logic defined in DHCP (RFC 2132) to select an offer. Otherwise, the MTA MUST only accept an offer specified by the DHCP server(s) in sub-options 1 and 2. The MTA component sends the appropriate DHCP server a DHCP REQUEST message to accept the DHCP offer. Refer to RFC 2131 for more details concerning the DHCP protocol. Proceed to here if this step fails Per Cable DHCP. Per DHCP. Per DHCP. Per DHCP. Per access network MAC protocol. Per DHCP protocol. Per DHCP protocol. Per DHCP protocol.
16 16 TS V1.1.1 ( ) Flow MTA4 MTA5 MTA6 MTA7 MTA8 MTA9 Embedded-MTA Power-On Initialization Proceed to here if Flow Description this step fails The DHCP server sends the client device's MTA component a DHCP Per DHCP protocol. ACK message which MUST contain the IPv4 address of the MTA and MAY contain the FQDN to confirm acceptance of the offered data. (see note 1) The client device MTA component sends the PROV_SNMP_ENTITY MTA5 an SNMPv3 INFORM requesting enrolment. The IP address of this PROV_SNMP_ENTITY is contained in the IPCablecom DHCP offer message. As defined in the security spec TS , the MTA MUST create a randomly generated nonce and include the nonce in the MTA device signature. The following information MUST be in the "PktcMtaProvisioningEnrolment" object: Hardware Version; Software Version; Device Identifier String (EMTA:PKTC1.0:CM:xxxxxx); MAC address; Telephony Provisioning Correlation ID; MTA device signature (includes randomly generated nonce value). This is used for authentication. Refer to the security document part TS for more details. Please refer to the "PktcMtaProvisioningEnrolment" object in the MTA MIB (TS ) for a detailed description of these data values. The PROV_SNMP_ENTITY notifies the PROV_APP that the MTA has entered the management domain. (see notes 2, 3 and 4) (Optional) If any additional MTA device capabilities are needed by the MTA6 PROV_APP, the PROV_APP requests these from the MTA via SNMPv3 Get Requests. This is done by having the PROV_APP send the PROV_SNMP_ENTITY a "get request". Iterative: The PROV_SNMP_ENTITY sends the MTA one or more SNMPv3 GET requests to obtain any needed MTA capability information. The Provisioning Application may use a GETBulk request to obtain several pieces of information in a single message. Each PROV_SNMP_ENTITY SNMP Get command MUST encapsulate the SNMPv3 message using the MTA Device signature obtained from the provisioning enrolment inform, with the exception of the SNMPv3 Get Requests to get the MTA device certificate and MTA Manufacturer certificate. Refer to the security specification TS for handling of the SNMPv3 get commands for the MTA device certificate and MTA Manufacturer certificate. Iterative: MTA6 MTA sends the PROV_SNMP_ENTITY a Get Response for each Get Request. After all the Gets, or the GetBulk, finish, the PROV_SNMP_ENTITY sends the requested data to the PROV_APP. The MTA device signature in these responses MUST include the same nonce value that was originally included in the corresponding SNMPv3 INFORM message. The PROV_APP uses the information to determine the contents of the MTA8 MTA Configuration Data file and creates the configuration file at this point. The PROV_APP stores the configuration file on the appropriate TFTP server. The configuration file is signed by the PROV_APP with the "Prov Server's private key" and sealed with the "MTA's public key", using an MTA device signature wrapper defined in the security specification. The nonce value included in this MTA device signature MUST be the same nonce value that was sent by the MTA in the corresponding SNMP INFORM message in flow MTA-5. The PROV_APP then instructs the PROV_SNMP_ENTITY to send an MTA9 SNMP Set message to the MTA containing the URL-encoded file access method and filename (i.e. tftp:<filename>). (see note 5)
17 17 TS V1.1.1 ( ) Flow MTA10 -MTA11 MTA12 MTA13 MTA14 MTA15 Embedded-MTA Power-On Initialization Proceed to here if Flow Description this step fails If the URL-encoded access method contains a FQDN instead of an MTA10 IPv4 address, the MTA will use the service provider network's DNS server to resolve the FQDN into an IPv4 address of either the TFTP Server or the HTTP Server. The MTA sends the TFTP Server a TFTP Get Request to request the MTA12 specified configuration data file. (see note 6) The TFTP Server sends the MTA a TFTP Response containing the Repeat MTA13 if requested file. In the case of file download using the HTTP access the configuration method, the HTTP server sends the MTA a response containing the file download failed. requested file. Otherwise, proceed Refer to clause 9.2 for MTA configuration file contents. to MTA14 and send (see notes 7 and 8) the failed response Enable SNMPv3 security if no error condition occurred during this step. if the MTA If IPCablecom and CM share the same SNMPv3 manager, then the configuration file SNMPv3 kickstart for CM MUST already have been enabled and itself is in error. MUST also have enabled SNMPv3 security for IPCablecom and no additional IPCablecom SNMPv3 security actions are required. Otherwise, SNMPv3 security for IPCablecom MUST be enabled in this step. The MTA sends the voice service provider's SYSLOG (identified in the A vendor MAY configuration data file) a "provisioning complete" notification. This consider returning notification will include the pass-fail result of the provisioning operation. to MTA5, repeating The general format of this notification is as defined in the CM Device until it is MIB specification details on syslog events. determined to be a hard failure and then MUST continue to MTA15. The MTA MUST send the PROV_SNMP_ENTITY an SNMP INFORM containing a "provisioning complete" notification. The following information MUST be in the "PktcMtaProvisioningStatus" object: MAC address; Telephony Provisioning Correlation ID; MTA device signature (includes randomly generated nonce value); Provisioning State (PASS or FAIL). NOTE: The following security flows are only performed for the first endpoint provisioned with this CMS Name. If another endpoint on this MTA already has an active security association with the specified CMS, then the following steps MUST NOT be performed: Get Kerberos tickets associated with each CMS with which the MTA communicates. (see note 9) SEC1 SEC2 For each different CMS assigned to voice communications endpoints, the MTA requests a Kerberos Ticket for the CMS by sending a PKINIT REQUEST message to the TGS containing the MTA Telephony Certificate (specified in the MTA configuration file), the MTA FQDN and the assigned CMS Identifier. The TGS sends the MTA a PKINIT REPLY message containing the CMS Kerberos Ticket for the assigned CMS. Establish IPSEC security association between the MTA and each CMS with which the MTA communicates. (see note 10) SEC3 SEC4 The MTA requests a pair of IPSEC simplex Security Associations (inbound and outbound) with the assigned CMS by sending the assigned CMS a Kerberos AP REQUEST message containing the CMS Kerberos Ticket. The CMS establishes the Security Associations by sending an AP REPLY message with the corresponding IPSEC parameters. MTA MAY generate a Provisioning Failure event notification to the Service Provider's Fault Management server. Provisioning process stops; Manual interaction required.
18 18 TS V1.1.1 ( ) Flow Embedded-MTA Power-On Initialization Flow Description Proceed to here if this step fails SEC5 (Required during error conditions - refer to security specification TS for error handling.) The MTA responds with an "SA Recovered message" that lets the CMS know, the MTA is now ready to receive on its incoming IPSEC Security Association. NOTE 1: The FQDN MUST be available in the device before Kerberos Ticket generation can occur. NOTE 2: The Telephony Provisioning Correlation ID is a numeric value that is used to correlate the configuration download notification insteps MTA-14 and MTA-15 with this enrolment request. NOTE 3: Both the MTA device signature and the nonce MUST be regenerated every time this step occurs. NOTE 4: SNMPv3 initialization MUST have occurred prior to the sending of this information. NOTE 5: In the case of file download using the HTTP access method, the URL-encoded filename is: or FQDN of access server}/ mta-config-filename. NOTE 6: In the case of file download using the HTTP access method, the MTA sends the HTTP server a request for the specified configuration data file. NOTE 7: At this stage, the MTA device provisioning data is sufficient to provide any minimal services as determined by the service provider (e.g. 611, 911). NOTE 8: SNMPv3 authentication and privacy keys are included in this configuration file. These keys are used to turn on IPCablecom SNMPv3 security with both message integrity and privacy on all subsequent SNMP messages. NOTE 9: SEC1 and SEC2 MUST be repeated for each CMS with which the MTA communicates. NOTE 10: SEC3, SEC4 and SEC5 MUST be repeated for each CMS with which the MTA communicates. 6.3 Post Initialization Incremental Provisioning This clause describes the flows allowing the Provisioning Application to perform incremental provisioning of individual voice communications endpoints after the MTA has been initialized and authenticated. Post-Initialization incremental provisioning MAY involve communication with a Customer Service Representative (CSR) Synchronization of Provisioning Attributes with Configuration File Incremental provisioning includes adding, deleting and modifying subscriber services on one or more endpoints of the embedded-mta. Services on an MTA endpoint MUST be modified using SMNPv3 via the MTA MIB (TS ). The back office applications MUST support a "flow-through" provisioning mechanism that synchronizes all device provisioning information on the embedded-mta with the appropriate back office databases and servers. Synchronization is required in the event that provisioning information needs to be recovered in order to re-initialize the device. Although the details of the back office synchronization are beyond the scope of the present document part, it is expected that, at a minimum, the following information be updated: customer records and the MTA configuration file on the TFTP or HTTP server Enabling Services on an MTA Endpoint Services may be provisioned on a per-endpoint basis whenever it is desired to add or modify service to a previously unprovisioned endpoint. This would be the case if a customer was already subscribing to service on one or more lines (endpoints) and now wanted to add additional service on another line (endpoint). MTA Endpoint services are enabled using SMNPv3 via the MTA MIB (TS ). In this example, a subscriber is requesting that additional service be added. This example assumes the service provider's account creation process has been completed, and shows only the applications critical for the flows. For instance, account creation and billing database creation are assumed to be available and integrated in the back office application suite.
