BIL Computer Vision Mar 5, 2014

Size: px
Start display at page:

Download "BIL Computer Vision Mar 5, 2014"

Transcription

1 BIL Computer Vision Mar 5, 2014 Image pyramids Aykut Erdem Dept. of Computer Engineering Hacettepe University

2 Image Scaling This image is too big to fit on the screen. How can we reduce it? How to generate a half-sized version? Slide credit: S. Seitz!2

3 Image Sub-Sampling 1/8 1/4 Slide credit: S. Seitz Throw away every other row and column to create a 1/2 size image - called image sub- sampling

4 Slide credit: S. Seitz Image Sub-Sampling 1/2 1/4 (2x zoom) 1/8 (4x zoom)

5 Good and Bad Sampling Good sampling: Sample often or, Sample wisely Bad sampling: Aliasing! Slide credit: S. Narasimhan

6 Aliasing Slide credit: F. Durand!6

7 Aliasing Occurs when your sampling rate is not high enough to capture the amount of detail in your image Can give you the wrong signal/image an alias! To do sampling right, need to understand the structure of your signal/image Enter Monsieur Fourier! To avoid aliasing: - sampling rate 2 * max frequency in the image said another way: two samples per cycle - This minimum sampling rate is called the Nyquist rate!7 Slide credit: L. Zhang

8 Aliasing When downsampling by a factor of two!!! - Original image has frequencies that are too high How can we fix this? Slide credit: N. Snavely!8

9 Slide credit: S. Seitz Gaussian pre-filtering G 1/8 G 1/4 Gaussian 1/2 Solution: filter the image, then subsample

10 Slide credit: S. Seitz Subsampling with Gaussian pre-filtering Gaussian 1/2 G 1/4 G 1/8 Solution: filter the image, then subsample

11 Slide credit: S. Seitz Compare with... 1/2 1/4 (2x zoom) 1/8 (4x zoom)

12 Gaussian prefiltering Slide credit: N. Snavely Solution: filter the image, then subsample blur F 0 F 0 H * F 1 subsample blur subsample F 1 H * F 2

13 { Gaussian pyramid Slide credit: N. Snavely blur F 0 F 0 H * F 1 subsample blur subsample F 1 H * F 2

14 Image pyramids Image information occurs at all spatial scales! Gaussian pyramid Laplacian pyramid Wavelet/QMF pyramid Steerable pyramid Slide credit: B. Freeman and A. Torralba

15 Slide credit: B. Freeman and A. Torralba The Gaussian pyramid Smooth with gaussians, because a gaussian*gaussian=another gaussian Gaussians are low pass filters, so representation is redundant.

16 The computational advantage of pyramids [Burt and Adelson, 1983] Slide credit: B. Freeman and A. Torralba

17 The Gaussian Pyramid [Burt and Adelson, 1983] Slide credit: B. Freeman and A. Torralba

18 Slide credit: B. Freeman and A. Torralba

19 Convolution and subsampling as a matrix multiply (1D case)!! Slide credit: B. Freeman and A. Torralba (Normalization constant of 1/16 omitted for visual clarity.)

20 Next pyramid level!! Slide credit: B. Freeman and A. Torralba

21 Slide credit: B. Freeman and A. Torralba The combined effect of the two pyramid levels!!!

22 Slide credit: B. Freeman and A. Torralba

23 Gaussian pyramids used for up- or down- sampling images. Multi-resolution image analysis Look for an object over various spatial scales Coarse-to-fine image processing: form blur estimate or the motion analysis on very low-resolution image, upsample and repeat. Often a successful strategy for avoiding local minima in complicated estimation tasks. Slide credit: B. Freeman and A. Torralba

24 Slide credit: B. Freeman and A. Torralba 1D Gaussian pyramid matrix, for [ ] low-pass filter full-band image, highest resolution lower-resolution image lowest resolution image

25 Image pyramids Image information occurs at all spatial scales! Gaussian pyramid Laplacian pyramid Wavelet/QMF pyramid Steerable pyramid Slide credit: B. Freeman and A. Torralba

26 Slide credit: B. Freeman and A. Torralba The Laplacian Pyramid Synthesis Compute the difference between upsampled Gaussian pyramid level and Gaussian pyramid level. band pass filter - each level represents spatial frequencies (largely) unrepresented at other level.

27 The Laplacian Pyramid!27

28 Slide credit: B. Freeman and A. Torralba Upsampling Insert zeros between pixels, then apply a low-pass filter, [ ]

29 Showing, at full resolution, the information captured at each level of a Gaussian (top) and Laplacian (bottom) pyramid. Slide credit: B. Freeman and A. Torralba

30 Laplacian pyramid reconstruction algorithm: recover x 1 from L 1, L 2, L 3 and x 4 Slide credit: B. Freeman and A. Torralba G# is the blur-and-downsample operator at pyramid level # F# is the blur-and-upsample operator at pyramid level #! Laplacian pyramid elements: L1 = (I F1 G1) x1 L2 = (I F2 G2) x2 L3 = (I F3 G3) x3 x2 = G1 x1 x3 = G2 x2 x4 = G3 x3!! Reconstruction of original image (x1) from Laplacian pyramid elements: x3 = L3 + F3 x4 x2 = L2 + F2 x3 x1 = L1 + F1 x2

31 Laplacian pyramid reconstruction algorithm: recover x 1 from L 1, L 2, L 3 and g 3 Slide credit: B. Freeman and A. Torralba + + +

32 Slide credit: B. Freeman and A. Torralba

33 Slide credit: B. Freeman and A. Torralba

34 1D Laplacian pyramid matrix, for [ ] low-pass filter Slide credit: B. Freeman and A. Torralba high frequencies mid-band frequencies low frequencies