19 19 TS V1.1.1 ( ) Flow MTA Prov App TGS CMS SYSLOG OSS back office notifies the Prov App that a new MTA endpoint must be activated. Update endpoint service provisioning information using SNMP set(s). EPT1 EPT2 SEC1 SEC2 SEC3 SEC4 SEC5 MTA send telephony service provider SYSLOG a notification of provisioning completed Kerberos PKINIT Request Kerberos PKINIT Reply (CMS ticket) Kerberos AP Request Kerberos AP Reply SA Recovered T (118827) Figure 5: Enabling Services on an MTA Endpoint Table 2: Enabling Services on an MTA Endpoint Flow Description Flow EPT1 EPT2 SEC1 SEC2 SEC3 SEC4 SEC5 Enabling Services on an MTA Endpoint Flow Description The Provisioning Application will now use SNMP Sets to update provisioning attributes on the device for which the device port is being enabled. These SET operations MUST include the device port CMS ID (associate the device port to the CMS ID from which the features will be supported), the device port to enable and the MTA IP Telephony Certificate from the selected service provider. See clause for details of provisioning rules. The MTA sends the service provider's SYSLOG (identified in the configuration data file) a "provisioning complete" notification. This notification will include the pass-fail result of the provisioning operation. The general format of this notification is as defined in the CM Device MIB specification details on syslog events. NOTE: The following security flows assume that this is the first endpoint provisioned with this CMS Name. If another endpoint on this MTA already has an active security association with the specified CMS, then the following steps MUST NOT be performed. For each different CMS assigned to voice communications endpoints, the MTA requests a certificate for the CMS by sending a PKINIT REQUEST message to the TGS containing the MTA Telephony Certificate, the MTA FQDN and the assigned CMS Identifier. The TGS sends the MTA a PKINIT REPLY message containing the CMS Kerberos Ticket for the assigned CMS. The MTA requests a security association with the assigned CMS by sending the assigned CMS a Kerberos AP REQUEST message containing the CMS Kerberos Ticket. The CMS establishes the security association by sending an AP REPLY message with the IPSEC Security Association parameters. (Required during error conditions - refer to security specification TS for error handling.) The MTA responds with an SA Recovered message that lets the CMS know the MTA is now ready to receive on its incoming IPSEC Security Association Disabling Services on an MTA Endpoint MTA Endpoint services are disabled using SMNP Sets to the MTA. In this scenario, subscriber's voice communications service is disabled from one of the MTA endpoints. This example assumes the service provider's account update process has been completed and shows only the applications critical to MTA operation.
20 20 TS V1.1.1 ( ) Flow MTA Prov App TGS SYSLOG OSS back office notifies the Prov App that a new MTA endpoint must be activated. EPT1 EPT2 Delete endpoint service provisioning information using SNMP set(s). MTA sends telephony service provider SYSLOG notification of completed provisioning operation. T (118827) Figure 6: Disabling Services on an MTA Endpoint Table 3: Disabling Services on an MTA Endpoint Flow EPT1 EPT2 Disabling Services on an MTA Endpoint Flow Description The Provisioning Application will now use SNMP Sets to delete provisioning attributes from the device endpoint for which the service is being disabled. This MUST include setting the associated security parameters to a NULL value. The MTA sends the service provider's SYSLOG (identified in the configuration data file) a "provisioning complete" notification. This notification will include the pass-fail result of the provisioning operation. The general format of this notification is as defined in the CM Device MIB specification details on SYSLOG events Modifying Services on an MTA Endpoint MTA Endpoint services are modified using SMNPv3 Sets to the MTA MIB (TS ). In this scenario subscriber's voice communications service features are being modified on one of the MTA endpoints. Once again, the accounting management aspects of the back office application are assumed to be correct. The following are possible service modifications and none of these modifications cause the device to recreate the subscriber ticket from the TGS system: 1) Modification of call service features (add, delete call features). Changes to services require modifications in the CMS, not in the MTA. 2) Modification of service level (change the subscriber service levels with respect to the QoS definition). This is part of the CM provisioning and requires changes to the CM component in the MTA which requires rebooting the embedded-mta. This updates the MTA (CM) as the initialization sequence is executed as part of the bootup process. 6.4 MTA Replacement The initialization sequence for the replaced MTA will be the same as the MTA's first-time initialization described in clause 6. Once the MTA is initialized, an additional step is required by the network management system to move the profile from the old MTA to the new MTA. The subscriber account migration can occur with the help of the Customer Service Representative (CSR) provided the CSR can validate the subscriber account information. If the subscriber uses Interactive Voice Response (IVR) and Web-Based Enterprise Management (WBEM) systems to migrate profiles from the old MTA to the new MTA, the IVR and WBEM systems are expected to validate the subscriber identification and allow profile migration process. The detailed process for migrating subscriber profiles from the old MTA to the new MTA is beyond the scope of the present document.
21 21 TS V1.1.1 ( ) The initialization flow as described in clause 6 will apply for the replaced MTA. If the replaced MTA is new or if the replaced MTA has registered once, then all the above-described flows are applicable. 6.5 Temporary Signal Loss The treatment for RF loss in the MTA MUST be similar to that of a CM. Therefore, if the RF loss at the MTA is sufficient to cause the MTA to reinitialize, then the MTA is required to repeat the initialization sequence described in clause 6. 7 DHCP Options DHCP is used to obtain IPv4 addresses for both the CM and the MTA. The DHCP option code 60 and option code 177 described in the table below MUST be supported during the CM and the MTA DHCP messages. 7.1 Code 177: IPCablecom Servers Option DHCP option code 177 is a temporary code that the IPCablecom embedded-mta device can use until a permanent code is assigned by the IETF. Refer to the power-on initialization flows in clause 6 for further details. DHCP option code 177 is used in both the CM and MTA DHCP OFFER messages to identify a list of valid IPCablecom network servers. The IPCablecom servers are identified using either an IPv4 address or a FQDN. Each suboption of DHCP option code 177 identifies a particular type of IPCablecom server. Refer to RFC 2132 section 2 for DHCP encoding and formatting details. During the CM device provisioning sequence of an embedded-mta, the sub-option 1 MUST and sub-option 2 MAY be included in the CM's DHCP OFFER message. The MTA's DHCP OFFER MUST contain sub-option 3 and MAY contain sub-options 4 and 5. IPCablecom-defined DHCP option fields are encoded in the following format using option code 177: Table 4: Server Options Option Sub-option Description and Comments Service Provider's Primary DHCP Server Address. 2 Service Provider's SNMP Entity Secondary DHCP Server Address. 3 Service Provider's SNMP Address. 4 Service Provider Network Primary Domain Name Server. 5 Service Provider Network Secondary Domain Name Server. The following clauses provide detailed descriptions of each sub-option of DHCP option code 177. Note that UDP port numbers are normally standard values as defined in RFC1340. However, the format of the sub-option data fields defined here have a provision to optionally include port numbers for these systems if a port number other than the standard is required. If no port number is specified, the standard port number based on the definitions in RFC 1340 is assumed. For example, the standard DNS UDP port number is 42/udp Service Provider's DHCP Server Address (sub-option 1 and sub-option 2) The Service Provider's DHCP Server Address identifies the DHCP server that will be used to obtain an MTA-unique IP address for a given service provider's network administrative domain. The Service Provider's DHCP Server Address identifies the DHCP servers that a DHCP Offer will be accepted from to obtain an MTA-unique IP address for a given service provider's network administrative domain. These addresses are configured as IPv4 addresses. If sub-option 1 contains , then the MTA uses logic defined in DHCP to select an Offer. Otherwise, the MTA MUST only accept an Offer specified by the DHCP server(s) in sub-option(s) 1 and 2.
22 22 TS V1.1.1 ( ) Sub-option 1 MUST be included in the DHCP Offer to the CM and indicates the Primary DHCP server or The value of specifies that the MTA MAY use its own criteria in selecting a DHCP Offer. Sub-option 2 MAY be used to identify a redundant or backup DHCP server. The encoding of sub-option 1 is as follows: Table 5: DHCP Server Address Comments The IP address of the Primary DHCP Server where NNNN is an optional UDP port number if different from the well-known port defined in RFC [xxx.xxx.xxx.xxx]:nnnn The IP address of the Secondary DHCP Server where NNNN is an optional UDP port number if different from the well-known port defined in RFC Service Provider's SNMP Entity Address (sub-option 3) The Service Provider's SNMP Entity Address is the network address of the default server for a given voice service provider's network administrative domain. The Service Provider's SNMP Entity Address component MUST be capable of accepting SNMP traps. This address can be configured as either an FQDN or as an IPv4 address. Since FQDN and IPv4 are of two different formats, a syntax was chosen which allows a way of specifying either address attribute as a DISPLAYSTRING. The syntax for this method is shown in the table below. Refer to RFC 821 for additional details concerning the syntax for this bracketed IP address notation. The encoding of sub-option 3 is as follows: Table 6: SNMP Entity Address Option Suboption Value [xxx.xxx.xxx.xxx]:nnnn FQDN:NNNN Option Suboption Value [xxx.xxx.xxx.xxx]:nnnn FQDN:NNNN Comments Either the IPv4 address or the FQDN will be configured. Where NNNN is an optional UDP port number if different from the well-known port defined in RFC DNS system (sub-option 4 and sub-option 5) The Service Provider's DNS server is required to resolve an IPCablecom device's FQDN into an IPv4 address. The DNS server's address MUST be specified in the IPv4 format. Sub-option 4 is the address of the network's primary DNS server and MUST be specified if option 3 is in FQDN format. Sub-option 5 is the address of the network's secondary DNS server. Sub-option 5 MAY be specified to identify a redundant or backup DNS server.
23 23 TS V1.1.1 ( ) The encoding syntax for sub-option 4 and sub-option 5 is as follows: Table 7: DNS system Option Suboption Value Comments [xxx.xxx.xxx.xxx]:nnnn This field is the IPv4 address of the service provider's primary DNS server. Where NNNN is an optional UDP port number if different from the well-known port defined in RFC [xxx.xxx.xxx.xxx]:nnnn This field is the IPv4 address of the service provider's secondary DNS server. Where NNNN is an optional UDP port number if different from the well-known port defined in RFC Code 60: Vendor Client Identifier Option code 60 contains encoded ASCII values representing the type of IPCablecom MTA. Possible values are for an embedded MTA and for future use a stand-alone MTA. Both the CM-component and the MTA-component of an embedded-mta MUST encode this option in their DHCP discover messages. The following table shows the IPCablecom extensions to the DHCP option 60 requirements. Table 8: Vendor Client Identifier Option Length Value Comments EMTA:PKTC1.0:Yyyyyyy:xxxxxxx EMTA:PKTC:Yyyyyyy:xxxxxxx SMTA:PKTC1.0:Yyyyyyy:xxxxxxx (for future use) SMTA:PKTC1.1:Yyyyyyy:xxxxxxx (for future use) The CM-component and the MTA-component encodes option 60 in the DHCP messages. Where PKTC stands for IPCablecom and EMTA refers to embedded MTA and SMTA refers to Stand-alone MTA. The suffix xxxxxxx is defined by the access network protocol. The yyyyyyy is to be replaced by the corresponding access network protocol. 8 MTA Provisionable Attributes This clause includes the list of attributes and their associated properties used in device provisioning. All of the provisionable attributes specified in this clause MAY be updated via the MTA configuration data file, or on a per-attribute basis using SMNP with security. IPCablecom requires that an MTA configuration data file MUST be provided to all embedded-mtas during the registration sequence. If no voice services are enabled at the time of device initialization, the configuration data file MUST include all Device Level Configuration Data to explicitly configure device level information as desired by the network service provider. These items are contained in the table defined in clause
24 24 TS V1.1.1 ( ) 8.1 MTA Configuration File Name The MTA configuration data filename generated by the Provisioning Application MUST be less than 255 bytes in length and cannot be NULL. Since this filename is provided to the MTA by the Provisioning Application during the registration sequence, it is not necessary to specify a file naming convention. 8.2 MTA Configuration File The following is a list of attributes and their syntax for objects included in the MTA configuration file. This file contains a series of TLV parameters. Each TLV parameter in the configuration file describes an MTA or endpoint attribute. The configuration data file includes TLVs that have read-write, read only, and no MIB access. Unless specifically indicated, all MIB-accessible configuration file parameters MUST be defined using TLV type 11 as shown below. Type Length Value (1byte) (1byte) 11 n variable binding where the value is an SNMP VarBind as defined in RFC The VarBind is encoded in ASN.1 Basic Encoding Rules, just as it would be if part of an SNMP Set request. The use of type 11 TLV-tuplus allows SNMP variables to be set via the MTA configuration file. The CM must treat this object as if it were part of an SNMP Set Request with the following caveats: 1) It must treat the request as fully authorized. 2) SNMP Write Control provisions do not apply. 3) No SNMP response is generated by the CM. Type 11 may be repeated with different VarBinds to "Set" a number of MIB objects. Further, each VarBind must be limited to 255 bytes. The MTA configuration file MUST start with the "telephony configuration file start" type and MUST end with the "telephony configuration file end" type. These types are defined in section of the present document part These tags also provide deterministic indications for start and stop of the MTA configuration file. The MTA configuration file MUST contain the Device Level Configuration Data. The MTA configuration file MUST be sent to the embedded-mta every time this device is powered on. The MTA enrolment inform (step MTA-5 of the provisioning flow) is the trigger which causes the configuration file to be sent to the embedded-mta. The MTA configuration file MAY contain Device Level Service Data. If the MTA configuration file contains Device Level Service Data, then it MUST contain the attributes identified as "required" in the table below and MAY contain any of the non-required attributes. The Device Level Service Data MUST be sent to the MTA when voice communications service is activated. The Device Level Service Data MAY be sent to the MTA as part of the MTA configuration file or it MAY be sent to the MTA via SNMP with security. Refer to clause for a discussion concerning synchronization of provisioning attributes with back office systems. The MTA configuration file MAY contain Per-Endpoint Configuration Data. If the MTA configuration file contains Per-Endpoint Configuration Data, then, for each MTA endpoint, the file MUST contain the attributes identified as "required" in the table below and MAY contain any of the non-required attributes. The Per-Endpoint Configuration Data MUST be sent to the MTA when voice communications service is activated. The Per-Endpoint Configuration Data MAY be sent to the MTA as part of the MTA configuration file or it MAY be sent to the MTA via SNMP with security. Refer to clause for a discussion concerning synchronization of provisioning attributes with back office systems. Authentication of the MTA configuration file MUST be supported via the MTA-generated nonce sent in the SNMP Inform. If the MTA configuration file can NOT be authenticated, then the MTA configuration file MUST be discarded Device Level Configuration Data Refer to the MTA MIB (TS ) for more detailed information concerning these attributes and their default values.