35 Laplacian pyramid applications Texture synthesis Image compression Noise removal Slide credit: B. Freeman and A. Torralba

36 Image blending Slide credit: B. Freeman and A. Torralba

37 Szeliski, Computer Vision, 2010 Slide credit: B. Freeman & A. Torralba

38 Image blending Build Laplacian pyramid for both images: LA, LB Build Gaussian pyramid for mask: G Build a combined Laplacian pyramid: L(j) = G(j) LA(j) + (1-G(j)) LB(j) Collapse L to obtain the blended image 33 Slide credit: B. Freeman and A. Torralba

39 Image pyramids Image information occurs at all spatial scales! Gaussian pyramid Laplacian pyramid Wavelet/QMF pyramid Steerable pyramid Slide credit: B. Freeman and A. Torralba

40 Slide credit: A. Torralba Linear transforms transformed image! f = U 1! F Linear transform Vectorized image Note: not all important transforms need to have an inverse

41 Slide credit: A. Torralba Linear transforms Pixels U=

42 Slide credit: A. Torralba Linear transforms Pixels U= Derivative U=

43 Slide credit: A. Torralba Linear transforms Pixels U= Derivative U= Integration 0 1 U -1 = No locality for reconstruction - Needs boundary

44 Slide credit: A. Torralba Haar transform The simplest set of functions: U= U -1 =

45 Slide credit: A. Torralba Haar transform The simplest set of functions: U= U -1 = To code a signal, repeat at several locations: U= U -1 = ½

46 Haar transform Reordering rows Low pass High pass Apply the same decomposition to the Low pass component: = And repeat the same operation to the low pass component, until length 1. Note: each subband is sub-sampled and has aliased signal components. Slide credit: A. Torralba

47 Slide credit: A. Torralba Haar transform The entire process can be written as a single matrix: Average Multiscale derivatives

48 Slide credit: A. Torralba Haar transform U= U -1 = Properties: Orthogonal decomposition Perfect reconstruction Critically sampled

49 2D Haar transform Basic elements:

50 2D Haar transform Basic elements: = 2 Low pass 50

51 2D Haar transform Basic elements: = 2 Low pass 1 1 = 1-1 = 1-1 = 51

52 2D Haar transform Basic elements: = 2 Low pass 1 1 = = =

53 2D Haar transform Basic elements: = 2 Low pass 1 1 = 2 High pass vertical 1-1 = High pass horizontal 1-1 = High pass diagonal

54 Slide credit: B. Freeman and A. Torralba 2D Haar transform Sketch of the Fourier transform 2 2 Horizontal low pass, Vertical low- pass Horizontal high pass, vertical low- pass Horizontal low pass, vertical high- pass - 2 Horizontal high pass, vertical high pass

55 Pyramid cascade Simoncelli and Adelson, in Subband coding, Kluwer, Slide credit: B. Freeman and A. Torralba

56 Slide credit: B. Freeman and A. Torralba Wavelet/QMF representation Same number of pixels!

57 Image pyramids Image information occurs at all spatial scales! Gaussian pyramid Laplacian pyramid Wavelet/QMF pyramid Steerable pyramid Slide credit: B. Freeman and A. Torralba

58 Steerable Pyramid 2 Level decomposition of white circle example: Low pass residual Subbands Images from: Slide credit: B. Freeman and A. Torralba

59 Steerable Pyramid We may combine Steerability with Pyramids to get a Steerable Laplacian Pyramid as shown below Decomposition Reconstruction Images from: Slide credit: B. Freeman and A. Torralba

60 Steerable Pyramid We may combine Steerability with Pyramids to get a Steerable Laplacian Pyramid as shown below Decomposition Reconstruction Images from: Slide credit: B. Freeman and A. Torralba

61 Steerable Pyramid But we need to get rid of the corner regions before starting the recursive circular filtering Simoncelli and Freeman, Slide credit: B. Freeman and A. Torralba

62 Reprinted from Shiftable MultiScale Transforms, by Simoncelli et al., IEEE Transactions on Information Theory, 1992, copyright 1992, IEEE There is also a high pass residual Slide credit: B. Freeman and A. Torralba

63 63

64 Monroe 64

65 Dog or cat? 65

66 Almost no dog information 66

67 Summary of pyramid representations 67

68 Image pyramids Gaussian!! Laplacian!! Wavelet/QMF!! Steerable pyramid Progressively blurred and subsampled versions of the image. Adds scale invariance to fixed-size algorithms. Shows the information added in Gaussian pyramid at each spatial scale. Useful for noise reduction & coding. Bandpassed representation, complete, but with aliasing and some non-oriented subbands. Shows components at each scale and orientation separately. Nonaliased subbands. Good for texture and feature analysis. But overcomplete and with HF residual. 68

69 Schematic pictures of each matrix Shown for 1-d images transform The matrices for 2-d images are the same idea, but more complicated, to account for vertical, as well as horizontal, neighbor relationships. transformed image Vectorized image Fourier transform, or Wavelet transform, or Steerable pyramid transform 69

70 Slide credit: B. Freeman and A. Torralba Gaussian pyramid = * Gaussian pyramid pixel image Overcomplete representation. Low-pass filters, sampled appropriately for their blur.

71 Slide credit: B. Freeman and A. Torralba Laplacian pyramid = * Laplacian pyramid pixel image Overcomplete representation. Transformed pixels represent bandpassed image information.

72 Slide credit: B. Freeman and A. Torralba Wavelet (QMF) transform Wavelet pyramid = * Ortho-normal transform (like Fourier transform), but with localized basis functions. pixel image

73 Slide credit: B. Freeman and A. Torralba Steerable pyramid Multiple orientations at = one scale * Steerable pyramid Multiple orientations at the next scale the next scale pixel image Over-complete representation, but nonaliased subbands.

74 Why use image pyramids? Handle real-world size variations with a constant-size vision algorithm. Remove noise Analyze texture Recognize objects Label image features Image priors can be specified naturally in terms of wavelet pyramids. Slide credit: B. Freeman and A. Torralba

Admin stuff. 4 Image Pyramids. Spatial Domain. Projects. Fourier domain 2/26/2008. Fourier as a change of basis

Admin stuff. 4 Image Pyramids. Spatial Domain. Projects. Fourier domain 2/26/2008. Fourier as a change of basis Admin stuff 4 Image Pyramids Change of office hours on Wed 4 th April Mon 3 st March 9.3.3pm (right after class) Change of time/date t of last class Currently Mon 5 th May What about Thursday 8 th May?

More information

Noise Reduction in Video Images Using Coring on QMF Pyramids by. Arthur J. Kalb

Noise Reduction in Video Images Using Coring on QMF Pyramids by. Arthur J. Kalb Noise Reduction in Video Images Using Coring on QMF Pyramids by Arthur J. Kalb Submitted to the Department of Electrical Engineering and Computer Science on May 20, 1991, in partial fulfillment of the

More information

Linear Filtering Part II

Linear Filtering Part II Linear Filtering Part II Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Fourier theory Jean Baptiste Joseph Fourier had a crazy idea: Any periodic function can

More information

Sachin Patel HOD I.T Department PCST, Indore, India. Parth Bhatt I.T Department, PCST, Indore, India. Ankit Shah CSE Department, KITE, Jaipur, India

Sachin Patel HOD I.T Department PCST, Indore, India. Parth Bhatt I.T Department, PCST, Indore, India. Ankit Shah CSE Department, KITE, Jaipur, India Image Enhancement Using Various Interpolation Methods Parth Bhatt I.T Department, PCST, Indore, India Ankit Shah CSE Department, KITE, Jaipur, India Sachin Patel HOD I.T Department PCST, Indore, India

More information

Tracking Moving Objects In Video Sequences Yiwei Wang, Robert E. Van Dyck, and John F. Doherty Department of Electrical Engineering The Pennsylvania State University University Park, PA16802 Abstract{Object

More information

jorge s. marques image processing

jorge s. marques image processing image processing images images: what are they? what is shown in this image? What is this? what is an image images describe the evolution of physical variables (intensity, color, reflectance, condutivity)

More information

Convolution. 1D Formula: 2D Formula: Example on the web: http://www.jhu.edu/~signals/convolve/

Convolution. 1D Formula: 2D Formula: Example on the web: http://www.jhu.edu/~signals/convolve/ Basic Filters (7) Convolution/correlation/Linear filtering Gaussian filters Smoothing and noise reduction First derivatives of Gaussian Second derivative of Gaussian: Laplacian Oriented Gaussian filters

More information

Redundant Wavelet Transform Based Image Super Resolution

Redundant Wavelet Transform Based Image Super Resolution Redundant Wavelet Transform Based Image Super Resolution Arti Sharma, Prof. Preety D Swami Department of Electronics &Telecommunication Samrat Ashok Technological Institute Vidisha Department of Electronics

More information

SeiSIM: Structural Similarity Evaluation for Seismic Data Retrieval

SeiSIM: Structural Similarity Evaluation for Seismic Data Retrieval SeiSIM: Structural Similarity Evaluation for Seismic Data Retrieval Zhiling Long, Zhen Wang, and Ghassan AlRegib Center for Energy and Geo Processing (CeGP) at Georgia Tech and King Fahd University of

More information

Enhancement of scanned documents in Besov spaces using wavelet domain representations

Enhancement of scanned documents in Besov spaces using wavelet domain representations Enhancement of scanned documents in Besov spaces using wavelet domain representations Kathrin Berkner 1 Ricoh Innovations, Inc., 2882 Sand Hill Road, Suite 115, Menlo Park, CA 94025 ABSTRACT After scanning,

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow 02/09/12 Feature Tracking and Optical Flow Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Many slides adapted from Lana Lazebnik, Silvio Saverse, who in turn adapted slides from Steve

More information

Introduction to Medical Image Compression Using Wavelet Transform

Introduction to Medical Image Compression Using Wavelet Transform National Taiwan University Graduate Institute of Communication Engineering Time Frequency Analysis and Wavelet Transform Term Paper Introduction to Medical Image Compression Using Wavelet Transform 李 自

More information

Sharpening through spatial filtering

Sharpening through spatial filtering Sharpening through spatial filtering Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Elaborazione delle immagini (Image processing I) academic year 2011 2012 Sharpening The term

More information

CHAPTER 6 Frequency Response, Bode Plots, and Resonance

CHAPTER 6 Frequency Response, Bode Plots, and Resonance ELECTRICAL CHAPTER 6 Frequency Response, Bode Plots, and Resonance 1. State the fundamental concepts of Fourier analysis. 2. Determine the output of a filter for a given input consisting of sinusoidal

More information

Digital Image Processing

Digital Image Processing GONZ_FMv3.qxd 7/26/07 9:05 AM Page i Digital Image Processing Third Edition Rafael C. Gonzalez University of Tennessee Richard E. Woods MedData Interactive Upper Saddle River, NJ 07458 GONZ_FMv3.qxd 7/26/07

More information

DSP First Laboratory Exercise #9 Sampling and Zooming of Images In this lab we study the application of FIR ltering to the image zooming problem, where lowpass lters are used to do the interpolation needed

More information

Wavelet analysis. Wavelet requirements. Example signals. Stationary signal 2 Hz + 10 Hz + 20Hz. Zero mean, oscillatory (wave) Fast decay (let)