25 25 TS V1.1.1 ( ) The MTA Manufacturer Certificate validates the MTA Device Certificate. Attribute Syntax Configuration Access Telephony Config File Start Telephony Config File End Telephony MTA Admin State IPCablecom MTA Device FQDN Telephony Service Provider SNMP Entity Telephony Service Provider DHCP Server Telephony Provider Syslog Server IPCablecom Telephony Provisioning Correlation ID Table 9: Device Level Configuration SNMP Comments Access Integer W, required None Type length value The MTA config file MUST start with this attribute. Integer W, required None Type length value ThisMUSTbethelastattributeinthe MTA config file. ENUM W, required R/W Used to enable/disable all telephony ports on the MTA. Applies to the MTA side of the embedded-mta or the entire stand-alone MTA. Allows blanket management of all telephony ports (external interfaces) on the device. Enabled - allows all telephony ports to manage traffic carrying capability on an individual basis. Disabled - disallows traffic carrying capability of all MTA telephony endpoints. Telephony call setup requests, and post-power-on-provisioning SNMP sets will be rejected by the MTA while in a disabled state. Therefore, this attribute MUST be enabled before SNMP per-endpoint provisioning can occur. String W, required R/W Fully Qualified Domain Name for this (refer to note 1) Device. (see note 1) String W, required R/W This attribute is the FQDN or IPv4 address of the MTA's SNMP Entity. The MTA MUST reject the MTA config file if this value is not provided. If this value is NULL in the MTA config file, then the value provided in DHCP 177 sub-option 2 of the CM-component ITU-T Recommendation J.112 DHCP offer MUST be used. String W, required R/W This attribute is the FQDN or IPv4 address of the MTA DHCP Server. This attribute identifies the DHCP server to which the MTA requests IPv4 address lease renewals. If this value is NULL in the MTA config file, then the value provided in DHCP 177 sub-option 1 of the MTA-component ITU-T Recommendation J.112 DHCP offer MUST be used. String W, required R/W This attribute is the FQDN or IPv4 address of the MTA system log server. If this value is , then it implies that syslog logging for the MTA is turned off. Integer 32 W, required R/O Arbitrary value generated by the MTA for use in registration authorization. It is for use only in the MTA initialization messages and for MTA configuration file download. MTA Privacy Key String W, required None MTA Privacy Key - MTA config file attribute (NOT in MIB). A unique 16 byte string created by the Provisioning
26 26 TS V1.1.1 ( ) Attribute Syntax Configuration Access MTA Authentication Key SNMP Access Comments Application and used by the MTA and the Provisioning Application to derive the SNMPv3 encryption key for this MTA. TheremustbeaseparateSNMPv3 management user for each MTA. Refer to RFC 2574 (see Bibliography). The MTA Privacy key does not need to be on a per-endpoint basis (i.e. multiple endpoints can share the same key). String W, required None MTA Authentication Key - MTA config file attributes (NOT in MIB). A unique 16 byte string created by the Provisioning Application and used by the MTA and the Provisioning Application to establish SNMPv3 security and authenticate messages. (Used in MTA-13.) USM User Name String W, required None The name of the user. This is used as the index to the other USM information. (see note 2) USM User Authentication Protocol USM User Privacy Protocol MTA Device Certificate MTA Manufacturer Certificate MTA Device Signature NOTE 1: NOTE 2: ENUM W, required R/W This specifies the authentication protocol used in SNMPv3 messages. ENUM W, required R/W This specifies the privacy protocol used in SNMPv3 messages. String W, required R/O MTA Device Certificate - The MTA's X.509 public-key certificate installed in the embedded-mta by the manufacturer. String W, required R/O MTA Manufacturer Certificate - The MTA Manufacturer's X.509 public-key certificate. This certificate is required to validate the MTA's Device Certificate. String W, required R/W MTA Device Signature - A unique signature created by the MTA for each SNMP Inform or SNMP Trap or SNMP GetResponse message exchanged (MTA-5 and MTA-7) prior to enabling SNMPv3 security. The MTA Digital Signature is in the Cryptographic message syntax, ASN.1 encoded. If the FQDN is NOT included in the DHCP offer, then the FQDN MUST be included in the MTA configuration file and mapping of the FQDN to IP address MUST be configured in the network DNS server and be available to the rest of the network. This object is an MIB table index Device Level Service Data Refer to the MTA MIB (TS ), the NCS MIB (TS ), the NCS Call Signalling specification (TS ) and RFC 2131 for more detailed information concerning these attributes and their default values.
27 27 TS V1.1.1 ( ) Attribute Syntax Configuration Access NCS Default Call Signalling TOS NCS Default Media Stream TOS NCS TOS Format Selector Table 10: Device Level Service SNMP Comments Access Integer W, required R/W The default value used in the IP header for setting the TOS value for NCS call signalling. Integer W, required R/W The default value used in the IP header for setting the TOS value for NCS media stream packets. ENUM W, required R/W The format of the default NCS signalling and media TOS values. Allowed values are "IPv4 TOS octet" or "DSCP codepoint". Refer to IETF RFC R0 cadence Bit-field W, required R/W User defined bit field where each bit represents a duration of 200 ms (6 s total) 1 = active ringing, 0 = silence. Ifthisfieldisnotgoingtobeused,it MUST be set to zero. R6 cadence Bit-field W, required R/W User defined bit field where each bit represents a duration of 200 ms (6 s total) 1 = active ringing, 0 = silence. Ifthisfieldisnotgoingtobeused,it MUST be set to zero. R7 cadence Bit-field W, required R/W User defined bit field where each bit represents a duration of 200 ms (6 s total) 1 = active ringing, 0 = silence. Ifthisfieldisnotgoingtobeused,it MUST be set to zero Per-Endpoint Configuration Data Refer to the NCS MIB TS , the NCS spec TS , the security spec TS and the MTA MIB TS for more detailed information concerning these attributes and their default values. MTA sends TGS the MTA/CMS certificate, MTA's FQDN, CMS-ID. The TGS returns the MTA a "Kerberos Ticket" that says "this MTA is assigned to this CMS". The Telephony Service Provider Certificate validates the MTA Telephony Certificate. If two different endpoints share the same CMS FQDN then all six security-attributes MUST be identical: Kerberos Realm, CMS Kerberos Principal Name, PKINIT grace period, TGS name list, MTA IP telephony certificate, telephony service provider certificate. If a Local System Certificate is present, it too MUST be the same for both endpoints. If two different endpoints share the same Kerberos Realm and same CMS Kerberos Principal Name, then these four attributes MUST be identical: PKINIT grace period, TGS name list, MTA telephony certificate, telephony service provider certificate. If a Local System Certificate is present, it too MUST be the same for both endpoints.
28 28 TS V1.1.1 ( ) Table 11: Per-Endpoint Configuration Attribute Syntax Access SNMP Comments Access Port Admin State ENUM W, required R/W The administrative state of the port the operator can access to either enable or disable service to the port. The administrative state can be used to disable access to the user port without de-provisioning the subscriber. Allowed values for this attribute are: Enabled/disabled. For SNMP access it is found in the iftable of MIB-II. Call Management Server Name String W, required R/W This attribute is the FQDN or IPv4 address of the CMS assigned to the endpoint. DNS support is assumed to support multiple CMSs as described in the NCS spec. Call Management Server Integer W R/W UDP port for the CMS. UDP Port Partial Dial Timeout Integer W R/W Timeout value in seconds for partial dial timeout. Critical Dial Timeout Integer W R/W Timeout value in seconds for critical dial timeout. Busy Tone Timeout Integer W R/W Timeout value in seconds for busy tone. Dial tone timeout Integer W R/W Timeout value in seconds for dialtone. Message Waiting timeout Integer W R/W Timeout value in seconds for message waiting. Off Hook Warning timeout Integer W R/W Timeout value in seconds for off hook warning. Ringing Timeout Integer W R/W Timeout value in seconds for ringing. Ringback Timeout Integer W R/W Timeout value in seconds for ringback. Reorder Tone timeout Integer W R/W Timeout value in seconds for message waiting. Stutter dial timeout Integer W R/W Timeout value in seconds for message waiting. TS Max Integer W R/W Contains the maximum time in seconds since the sending of the initial datagram. Max1 Integer W R/W The suspicious error threshold for each endpoint retransmission. Max2 Integer W R/W The disconnect error threshold per endpoint retransmission. Max1 Queue Enable Enum W R/W Enables/disables the Max1 DNS query operation when Max1 expires. Max2 Queue Enable Enum W R/W Enables/disables the Max2 DNS query operation when Max2 expires. MWD Integer W R/W Number of seconds to wait to restart after a restart is received. Tdinit Integer W R/W Number of seconds to wait after a disconnect. TDMin Integer W R/W Minimum number of seconds to wait after a disconnect. TDMax Integer W R/W Maximum number of seconds to wait after a disconnect. RTO Max Integer W R/W Maximum number of seconds for the retransmission timer. RTO Init Integer W R/W Initial value for the retransmission timer. Long Duration Keepalive Integer W R/W Timeout in minutes for sending long duration call notification messages. Thist Integer W R/W The timeout period in seconds before no response is declared. Telephony Service Provider Kerberos Realm String W, required R/W String that identifies a collection of CMS and TGS servers.