Wavelet analysis. Wavelet requirements. Example signals. Stationary signal 2 Hz + 10 Hz + 20Hz. Zero mean, oscillatory (wave) Fast decay (let) Wavelet analysis In the case of Fourier series, the orthonormal basis is generated by integral dilation of a single function e jx Every 2π-periodic square-integrable function is generated by a superposition

More information

Image Authentication Scheme using Digital Signature and Digital Watermarking

Image Authentication Scheme using Digital Signature and Digital Watermarking www..org 59 Image Authentication Scheme using Digital Signature and Digital Watermarking Seyed Mohammad Mousavi Industrial Management Institute, Tehran, Iran Abstract Usual digital signature schemes for

More information

To determine vertical angular frequency, we need to express vertical viewing angle in terms of and. 2tan. (degree). (1 pt)

To determine vertical angular frequency, we need to express vertical viewing angle in terms of and. 2tan. (degree). (1 pt) Polytechnic University, Dept. Electrical and Computer Engineering EL6123 --- Video Processing, S12 (Prof. Yao Wang) Solution to Midterm Exam Closed Book, 1 sheet of notes (double sided) allowed 1. (5 pt)

More information

Superresolution images reconstructed from aliased images

Superresolution images reconstructed from aliased images Superresolution images reconstructed from aliased images Patrick Vandewalle, Sabine Süsstrunk and Martin Vetterli LCAV - School of Computer and Communication Sciences Ecole Polytechnique Fédérale de Lausanne

More information

Correlation and Convolution Class Notes for CMSC 426, Fall 2005 David Jacobs

Correlation and Convolution Class Notes for CMSC 426, Fall 2005 David Jacobs Correlation and Convolution Class otes for CMSC 46, Fall 5 David Jacobs Introduction Correlation and Convolution are basic operations that we will perform to extract information from images. They are in

More information

High Quality Image Magnification using Cross-Scale Self-Similarity

High Quality Image Magnification using Cross-Scale Self-Similarity High Quality Image Magnification using Cross-Scale Self-Similarity André Gooßen 1, Arne Ehlers 1, Thomas Pralow 2, Rolf-Rainer Grigat 1 1 Vision Systems, Hamburg University of Technology, D-21079 Hamburg

More information

Digital Imaging and Multimedia. Filters. Ahmed Elgammal Dept. of Computer Science Rutgers University

Digital Imaging and Multimedia. Filters. Ahmed Elgammal Dept. of Computer Science Rutgers University Digital Imaging and Multimedia Filters Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines What are Filters Linear Filters Convolution operation Properties of Linear Filters Application

More information

Resolution Enhancement of images with Interpolation and DWT-SWT Wavelet Domain Components

Resolution Enhancement of images with Interpolation and DWT-SWT Wavelet Domain Components Resolution Enhancement of images with Interpolation and DWT-SWT Wavelet Domain Components Mr. G.M. Khaire 1, Prof. R.P.Shelkikar 2 1 PG Student, college of engg, Osmanabad. 2 Associate Professor, college

More information

Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics

Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics Point Lattices in Computer Graphics and Visualization how signal processing may help computer graphics Dimitri Van De Ville Ecole Polytechnique Fédérale de Lausanne Biomedical Imaging Group dimitri.vandeville@epfl.ch

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information

DIGITAL IMAGE PROCESSING AND ANALYSIS

DIGITAL IMAGE PROCESSING AND ANALYSIS DIGITAL IMAGE PROCESSING AND ANALYSIS Human and Computer Vision Applications with CVIPtools SECOND EDITION SCOTT E UMBAUGH Uffi\ CRC Press Taylor &. Francis Group Boca Raton London New York CRC Press is

More information

Research on medical image fusion based on improved redundant complex wavelet transform

Research on medical image fusion based on improved redundant complex wavelet transform Available online www.ocpr.com Journal of Chemical and Pharmaceutical Research, 204, 6(5):823-830 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Research on medical image fusion based on improved

More information

JPEG Image Compression by Using DCT

JPEG Image Compression by Using DCT International Journal of Computer Sciences and Engineering Open Access Research Paper Volume-4, Issue-4 E-ISSN: 2347-2693 JPEG Image Compression by Using DCT Sarika P. Bagal 1* and Vishal B. Raskar 2 1*

More information

Taking Inverse Graphics Seriously

Taking Inverse Graphics Seriously CSC2535: 2013 Advanced Machine Learning Taking Inverse Graphics Seriously Geoffrey Hinton Department of Computer Science University of Toronto The representation used by the neural nets that work best

More information

Computational Optical Imaging - Optique Numerique. -- Deconvolution --

Computational Optical Imaging - Optique Numerique. -- Deconvolution -- Computational Optical Imaging - Optique Numerique -- Deconvolution -- Winter 2014 Ivo Ihrke Deconvolution Ivo Ihrke Outline Deconvolution Theory example 1D deconvolution Fourier method Algebraic method

More information

Performance Verification of Super-Resolution Image Reconstruction

Performance Verification of Super-Resolution Image Reconstruction Performance Verification of Super-Resolution Image Reconstruction Masaki Sugie Department of Information Science, Kogakuin University Tokyo, Japan Email: em13010@ns.kogakuin.ac.jp Seiichi Gohshi Department

More information

A Learning Based Method for Super-Resolution of Low Resolution Images

A Learning Based Method for Super-Resolution of Low Resolution Images A Learning Based Method for Super-Resolution of Low Resolution Images Emre Ugur June 1, 2004 emre.ugur@ceng.metu.edu.tr Abstract The main objective of this project is the study of a learning based method

More information

Hybrid images. Abstract. 1 Introduction. 2 The design of hybrid images. Philippe. G. Schyns University of Glasgow. Aude Oliva MIT-BCS