29 29 TS V1.1.1 ( ) Attribute Syntax Access SNMP Access Telephony Service Provider Certificate Comments String W, required R/W The Telephony Service Provider's X.509 public-key certificate given to all MTAs who have signed up with the given Telephony Service Provider. Local System Certificate String W R/W X.509 public key certificate of the Local System CA. This certificate is present if, and only if, the MTA Telephony Certificate for this endpoint is signed by a Local System CA (instead of the Service Provider CA). MTA Telephony Certificate Call Management Server Kerberos Principal Name String W, required R/W The MTA's X.509 public-key certificate that allows this MTA to register with any Kerberos Server in any realm belonging to the given Telephony Service Provider. (MUST contain the MTA's IPv4 or FQDN assigned by the Telephony Service Provider.) (see note) String W, required R/W Identifies a collection of CMSs or a CMS cluster that share the same TGS and also share the same "Kerberos ticket". This information is required in order for the MTA to obtain Call Management Server Kerberos tickets. This principal name does not include the realm, which is specified as a separate field in this configuration file. A single Kerberos principal name MAY be shared among several Call Management Servers. TGS Name List String W, required R/W List of FQDN or IPv4 of this endpoint's TGS server(s). There may be multiple entries of this type. The order in which these entries are listed is the priority order in which the MTA will attempt to contact them. PKINIT Grace Period Integer W R/W # minutes before the "Kerberos Ticket" assigned to this endpoint expires that themtamustobtainanew "Kerberos Ticket" from the TGS Name List. If two endpoints share the same Kerberos Ticket, then both endpoints must have the same PKINIT grace period value. The MTA MUST obtain a new Kerberos ticket (with a PKINIT exchange) this many minutes before the old ticket expires. NOTE: If this certificate contains the MTA's IPv4 address, then any time the IPv4 address changes, the Telephony Service Provider MUST issue the MTA a new certificate.
30 30 TS V1.1.1 ( ) 9 MTA Device Capabilities MTA device capabilities information is contained in a combination of MIBs including: IETF's MIB-II, the MTA MIB the NCS MIB and the CM CableDevice MIB. Use of capabilities information by the Provisioning Application is optional. Examples of capabilities information includes: Table 12: MTA Device Capabilities Attribute HTTP Download File Access Method Supported Echo Cancellation Silence suppression Connection mode Device Serial Number MAC Number of Endpoints Supported Codec Types MTA Device Identifier Active Software Version Backup Software Version
31 31 TS V1.1.1 ( ) Annex A (informative): Bibliography PacketCable Vendor specific DHCP option, a PacketCable proposal to the IETF DHCP Committee. Primary Author Burcak Baser 3COM. Cable Modem to Customer Premise Equipment Interface Specification, CMCI, DOCSISAN SP-CMCI-I , Cable Television Laboratories, Inc. Cable Modem Termination System - Network Side Interface Specification, Cable Television Laboratories, Inc., July 22, 1996, Data-Over-Cable Service Interface Specifications, Radio Frequency Interface Specification, SP-RFIv1.1-I , Cable Television Laboratories, Inc., November 05, 1999, PacketCable Provisioned QoS Specification, PKT-SP-PQoS-D , June 18, 1999, Cable Television Laboratories, Inc. Operations Support System Interface Specification Radio Frequency Interface, sp-ossi-rfi-i , Cable Television Laboratories, Inc., January 13, 1999, RFC 1034 (1987): "STD 13 Domain Names - Concepts and Facilities". RFC 1035 (1987): "Domain Names - Implementation and Specifications". RFC 1123 (1989): "Braden, R., Requirements for Internet Hosts - Application and Support". RFC 1340 (1992): "Assigned Numbers" (contains ARP/DHCP parameters). RFC 1350 (1992): "The TFTP Protocol (Revision 2)", STD 33, RFC 1350, MIT. RFC 1449: "Transport Mappings for version 2 of the Simple Network Management Protocol (SNMPv2)". RFC 1591 (1994): "Domain Name System Structure and Delegation". RFC 1903: "Textual Conventions for Version 2 of the Simple Network Management Protocol (SNMPv2)". RFC 1945: "Hypertext Transfer Protocol". RFC 2349 (1998): "TFTP Timeout Interval and Transfer Size Options". RFC 2475 (1998): "An Architecture for Differentiated Services". RFC 2574: "User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)". TS : "Access and Terminals (AT); Digital Broadband Cable Access to the Public Telecommunications Network; IP Multimedia Time Critical Services; Part 3: Audio Codec Requirements For The Provision Of Bi-Directional Audio Service Over Cable Television Networks Using Cable Modems". ITU-T Recommendation J.83 (1997): "Digital multi-programme systems for television, sound and data services for cable distribution". List of ITU-T Recommendations referring to IP Cablecom: ITU-T Recommendation J.160: "Architectural framework for the delivery of time critical services over cable television networks using cable modems". ITU-T Recommendation J.161: "Audio codec requirements for the provision of bidirectional audio service over cable television networks using cable modems". ITU-T Recommendation J.162: "Network call signalling (NCS) MIB requirements".
32 32 TS V1.1.1 ( ) ITU-T Recommendation J.163: "Dynamic quality of service for the provision of real time services over cable television networks using cable modems". ITU-T Recommendation J.164: "Event Message requirements for the support of real-time services over cable television networks using cable modems". ITU-T Recommendation J.165: "IPCablecom Internet Signalling Transport Protocol". ITU-T Recommendation J.166: "IPCablecom Management information base (MIB) framework". ITU-T Recommendation J.167: "Media terminal adapter (MTA) device provisioning requirements for the delivery of real-time services over cable television networks using cable modems". ITU-T Recommendation J.168: "IPCablecom media terminal adapter (MTA) MIB requirements". ITU-T Recommendation J.169: "IPCablecom network call signalling (NCS) MIB requirements". ITU-T Recommendation J.170: "IPCablecom Security specification". ITU-T Recommendation J.171: "IPCablecom Trunking Gateway Control Protocol (TGCP)".
33 33 TS V1.1.1 ( ) History Document history V1.1.1 June 2001 Publication
PacketCable MTA Device Provisioning Specification PKT-SP-PROV-I01-991201. Interim. Notice
PacketCable MTA Device Provisioning Specification Interim Notice This PacketCable specification is a cooperative effort undertaken at the direction of Cable Television Laboratories, Inc. (CableLabs ) for
ETSI TR 101 303 V1.1.2 (2001-12)
TR 101 303 V1.1.2 (2001-12) Technical Report Telecommunications and Internet Protocol Harmonization Over Networks (TIPHON) Release 3; Requirements definition study; Introduction to service and network
ETSI TS 101 329-2 V1.1.1 (2000-07)
TS 101 329-2 V1.1.1 (2000-07) Technical Specification Telecommunications and Internet Protocol Harmonization Over Networks (TIPHON); End to End Quality of Service in TIPHON Systems; Part 2: Definition
ETSI TR 101 643 V8.0.0 (2000-06)
TR 101 643 V8.0.0 (2000-06) Technical Report Digital cellular telecommunications system (Phase 2+); General network interworking scenarios (GSM 09.01 version 8.0.0 Release 1999) GLOBAL SYSTEM FOR MOBILE
ETSI TS 101 735 V1.1.1 (2000-07)
TS 101 735 V1.1.1 (2000-07) Technical Specification Digital Audio Broadcasting (DAB); Internet Protocol (IP) datagram tunnelling European Broadcasting Union Union Européenne de Radio-Télévision EBU UER
ETSI TS 182 024 V3.0.0 (2015-10)
TS 182 024 V3.0.0 (2015-10) TECHNICAL SPECIFICATION Network Technologies (NTECH); Hosted Enterprise Services; Architecture, functional description and signalling 2 TS 182 024 V3.0.0 (2015-10) Reference
ETSI TS 132 454 V10.0.0 (2011-04) Technical Specification
TS 132 454 V10.0.0 (2011-04) Technical Specification Universal Mobile Telecommunications System (UMTS); LTE; Telecommunication management; Key Performance Indicators (KPI) for the IP Multimedia Subsystem
ETSI TS 102 639-5 V1.1.1 (2009-04) Technical Specification
TS 102 639-5 V1.1.1 (2009-04) Technical Specification Access and Terminals, Transmission and Multiplexing (ATTM); Third Generation Transmission Systems for Interactive Cable Television Services - IP Cable
ETSI TS 184 009 V2.0.0 (2008-06) Technical Specification
TS 184 009 V2.0.0 (2008-06) Technical Specification Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); Rules covering the use of TV URIs for the Identification
ETSI EN 300 356-7 V4.1.2 (2001-07)
EN 300 356-7 V4.1.2 (2001-07) European Standard (Telecommunications series) Integrated Services Digital Network (ISDN); Signalling System No.7 (SS7); ISDN User Part (ISUP) version 4 for the international
DraftETSI EN 301 691 V1.1.1 (2000-03)
Draft EN 301 691 V1.1.1 (2000-03) European Standard (Telecommunications series) Integrated Services Digital Network (ISDN); Remote Control (RC) service; Service description 2 Draft EN 301 691 V1.1.1 (2000-03)
ETSI TR 101 480 V1.1.2 (1999-12)
TR 101 480 V1.1.2 (1999-12) Technical Report Integrated Services Digital Network (ISDN); Public Switched Telephone Network (PSTN); Framework for the provision of calling party name information 2 TR 101
ETSI TS 103 161-12 V1.1.1 (2011-10)
TS 103 161-12 V1.1.1 (2011-10) Technical Specification Access, Terminals, Transmission and Multiplexing (ATTM); Integrated Broadband Cable and Television Networks; IPCablecom 1.5; Part 12: Management Event
ETSI TS 129 119 V9.0.0 (2010-01) Technical Specification
TS 129 119 V9.0.0 (2010-01) Technical Specification Universal Mobile Telecommunications System (UMTS); LTE; GPRS Tunnelling Protocol (GTP) specification for Gateway Location Register (GLR) (3GPP TS 29.119
ETSI TS 124 238 V8.2.0 (2010-01) Technical Specification
TS 124 238 V8.2.0 (2010-01) Technical Specification Universal Mobile Telecommunications System (UMTS); LTE; Session Initiation Protocol (SIP) based user configuration; Stage 3 (3GPP TS 24.238 version 8.2.0
ETSI SR 003 091 V1.1.2 (2013-03)
SR 003 091 V1.1.2 (2013-03) Special Report Electronic Signatures and Infrastructures (ESI); Recommendations on Governance and Audit Regime for CAB Forum Extended Validation and Baseline Certificates 2
ETSI TS 102 640-3 V1.1.1 (2008-10) Technical Specification
TS 102 640-3 V1.1.1 (2008-10) Technical Specification Electronic Signatures and Infrastructures (ESI); Registered Electronic Mail (REM); Architecture, Formats and Policies; Part 3: Information Security
ETSI TS 102 640-4 V2.1.1 (2010-01) Technical Specification
TS 102 640-4 V2.1.1 (2010-01) Technical Specification Electronic Signatures and Infrastructures (ESI); Registered Electronic Mail (REM) Part 4: REM-MD Conformance Profiles 2 TS 102 640-4 V2.1.1 (2010-01)
ETSI TS 102 778 V1.1.1 (2009-04) Technical Specification
TS 102 778 V1.1.1 (2009-04) Technical Specification Electronic Signatures and Infrastructures (ESI); PDF Advanced Electronic Signature Profiles; CMS Profile based on ISO 32000-1 2 TS 102 778 V1.1.1 (2009-04)
How To Understand Gsm (Gsm) And Gsm.Org (Gms)
TSG-SA Working Group 1 (Services) meeting #2 Edinburgh, Scotland 9 th -12 th March 1999 TSGS1#2(99)116 Agenda Item: 9.4 Source: Coordinator Title: Document for: Information I Universal Mobile Telecommunications
TECHNICAL REPORT End to End Network Architectures (E2NA); Location of Transcoders for voice and video communications
TR 103 279 V1.1.1 (2014-08) TECHNICAL REPORT End to End Network Architectures (E2NA); Location of Transcoders for voice and video communications 2 TR 103 279 V1.1.1 (2014-08) Reference DTR/E2NA-00006-Loc-Transcoders
Provisioning of VoIP Phones
Provisioning of VoIP Phones ipdialog, Inc. Phone (408) 451-1430 1430 1762 Technology Drive Suite 124 Fax (408) 451-1440 1440 San Jose CA 95110-1307 1307 USA URL www.ipdialog.com Joon Maeng, [email protected]
ETSI EN 301 002-1 V1.3.1 (2001-06)
EN 301 002-1 V1.3.1 (2001-06) European Standard (Telecommunications series) Integrated Services Digital Network (ISDN); Security tools (SET) procedures; Digital Subscriber Signalling System No. one (DSS1)
ETSI TR 183 070 V3.1.1 (2009-08) Technical Report
TR 183 070 V3.1.1 (2009-08) Technical Report Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); Resource and Admission Control Sub-System (); Rr interface
Technical Specifications (GPGPU)
TS 131 116 V6.7.0 (2005-03) Technical Specification Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); Remote APDU Structure for (Universal) Subscriber
ETSI TS 124 423 V8.4.0 (2012-01)
TS 124 423 V8.4.0 (2012-01) Technical Specification Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); LTE; TISPAN; PSTN/ISDN simulation services;
ETSI TS 182 023 V2.1.1 (2009-01) Technical Specification
TS 182 023 V2.1.1 (2009-01) Technical Specification Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); Core and enterprise NGN interaction scenarios; Architecture
ETSI TS 102 588 V7.1.0 (2007-07) Technical Specification
TS 102 588 V7.1.0 (2007-07) Technical Specification Smart Cards; Application invocation Application Programming Interface (API) by a UICC webserver for Java Card platform; (Release 7) 2 TS 102 588 V7.1.0
Universal Mobile Telecommunications System (UMTS); Service aspects; Virtual Home Environment (VHE) (UMTS 22.70 version 3.0.0)
TSG-SA Working Group 1 (Services) meeting #2 Edinburgh, Scotland 9 th -12 th March 1999 TSGS1#2(99)120 Agenda Item: 9.8 Source: Coordinator Title: Document for: Information I Universal Mobile Telecommunications