Hybrid images. Abstract. 1 Introduction. 2 The design of hybrid images. Philippe. G. Schyns University of Glasgow. Aude Oliva MIT-BCS Aude Oliva MIT-BCS Hybrid images Antonio Torralba MIT-CSAIL Philippe. G. Schyns University of Glasgow Figure 1: A hybrid image is a picture that combines the low-spatial frequencies of one picture with

More information

Aliasing, Image Sampling and Reconstruction

Aliasing, Image Sampling and Reconstruction Aliasing, Image Sampling and Reconstruction Recall: a pixel is a point It is NOT a box, disc or teeny wee light It has no dimension It occupies no area It can have a coordinate More than a point, it is

More information

A Secure File Transfer based on Discrete Wavelet Transformation and Audio Watermarking Techniques

A Secure File Transfer based on Discrete Wavelet Transformation and Audio Watermarking Techniques A Secure File Transfer based on Discrete Wavelet Transformation and Audio Watermarking Techniques Vineela Behara,Y Ramesh Department of Computer Science and Engineering Aditya institute of Technology and

More information

A GPU based real-time video compression method for video conferencing

A GPU based real-time video compression method for video conferencing A GPU based real-time video compression method for video conferencing Stamos Katsigiannis, Dimitris Maroulis Department of Informatics and Telecommunications University of Athens Athens, Greece {stamos,

More information

SIGNAL PROCESSING & SIMULATION NEWSLETTER

SIGNAL PROCESSING & SIMULATION NEWSLETTER 1 of 10 1/25/2008 3:38 AM SIGNAL PROCESSING & SIMULATION NEWSLETTER Note: This is not a particularly interesting topic for anyone other than those who ar e involved in simulation. So if you have difficulty

More information

ScienceDirect. Brain Image Classification using Learning Machine Approach and Brain Structure Analysis

ScienceDirect. Brain Image Classification using Learning Machine Approach and Brain Structure Analysis Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 50 (2015 ) 388 394 2nd International Symposium on Big Data and Cloud Computing (ISBCC 15) Brain Image Classification using

More information

High Resolution Images from a Sequence of Low Resolution Observations

High Resolution Images from a Sequence of Low Resolution Observations High Resolution Images from a Sequence of Low Resolution Observations L. D. Alvarez, R. Molina Department of Computer Science and A.I. University of Granada, 18071 Granada, Spain. A. K. Katsaggelos Department

More information

CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen

CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen LECTURE 3: DATA TRANSFORMATION AND DIMENSIONALITY REDUCTION Chapter 3: Data Preprocessing Data Preprocessing: An Overview Data Quality Major

More information

Image Segmentation and Registration

Image Segmentation and Registration Image Segmentation and Registration Dr. Christine Tanner (tanner@vision.ee.ethz.ch) Computer Vision Laboratory, ETH Zürich Dr. Verena Kaynig, Machine Learning Laboratory, ETH Zürich Outline Segmentation

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

High Resolution Image Reconstruction in a N"-2-3 Model

High Resolution Image Reconstruction in a N-2-3 Model SIAM J. SCI. COMPUT. Vol. 4, No. 4, pp. 148 143 c 3 Society for Industrial and Applied Mathematics WAVELET ALGORITHMS FOR HIGH-RESOLUTION IMAGE RECONSTRUCTION RAYMOND H. CHAN, TONY F. CHAN, LIXIN SHEN,

More information

Discrete Curvelet Transform Based Super-resolution using Sub-pixel Image Registration

Discrete Curvelet Transform Based Super-resolution using Sub-pixel Image Registration Vol. 4, No., June, 0 Discrete Curvelet Transform Based Super-resolution using Sub-pixel Image Registration Anil A. Patil, Dr. Jyoti Singhai Department of Electronics and Telecomm., COE, Malegaon(Bk), Pune,

More information

Super-resolution method based on edge feature for high resolution imaging

Super-resolution method based on edge feature for high resolution imaging Science Journal of Circuits, Systems and Signal Processing 2014; 3(6-1): 24-29 Published online December 26, 2014 (http://www.sciencepublishinggroup.com/j/cssp) doi: 10.11648/j.cssp.s.2014030601.14 ISSN:

More information

Sampling and Interpolation. Yao Wang Polytechnic University, Brooklyn, NY11201

Sampling and Interpolation. Yao Wang Polytechnic University, Brooklyn, NY11201 Sampling and Interpolation Yao Wang Polytechnic University, Brooklyn, NY1121 http://eeweb.poly.edu/~yao Outline Basics of sampling and quantization A/D and D/A converters Sampling Nyquist sampling theorem

More information

Face Recognition in Low-resolution Images by Using Local Zernike Moments

Face Recognition in Low-resolution Images by Using Local Zernike Moments Proceedings of the International Conference on Machine Vision and Machine Learning Prague, Czech Republic, August14-15, 014 Paper No. 15 Face Recognition in Low-resolution Images by Using Local Zernie

More information

Interpolation of RGB components in Bayer CFA images

Interpolation of RGB components in Bayer CFA images Interpolation of RGB components in Bayer CFA images Demosaicing of Bayer-sampled color images Problem: Most digital color cameras, capture only one color component at each spatial location. The remaining

More information

PERFORMANCE ANALYSIS OF HIGH RESOLUTION IMAGES USING INTERPOLATION TECHNIQUES IN MULTIMEDIA COMMUNICATION SYSTEM

PERFORMANCE ANALYSIS OF HIGH RESOLUTION IMAGES USING INTERPOLATION TECHNIQUES IN MULTIMEDIA COMMUNICATION SYSTEM PERFORMANCE ANALYSIS OF HIGH RESOLUTION IMAGES USING INTERPOLATION TECHNIQUES IN MULTIMEDIA COMMUNICATION SYSTEM Apurva Sinha 1, Mukesh kumar 2, A.K. Jaiswal 3, Rohini Saxena 4 Department of Electronics