ETSI TS 184 011 V3.1.1 (2011-02) Technical Specification
TS 184 011 V3.1.1 (2011-02) Technical Specification Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); Requirements and usage of E.164 numbers in NGN and
ETSI TS 124 147 V6.8.0 (2008-04) Technical Specification
TS 124 147 V6.8.0 (2008-04) Technical Specification Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); Conferencing using the IP Multimedia (IM) Core
Digital Telephone Network - A Practical Definition
TR 101 633 V7.0.0 (1999-08) Technical Report Digital cellular telecommunications system (Phase 2+); Support of Videotex (GSM 03.43 version 7.0.0 Release 1998) GLOBAL SYSTEM FOR MOBILE COMMUNICATIONS R
ETSI TS 102 280 V1.1.1 (2004-03)
TS 102 280 V1.1.1 (2004-03) Technical Specification X.509 V.3 Certificate Profile for Certificates Issued to Natural Persons 2 TS 102 280 V1.1.1 (2004-03) Reference DTS/ESI-000018 Keywords electronic signature,
Draft EN 301 068-1 V1.1.1 (1997-12)
European Standard (Telecommunications series) Broadband Integrated Services Digital Network (B-ISDN); Digital Subscriber Signalling System No. two (DSS2) protocol; Connection characteristics; ATM transfer
Device Provisioning in Cable Environments
A white paper by Incognito Software March, 2009 2009 Incognito Software Inc. All rights reserved. Page 1 of 8 Introduction... 2 Auto-Provisioning and Pre-Provisioning... 2 Components Involved in Device
ETSI TS 102 640-3 V2.1.1 (2010-01) Technical Specification
TS 102 640-3 V2.1.1 (2010-01) Technical Specification Electronic Signatures and Infrastructures (ESI); Registered Electronic Mail (REM); Part 3: Information Security Policy Requirements for REM Management
ETSI TS 102 640-5 V2.1.1 (2010-01) Technical Specification
TS 102 640-5 V2.1.1 (2010-01) Technical Specification Electronic Signatures and Infrastructures (ESI); Registered Electronic Mail (REM); Part 5: REM-MD Interoperability Profiles 2 TS 102 640-5 V2.1.1 (2010-01)
ETSI TS 102 778-3 V1.1.2 (2009-12) Technical Specification
TS 102 778-3 V1.1.2 (2009-12) Technical Specification Electronic Signatures and Infrastructures (ESI); PDF Advanced Electronic Signature Profiles; Part 3: PAdES Enhanced - PAdES-BES and PAdES-EPES Profiles
ETSI ES 201 915-12 V1.3.1 (2002-10)
ES 201 915-12 V1.3.1 (2002-10) Standard Open Service Access (OSA); Application Programming Interface (API); Part 12: Charging SCF 2 ES 201 915-12 V1.3.1 (2002-10) Reference RES/SPAN-120094-12 Keywords
ETSI EN 300 328-2 V1.1.1 (2000-07)
EN 300 328-2 V1.1.1 (2000-07) Candidate Harmonized European Standard (Telecommunications series) Electromagnetic compatibility and Radio spectrum Matters (ERM); Wideband Transmission systems; data transmission
Final draft ETSI ES 202 913 V1.2.1 (2004-05)
Final draft ES 202 913 V1.2.1 (2004-05) Standard Access and Terminals (AT); POTS requirements applicable to ADSL modems when connected to an analogue presented PSTN line 2 Final draft ES 202 913 V1.2.1
TECHNICAL REPORT onem2m; Application Developer Guide (onem2m TR-0025 version 1.0.0 Release 1)
TR 118 525 V1.0.0 (2016-03) TECHNICAL REPORT onem2m; Application Developer Guide (onem2m TR-0025 version 1.0.0 Release 1) 2 TR 118 525 V1.0.0 (2016-03) Reference DTR/oneM2M-000025 Keywords application,
ETSI TR 101 891 V1.1.1 (2001-02)
TR 101 891 V1.1.1 (2001-02) Technical Report Digital Video Broadcasting (DVB); Professional Interfaces: Guidelines for the implementation and usage of the DVB Asynchronous Serial Interface (ASI) European
ETSI TS 102 778-1 V1.1.1 (2009-07) Technical Specification
TS 102 778-1 V1.1.1 (2009-07) Technical Specification Electronic Signatures and Infrastructures (ESI); PDF Advanced Electronic Signature Profiles; Part 1: PAdES Overview - a framework document for PAdES
ETSI GS NFV 003 V1.1.1 (2013-10)
GS NFV 003 V1.1.1 (2013-10) Group Specification Network Functions Virtualisation (NFV); Terminology for Main Concepts in NFV Disclaimer This document has been produced and approved by the Network Functions
ETSI TS 102 124 V6.1.0 (2004-12)
TS 102 124 V6.1.0 (2004-12) Technical Specification Smart Cards; Transport rotocol for ICC based Applications; Stage 1 (Release 6) 2 TS 102 124 V6.1.0 (2004-12) Reference RTS/SC-R0008r1 Keywords protocol,
ETSI TR 102 678 V1.2.1 (2011-05) Technical Report
TR 102 678 V1.2.1 (2011-05) Technical Report Speech and multimedia Transmission Quality (STQ); QoS Parameter Measurements based on fixed Data Transfer Times 2 TR 102 678 V1.2.1 (2011-05) Reference RTR/STQ-00184m
DraftETSI EG 201 510 V1.1.2 (2000-02)
Draft EG 201 510 V1.1.2 (2000-02) Guide Intelligent Network (IN); Security aspects of Switching Control Function (SCF) - Service Switching Function (SSF) interconnection between networks; Part 1: Capability
Quality of Service and Network Performance (UMTS 22.25 version 3.1.0)
TSG-SA Working Group 1 (Services) meeting #2 Edinburgh, Scotland 9 th -12 th March 1999 TSGS1#2(99)118 Agenda Item: 9.6 Source: Coordinator Title: Document for: Information I Quality of Service and Network
ETSI TR 133 919 V6.1.0 (2004-12)
TR 133 919 V6.1.0 (2004-12) Technical Report Universal Mobile Telecommunications System (UMTS); Generic Authentication Architecture (GAA); System description (3GPP TR 33.919 version 6.1.0 Release 6) 1
PacketCable 1.0 Architecture Framework Technical Report
PacketCable 1.0 Architecture Framework Technical Report Notice This PacketCable technical report is a cooperative effort undertaken at the direction of Cable Television Laboratories, Inc. (CableLabs )
ETSI TS 102 723-10 V1.1.1 (2012-11)
TS 102 723-10 V1.1.1 (2012-11) Technical Specification Intelligent Transport Systems (ITS); OSI cross-layer topics; Part 10: Interface between access layer and networking & transport layer 2 TS 102 723-10
Draft EN 300 426 V1.2.1 (1998-10)
European Standard (Telecommunications series) Private Integrated Services Network (PISN); Inter-exchange signalling protocol; Call intrusion supplementary service [ISO/IEC 14846 (1996), modified] 2 Reference
3GPP TS 24.623 V8.1.0 (2008-09)
TS 24.623 V8.1.0 (2008-09) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Extensible Markup Language (XML) Configuration Access Protocol
ETSI ES 203 069 V1.2.1 (2011-09)
ES 203 069 V1.2.1 (2011-09) Standard Access, Terminals, Transmission and Multiplexing (ATTM); Remote management of CPE over broadband networks; CPE WAN Management Protocol (CWMP) 2 ES 203 069 V1.2.1 (2011-09)
ES 201 385 V1.1.1 (1999-01)
Standard Telecommunications Management Network (TMN); Universal Mobile Telecommunications System (UMTS); Management architecture framework; Overview, processes and principles 2 Reference DES/TMN-00044
The Recommended Testing Process for PacketCableTM Voice Service at a Customer Premises
The Recommended Testing Process for PacketCableTM Voice Service at a Customer Premises The current generation of cable systems supports voice, video, and data services. Video and data services have been
ETSI TS 102 640-3 V2.1.2 (2011-09)
TS 102 640-3 V2.1.2 (2011-09) Technical Specification Electronic Signatures and Infrastructures (ESI); Registered Electronic Mail (REM); Part 3: Information Security Policy Requirements for REM Management
Technical Specification LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Layer 2 - Measurements (3GPP TS 36.314 version 11.1.
TS 136 314 V11.1.0 (2013-02) Technical Specification LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Layer 2 - Measurements (3GPP TS 36.314 version 11.1.0 Release 11) 1 TS 136 314 V11.1.0 (2013-02)
ETSI TR 102 071 V1.2.1 (2002-10)
TR 102 071 V1.2.1 (2002-10) Technical Report Mobile Commerce (M-COMM); Requirements for Payment Methods for Mobile Commerce 2 TR 102 071 V1.2.1 (2002-10) Reference RTR/M-COMM-007 Keywords commerce, mobile,
3GPP TS 32.593 V9.0.0 (2009-12)
TS 32.593 V9.0.0 (2009-12) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Telecommunication management; Home enode B (HeNB) Operations,
ETSI TS 124 088 V5.0.0 (2002-06)
TS 124 088 V5.0.0 (2002-06) Technical Specification Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); Call Barring (CB) Supplementary Service; Stage
COMMISSION OF THE EUROPEAN COMMUNITIES
EN EN EN COMMISSION OF THE EUROPEAN COMMUNITIES Brussels, 11/XII/2006 C (2006) 6364 final COMMISSION DECISION of 11/XII/2006 List of standards and/or specifications for electronic communications networks,
Draft EN 300 362 V1.2.1 (1998-10)
European Standard (Telecommunications series) Private Integrated Services Network (PISN); Inter-exchange signalling protocol; Call offer supplementary service [ISO/IEC 14843 (1996), modified] 2 Reference
ETSI TS 131 221 V9.0.0 (2010-02) Technical Specification
TS 131 221 V9.0.0 (2010-02) Technical Specification Universal Mobile Telecommunications System (UMTS); LTE; Contact Manager Application Programming Interface (API); Contact Manager API for Java Card (3GPP
ETSI EN 301 462 V1.1.1 (2000-03)
EN 301 462 V1.1.1 (2000-03) European Standard (Telecommunications series) Human Factors (HF); Symbols to identify telecommunications facilities for deaf and hard of hearing people 2 EN 301 462 V1.1.1 (2000-03)
ETSI TS 102 639-3 V1.1.1 (2009-04) Technical Specification
TS 102 639-3 V1.1.1 (2009-04) Technical Specification Access and Terminals, Transmission and Multiplexing (ATTM); Third Generation Transmission Systems for Interactive Cable Television Services - IP Cable
Key Elements of a Successful SIP Device Provisioning System
Key Elements of a Successful SIP Device Provisioning System A white paper by Incognito Software April, 2006 2006 Incognito Software Inc. All rights reserved. Page 1 of 6 Key Elements of a Successful SIP
ETSI TR 122 975 V3.1.0 (2000-01)
ETSI TR 122 975 V3.1.0 (2000-01) Technical Report Universal Mobile Telecommunications System (UMTS); Service aspects; Advanced Addressing (3G TR 22.975 version 3.1.0 Release 1999) (3G TR 22.975 version
ETSI TS 123 251 V6.5.0 (2005-09)
TS 123 251 V6.5.0 (2005-09) Technical Specification Universal Mobile Telecommunications System (UMTS); Network sharing; Architecture and functional description (3GPP TS 23.251 version 6.5.0 Release 6)
ETSI TS 102 220 V1.1.1 (2004-04)
TS 102 220 V1.1.1 (2004-04) Technical Specification Access and Terminals (AT); Technical Specification: Delivery of Cable based services across a home access to the devices in the home 2 TS 102 220 V1.1.1
ETSI EG 202 057-4 V1.1.1 (2005-10)
EG 202 057-4 V1.1.1 (2005-10) Guide Speech Processing, Transmission and Quality Aspects (STQ); User related QoS parameter definitions and measurements; Part 4: Internet access 2 EG 202 057-4 V1.1.1 (2005-10)
Final draft ETSI EG 202 057-2 V1.1.1 (2002-07)
Final draft EG 202 057-2 V1.1.1 (2002-07) Guide Speech Processing, Transmission and Quality Aspects (STQ); User related QoS parameter definitions and measurements; Part 2: Voice telephony, Group 3 fax
Cable Modems. Definition. Overview. Topics. 1. How Cable Modems Work
Cable Modems Definition Cable modems are devices that allow high-speed access to the Internet via a cable television network. While similar in some respects to a traditional analog modem, a cable modem
Technical Specification Electronic Signatures and Infrastructures (ESI); ASiC Baseline Profile
TS 103 174 V2.2.1 (2013-06) Technical Specification Electronic Signatures and Infrastructures (ESI); ASiC Baseline Profile 2 TS 103 174 V2.2.1 (2013-06) Reference RTS/ESI-0003174v221 Keywords ASiC, electronic
UMTS. UMTS 22.25 V1.0.0 Quality of Service & Network Performance. ETSI SMG Plenary Tdoc SMG 657 / 97 Budapest, 13-17 October 1997 Agenda Item: 9.
ETSI SMG Plenary Tdoc SMG 657 / 97 Budapest, 13-17 October 1997 Agenda Item: 9.3 Source: SMG1 UMTS Universal Mobile Telecommunications System UMTS 22.25 V1.0.0 Quality of Service & Network Performance
ETSI TS 133 107 V3.1.0 (2000-12)
TS 133 107 V3.1.0 (2000-12) Technical Specification Universal Mobile Telecommunications System (UMTS); 3G Security; Lawful Interception Architecture and Functions (3GPP TS 33.107 version 3.1.0 Release
ETSI EG 202 057-4 V1.2.1 (2008-07) ETSI Guide
EG 202 057-4 V1.2.1 (2008-07) Guide Speech Processing, Transmission and Quality Aspects (STQ); User related QoS parameter definitions and measurements; Part 4: Internet access 2 EG 202 057-4 V1.2.1 (2008-07)
Broadband Cable Service Deployment at WorldCall Telecom - Pakistan. Hassan Zaheer Manager Operations Broadband Division
Broadband Cable Service Deployment at WorldCall Telecom - Pakistan Hassan Zaheer Manager Operations Broadband Division Broadband Cable Cable services provides Intelligent network Mix of IP and MPEG Multiple
Final draft ETSI EN 302 109 V1.1.1 (2003-06)
Final draft EN 302 109 V1.1.1 (2003-06) European Standard (Telecommunications series) Terrestrial Trunked Radio (TETRA); Security; Synchronization mechanism for end-to-end encryption 2 Final draft EN 302
Universal Mobile Telecommunications System (UMTS); Service aspects; Advanced Addressing (UMTS 22.75 version 3.0.0)
TSG-SA Working Group 1 (Services) meeting #2 Edinburgh, Scotland 9 th -12 th March 1999 TSGS1#2(99)122 Agenda Item: 9.10 Source: Coordinator Title: Document for: Information I Universal Mobile Telecommunications
ETSI TS 124 303 V8.9.0 (2012-07)
TS 124 303 V8.9.0 (2012-07) Technical Specification Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); LTE; Mobility management based on Dual-Stack
ITU-T RECOMMENDATION J.122, SECOND-GENERATION TRANSMISSION SYSTEMS FOR INTERACTIVE CABLE TELEVISION SERVICES IP CABLE MODEMS
ORGANIZATION OF AMERICAN STATES INTER-AMERICAN TELECOMMUNICATION COMMISSION PERMANENT CONSULTATIVE COMMITTEE I: TELECOMMUNICATION STANDARDIZATION Standards Coordination Document Nr. 10: ITU-T RECOMMENDATION
Introducing STAR-GATE Enhancements for Packet Cable Networks
STAR-GATE TM Annex: Intercepting PacketCable Compliance with CALEA and ETSI Delivery and Administration Standards. In this document USA Tel: +1-703-818-2130 Fax: +1-703-818-2131 E-mail: [email protected]
ETSI TS 102 176-2 V1.2.1 (2005-07)
TS 102 176-2 V1.2.1 (2005-07) Technical Specification Electronic Signatures and Infrastructures (ESI); Algorithms and Parameters for Secure Electronic Signatures; Part 2: Secure channel protocols and algorithms
ETSI EN 301 700 V1.1.1 (2000-03)
EN 301 700 V1.1.1 (2000-03) European Standard (Telecommunications series) Digital Audio Broadcasting (DAB); VHF/FM Broadcasting: cross-referencing to simulcast DAB services by RDS-ODA 147 European Broadcasting
Mediatrix 4404 Step by Step Configuration Guide June 22, 2011
Mediatrix 4404 Step by Step Configuration Guide June 22, 2011 Proprietary 2011 Media5 Corporation Table of Contents First Steps... 3 Identifying your MAC Address... 3 Identifying your Dynamic IP Address...
How To Understand And Understand The Certificate Authority (Ca)
TS 102 042 V1.1.1 (2002-04) Technical Specification Policy requirements for certification authorities issuing public key certificates 2 TS 102 042 V1.1.1 (2002-04) Reference DTS/SEC-004006 Keywords e-commerce,
ETSI EN 319 401 V1.1.1 (2013-01)
EN 319 401 V1.1.1 (2013-01) European Standard Electronic Signatures and Infrastructures (ESI); General Policy Requirements for Trust Service Providers supporting Electronic Signatures 2 EN 319 401 V1.1.1
ETSI EG 201 769 V1.1.2 (2000-10)
EG 201 769 V1.1.2 (2000-10) Guide Speech Processing, Transmission & Quality Aspects (STQ); QoS parameter definitions and measurements; Parameters for voice telephony service required under the ONP Voice
Application Notes. Introduction. Contents. Managing IP Centrex & Hosted PBX Services. Series. VoIP Performance Management. Overview.
Title Series Managing IP Centrex & Hosted PBX Services Date July 2004 VoIP Performance Management Contents Introduction... 1 Quality Management & IP Centrex Service... 2 The New VoIP Performance Management
Architecture and Data Flow Overview. BlackBerry Enterprise Service 10 721-08877-123 Version: 10.2. Quick Reference
Architecture and Data Flow Overview BlackBerry Enterprise Service 10 721-08877-123 Version: Quick Reference Published: 2013-11-28 SWD-20131128130321045 Contents Key components of BlackBerry Enterprise
Review: Lecture 1 - Internet History
Review: Lecture 1 - Internet History late 60's ARPANET, NCP 1977 first internet 1980's The Internet collection of networks communicating using the TCP/IP protocols 1 Review: Lecture 1 - Administration