More information

IMAGE RECOGNITION FOR CATS AND DOGS

IMAGE RECOGNITION FOR CATS AND DOGS IMAGE RECOGNITION FOR CATS AND DOGS HYO JIN CHUNG AND MINH N. TRAN Abstract. In this project, we are given a training set of 8 images of cats and 8 images of dogs to classify a testing set of 38 images

More information

A Simple Algorithm for Surface Denoising

A Simple Algorithm for Surface Denoising A Simple Algorithm for Surface Denoising Jianbo Peng, Vasily Strela, Denis Zorin New York University Abstract We present a simple denoising technique for geometric data represented as a semiregular mesh,

More information

Assessment. Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall

Assessment. Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall Automatic Photo Quality Assessment Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall Estimating i the photorealism of images: Distinguishing i i paintings from photographs h Florin

More information

Segmentation and Automatic Descreening of Scanned Documents

Segmentation and Automatic Descreening of Scanned Documents Segmentation and Automatic Descreening of Scanned Documents Alejandro Jaimes a, Frederick Mintzer b, A. Ravishankar Rao b and Gerhard Thompson b a Columbia University b IBM T.J. Watson Research Center

More information

A Novel Method for Brain MRI Super-resolution by Wavelet-based POCS and Adaptive Edge Zoom

A Novel Method for Brain MRI Super-resolution by Wavelet-based POCS and Adaptive Edge Zoom A Novel Method for Brain MRI Super-resolution by Wavelet-based POCS and Adaptive Edge Zoom N. Hema Rajini*, R.Bhavani Department of Computer Science and Engineering, Annamalai University, Annamalai Nagar

More information

Face Model Fitting on Low Resolution Images

Face Model Fitting on Low Resolution Images Face Model Fitting on Low Resolution Images Xiaoming Liu Peter H. Tu Frederick W. Wheeler Visualization and Computer Vision Lab General Electric Global Research Center Niskayuna, NY, 1239, USA {liux,tu,wheeler}@research.ge.com

More information

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches

Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches Modelling, Extraction and Description of Intrinsic Cues of High Resolution Satellite Images: Independent Component Analysis based approaches PhD Thesis by Payam Birjandi Director: Prof. Mihai Datcu Problematic

More information

Efficient Belief Propagation for Early Vision

Efficient Belief Propagation for Early Vision Efficient Belief Propagation for Early Vision Pedro F. Felzenszwalb and Daniel P. Huttenlocher Department of Computer Science, Cornell University {pff,dph}@cs.cornell.edu Abstract Markov random field models

More information

Lectures 6&7: Image Enhancement

Lectures 6&7: Image Enhancement Lectures 6&7: Image Enhancement Leena Ikonen Pattern Recognition (MVPR) Lappeenranta University of Technology (LUT) leena.ikonen@lut.fi http://www.it.lut.fi/ip/research/mvpr/ 1 Content Background Spatial

More information

Probability and Random Variables. Generation of random variables (r.v.)

Probability and Random Variables. Generation of random variables (r.v.) Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly

More information

Question 2: How do you solve a matrix equation using the matrix inverse?

Question 2: How do you solve a matrix equation using the matrix inverse? Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients

More information

Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition

Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition 1. Image Pre-Processing - Pixel Brightness Transformation - Geometric Transformation - Image Denoising 1 1. Image Pre-Processing

More information

Chapter 1 Simultaneous demosaicing and resolution enhancement from under-sampled image sequences

Chapter 1 Simultaneous demosaicing and resolution enhancement from under-sampled image sequences Chapter Simultaneous demosaicing and resolution enhancement from under-sampled image sequences SINA FARSIU Duke University Eye Center Durham, NC Email: sina.farsiu@duke.edu DIRK ROBINSON Ricoh Innovations

More information

How To Fix Out Of Focus And Blur Images With A Dynamic Template Matching Algorithm

How To Fix Out Of Focus And Blur Images With A Dynamic Template Matching Algorithm IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 10 April 2015 ISSN (online): 2349-784X Image Estimation Algorithm for Out of Focus and Blur Images to Retrieve the Barcode

More information

Introduction to Medical Imaging. Lecture 11: Cone-Beam CT Theory. Introduction. Available cone-beam reconstruction methods: Our discussion:

Introduction to Medical Imaging. Lecture 11: Cone-Beam CT Theory. Introduction. Available cone-beam reconstruction methods: Our discussion: Introduction Introduction to Medical Imaging Lecture 11: Cone-Beam CT Theory Klaus Mueller Available cone-beam reconstruction methods: exact approximate algebraic Our discussion: exact (now) approximate

More information

Part II Redundant Dictionaries and Pursuit Algorithms

Part II Redundant Dictionaries and Pursuit Algorithms Aisenstadt Chair Course CRM September 2009 Part II Redundant Dictionaries and Pursuit Algorithms Stéphane Mallat Centre de Mathématiques Appliquées Ecole Polytechnique Sparsity in Redundant Dictionaries

More information

The Image Deblurring Problem

The Image Deblurring Problem page 1 Chapter 1 The Image Deblurring Problem You cannot depend on your eyes when your imagination is out of focus. Mark Twain When we use a camera, we want the recorded image to be a faithful representation

More information

Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.

Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically. Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal

More information

Optical Flow. Shenlong Wang CSC2541 Course Presentation Feb 2, 2016

Optical Flow. Shenlong Wang CSC2541 Course Presentation Feb 2, 2016 Optical Flow Shenlong Wang CSC2541 Course Presentation Feb 2, 2016 Outline Introduction Variation Models Feature Matching Methods End-to-end Learning based Methods Discussion Optical Flow Goal: Pixel motion

More information

Image Hallucination Using Neighbor Embedding over Visual Primitive Manifolds

Image Hallucination Using Neighbor Embedding over Visual Primitive Manifolds Image Hallucination Using Neighbor Embedding over Visual Primitive Manifolds Wei Fan & Dit-Yan Yeung Department of Computer Science and Engineering, Hong Kong University of Science and Technology {fwkevin,dyyeung}@cse.ust.hk

More information

International Journal of Computer Sciences and Engineering Open Access. A novel technique to hide information using Daubechies Transformation

International Journal of Computer Sciences and Engineering Open Access. A novel technique to hide information using Daubechies Transformation International Journal of Computer Sciences and Engineering Open Access Research Paper Volume-4, Special Issue-1 E-ISSN: 2347-2693 A novel technique to hide information using Daubechies Transformation Jyotsna

More information

Simultaneous Gamma Correction and Registration in the Frequency Domain

Simultaneous Gamma Correction and Registration in the Frequency Domain Simultaneous Gamma Correction and Registration in the Frequency Domain Alexander Wong a28wong@uwaterloo.ca William Bishop wdbishop@uwaterloo.ca Department of Electrical and Computer Engineering University

More information

Numerical Methods For Image Restoration

Numerical Methods For Image Restoration Numerical Methods For Image Restoration CIRAM Alessandro Lanza University of Bologna, Italy Faculty of Engineering CIRAM Outline 1. Image Restoration as an inverse problem 2. Image degradation models:

More information

Computational Foundations of Cognitive Science

Computational Foundations of Cognitive Science Computational Foundations of Cognitive Science Lecture 15: Convolutions and Kernels Frank Keller School of Informatics University of Edinburgh keller@inf.ed.ac.uk February 23, 2010 Frank Keller Computational

More information

SGN-1158 Introduction to Signal Processing Test. Solutions

SGN-1158 Introduction to Signal Processing Test. Solutions SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:

More information

SINGLE IMAGE SUPER RESOLUTION IN SPATIAL AND WAVELET DOMAIN

SINGLE IMAGE SUPER RESOLUTION IN SPATIAL AND WAVELET DOMAIN SINGLE IMAGE SUPER RESOLUTION IN SPATIAL AND WAVELET DOMAIN ABSTRACT Sapan Naik 1, Nikunj Patel 2 1 Department of Computer Science and Technology, Uka Tarsadia University, Bardoli, Surat, India Sapan_say@yahoo.co.in

More information

Lecture 5: Singular Value Decomposition SVD (1)

Lecture 5: Singular Value Decomposition SVD (1) EEM3L1: Numerical and Analytical Techniques Lecture 5: Singular Value Decomposition SVD (1) EE3L1, slide 1, Version 4: 25-Sep-02 Motivation for SVD (1) SVD = Singular Value Decomposition Consider the system

More information

Algorithms for the resizing of binary and grayscale images using a logical transform

Algorithms for the resizing of binary and grayscale images using a logical transform Algorithms for the resizing of binary and grayscale images using a logical transform Ethan E. Danahy* a, Sos S. Agaian b, Karen A. Panetta a a Dept. of Electrical and Computer Eng., Tufts University, 161

More information

SNMP Simple Network Measurements Please!

SNMP Simple Network Measurements Please! SNMP Simple Network Measurements Please! Matthew Roughan (+many others) 1 Outline Part I: SNMP traffic data Simple Network Management Protocol Why? How? What? Part II: Wavelets

More information

VIDA FAKOUR SEVOM LEARNING-BASED SINGLE IMAGE SUPER RESOLUTION

VIDA FAKOUR SEVOM LEARNING-BASED SINGLE IMAGE SUPER RESOLUTION VIDA FAKOUR SEVOM LEARNING-BASED SINGLE IMAGE SUPER RESOLUTION Master's thesis Examiners: Prof. Karen Eguiazarian Examiners and topic approved by the Faculty Council of the Faculty of Natural Sciences

More information

Image Compression and Decompression using Adaptive Interpolation

Image Compression and Decompression using Adaptive Interpolation Image Compression and Decompression using Adaptive Interpolation SUNILBHOOSHAN 1,SHIPRASHARMA 2 Jaypee University of Information Technology 1 Electronicsand Communication EngineeringDepartment 2 ComputerScience

More information

Latest Results on High-Resolution Reconstruction from Video Sequences

Latest Results on High-Resolution Reconstruction from Video Sequences Latest Results on High-Resolution Reconstruction from Video Sequences S. Lertrattanapanich and N. K. Bose The Spatial and Temporal Signal Processing Center Department of Electrical Engineering The Pennsylvania

More information

A Wavelet Based Prediction Method for Time Series

A Wavelet Based Prediction Method for Time Series A Wavelet Based Prediction Method for Time Series Cristina Stolojescu 1,2 Ion Railean 1,3 Sorin Moga 1 Philippe Lenca 1 and Alexandru Isar 2 1 Institut TELECOM; TELECOM Bretagne, UMR CNRS 3192 Lab-STICC;

More information

SPEECH SIGNAL CODING FOR VOIP APPLICATIONS USING WAVELET PACKET TRANSFORM A

SPEECH SIGNAL CODING FOR VOIP APPLICATIONS USING WAVELET PACKET TRANSFORM A International Journal of Science, Engineering and Technology Research (IJSETR), Volume, Issue, January SPEECH SIGNAL CODING FOR VOIP APPLICATIONS USING WAVELET PACKET TRANSFORM A N.Rama Tej Nehru, B P.Sunitha

More information

ADVANCED APPLICATIONS OF ELECTRICAL ENGINEERING

ADVANCED APPLICATIONS OF ELECTRICAL ENGINEERING Development of a Software Tool for Performance Evaluation of MIMO OFDM Alamouti using a didactical Approach as a Educational and Research support in Wireless Communications JOSE CORDOVA, REBECA ESTRADA

More information

MATLAB-based Applications for Image Processing and Image Quality Assessment Part I: Software Description

MATLAB-based Applications for Image Processing and Image Quality Assessment Part I: Software Description RADIOENGINEERING, VOL. 20, NO. 4, DECEMBER 2011 1009 MATLAB-based Applications for Image Processing and Image Quality Assessment Part I: Software Description Lukáš KRASULA, Miloš KLÍMA, Eric ROGARD, Edouard

More information

Short-time FFT, Multi-taper analysis & Filtering in SPM12

Short-time FFT, Multi-taper analysis & Filtering in SPM12 Short-time FFT, Multi-taper analysis & Filtering in SPM12 Computational Psychiatry Seminar, FS 2015 Daniel Renz, Translational Neuromodeling Unit, ETHZ & UZH 20.03.2015 Overview Refresher Short-time Fourier

More information

How To Code A 4D (Dalt) Image Encoder With A 4Th Generation Dalt (Delt) And 4Th Gen (Dnt) (Dct) (A) And 2Nd Generation (Dpt) (F

How To Code A 4D (Dalt) Image Encoder With A 4Th Generation Dalt (Delt) And 4Th Gen (Dnt) (Dct) (A) And 2Nd Generation (Dpt) (F 4F8 Image Coding Course 4F8 Image Coding Course Nick Kingsbury February, 5 Contents Vision and Image Characteristics useful for Compression 3. Introduction................................... 3. Human Vision..................................

More information

A Novel Method to Improve Resolution of Satellite Images Using DWT and Interpolation

A Novel Method to Improve Resolution of Satellite Images Using DWT and Interpolation A Novel Method to Improve Resolution of Satellite Images Using DWT and Interpolation S.VENKATA RAMANA ¹, S. NARAYANA REDDY ² M.Tech student, Department of ECE, SVU college of Engineering, Tirupati, 517502,

More information

FFT Algorithms. Chapter 6. Contents 6.1

FFT Algorithms. Chapter 6. Contents 6.1 Chapter 6 FFT Algorithms Contents Efficient computation of the DFT............................................ 6.2 Applications of FFT................................................... 6.6 Computing DFT

More information

A Multiresolution Spline With Application to Image Mosaics

A Multiresolution Spline With Application to Image Mosaics A Multiresolution Spline With Application to Image Mosaics PETER J. BURT and EDWARD H. ADELSON RCA David Sarnoff Research Center We define a multiresolution spline technique for combining two or more images

More information

Resolving Objects at Higher Resolution from a Single Motion-blurred Image

Resolving Objects at Higher Resolution from a Single Motion-blurred Image Resolving Objects at Higher Resolution from a Single Motion-blurred Image Amit Agrawal and Ramesh Raskar Mitsubishi Electric Research Labs (MERL) 201 Broadway, Cambridge, MA, USA 02139 [agrawal,raskar]@merl.com

More information

WAVEFORM DICTIONARIES AS APPLIED TO THE AUSTRALIAN EXCHANGE RATE

WAVEFORM DICTIONARIES AS APPLIED TO THE AUSTRALIAN EXCHANGE RATE Sunway Academic Journal 3, 87 98 (26) WAVEFORM DICTIONARIES AS APPLIED TO THE AUSTRALIAN EXCHANGE RATE SHIRLEY WONG a RAY ANDERSON Victoria University, Footscray Park Campus, Australia ABSTRACT This paper

More information

Image Interpolation by Pixel Level Data-Dependent Triangulation

Image Interpolation by Pixel Level Data-Dependent Triangulation Volume xx (200y), Number z, pp. 1 7 Image Interpolation by Pixel Level Data-Dependent Triangulation Dan Su, Philip Willis Department of Computer Science, University of Bath, Bath, BA2 7AY, U.K. mapds,

More information

Edge detection. (Trucco, Chapt 4 AND Jain et al., Chapt 5) -Edges are significant local changes of intensity in an image.

Edge detection. (Trucco, Chapt 4 AND Jain et al., Chapt 5) -Edges are significant local changes of intensity in an image. Edge detection (Trucco, Chapt 4 AND Jain et al., Chapt 5) Definition of edges -Edges are significant local changes of intensity in an image. -Edges typically occur on the boundary between two different

More information

Image Super-Resolution via Sparse Representation

Image Super-Resolution via Sparse Representation 1 Image Super-Resolution via Sparse Representation Jianchao Yang, Student Member, IEEE, John Wright, Student Member, IEEE Thomas Huang, Life Fellow, IEEE and Yi Ma, Senior Member, IEEE Abstract This paper

More information

Nonlinear Iterative Partial Least Squares Method

Nonlinear Iterative Partial Least Squares Method Numerical Methods for Determining Principal Component Analysis Abstract Factors Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in numerical treatments for

More information

Adaptive Coded Aperture Photography

Adaptive Coded Aperture Photography Adaptive Coded Aperture Photography Oliver Bimber, Haroon Qureshi, Daniel Danch Institute of Johannes Kepler University, Linz Anselm Grundhoefer Disney Research Zurich Max Grosse Bauhaus University Weimar

More information

STUDY OF MUTUAL INFORMATION IN PERCEPTUAL CODING WITH APPLICATION FOR LOW BIT-RATE COMPRESSION

STUDY OF MUTUAL INFORMATION IN PERCEPTUAL CODING WITH APPLICATION FOR LOW BIT-RATE COMPRESSION STUDY OF MUTUAL INFORMATION IN PERCEPTUAL CODING WITH APPLICATION FOR LOW BIT-RATE COMPRESSION Adiel Ben-Shalom, Michael Werman School of Computer Science Hebrew University Jerusalem, Israel. {chopin,werman}@cs.huji.ac.il

More information