Discrete Mathematics and its Applications Counting (2) Xiaocong ZHOU

Size: px
Start display at page:

Download "Discrete Mathematics and its Applications Counting (2) Xiaocong ZHOU"

Transcription

1 Discrete Mathematics and its Applications Counting (2) Xiaocong ZHOU Department of Computer Science Sun Yat-sen University Feb zxc Xiaocong ZHOU (SYSU) Discrete Mathematics Feb / 19

2 OUTLINE 1 Permutation 2 Combinations 3 The Binomial Theorem 4 Pascal s Identity and Triangle 5 Some Other Identities for Binomial Coefficients Xiaocong ZHOU (SYSU) Discrete Mathematics Feb / 19

3 Introduction Permutation Many counting problems can be solved by finding the number of ways to arrange a specified number of distinct elements of a set of a particular size where the order of these elements matters Many other counting problems can be solved by finding the number of ways to select a particular number of elements from a set of a particular size where the order of the elements selected does not matter In how many ways can we select three students from a group of five students to stand in line for a picture? In how many ways can we arrange all five of these students in a line for a picture? Xiaocong ZHOU (SYSU) Discrete Mathematics Feb / 19

4 Permutation Permutation A permutation( 排列 ) of a set of distinct objects is an ordered arrangement of these objects An ordered arrangement of r elements of a set is called an r-permutation Let S = {1, 2, 3} The ordered arrangement 3, 1, 2 is a permutation of S The ordered arrangement 3, 2, is a 2-permutation of S Xiaocong ZHOU (SYSU) Discrete Mathematics Feb / 19

5 Permutation The number of r-permutations of a set with n elements is denoted by P(n, r) We can find P(n, r) using the product rule Let S = {a, b, c} The 2-permutations of S are the ordered arrangements a, b; a, c; b, a; b, c; c, a; and c, b. There are always six 2-permutations of a set with three elements there are three ways to choose the first element of the arrangement and two ways to choose the second element of the arrangement because it must be different from the first element Xiaocong ZHOU (SYSU) Discrete Mathematics Feb / 19

6 Permutation Theorem Corollary If n is a positive integer and r is an integer with 1 r n, then there are P(n, r) = n(n 1)(n 2) (n r + 1) r-permutations of a set with n distinct elements If n and r are integers with 0 r n, then n! P(n, r) = (n r)! How many ways are there to select a first-prize winner, a second-prize winner, and a third-prize winner from 100 different people who have entered a context? Xiaocong ZHOU (SYSU) Discrete Mathematics Feb / 19

7 Permutation Suppose that there are eight runners in race The winner receives a gold medal, the second-;lace finisher receives a silver medal, and the third-place finisher receives a bronze medal How many different ways are there to award these medals, if all possible outcomes of the race can occur and there are no ties? Suppose that a saleswoman has to visit eight different cities She must begin her trip in a specified city, but she can visit the other seven cities in any order she wishes How many possible orders can the saleswoman use when visiting these cities? How many permutations of the letters ABCDEFGH contain the string ABC? Xiaocong ZHOU (SYSU) Discrete Mathematics Feb / 19

8 Combinations Combinations How many different committees of three students can be formed from a group of four students? An r-combination( 组合 ) of elements of a set is an unordered selection of r elements from the set Thus, an r-combination is simply a subset of the set with r elements Let S be the set {1, 2, 3, 4} Then {1, 3, 4} is a 3-combination from S Xiaocong ZHOU (SYSU) Discrete Mathematics Feb / 19

9 Combinations Theorem The number of r-combinations of a set with n distinct elements is denoted by C(n, r) C(n, r) is also denoted by ( n r) and is called a binomial coefficient The number of r-combinations of a set with n elements equals n! n(n 1) (n r + 1) C(n, r) = = r!(n r)! r! where n is a nonnegative integer and r is an integer with 0 r n The r-permutations of the set can be obtained by forming the C(n, r) r-combinations of the set, and then ordering the elements in each r-combination, which can be done in P(r, r) ways P(n, r) = C(n, r) P(r, r) Xiaocong ZHOU (SYSU) Discrete Mathematics Feb / 19

10 Combinations Corollary How many poker hands of five cards can be dealt from a standard deck of 52 card? How many ways are there to select 47 cards from a standard deck of 52 cards? Let n and r be nonnegative integers with r n. Then C(n, r) = C(n, n r) A combinatorial proof( 组合证明 ) of an identity is a proof uses counting arguments to prove that both sides of the identity count the same objects but in different ways Xiaocong ZHOU (SYSU) Discrete Mathematics Feb / 19

11 Combinations How many ways are there to select five players from a 10-member tennis team to make a trip to a match at another school? How many bit strings of length n contain exactly r1s? Suppose that there are 9 faculty members in the mathematics department and 11 in the computer science department How many ways are there to select a committee to develop a discrete mathematics course at a school if the committee is to consist of three faculty members from the mathematics department and four from the computer science department? Xiaocong ZHOU (SYSU) Discrete Mathematics Feb / 19

12 The Binomial Theorem The Binomial Theorem The Binomial Theorem gives the coefficients of the expansion of powers of binomial expressions A binomial expression is simply the sum of two terms, such as x + y The expansion of (x + y) 3 = (x + y)(x + y)(x + y) can be found using combinatorial reasoning To obtain a term of the form x 3 an x must be chosen in each of the sums, and this can be done in only one way Thus, the x 3 term in the product has a coefficient of 1 To obtain a term of the form x 2 y an x must be chosen in two of the three sums (and consequently a y in the other sum) Hence, the number of such terms is the number of 2-combinations of three objects, namely, ( 3) 2 Xiaocong ZHOU (SYSU) Discrete Mathematics Feb / 19

13 The Binomial Theorem The Binomial Theorem Theorem (The Binomial Theorem) Let x and y be variables, and let n be a nonnegative integer. Then (x + y) n n ( n = j j=0 ( ) n = x n + 0 ) x n j y j ( ) n x n 1 y + 1 ( ) ( ) n n x n 2 y xy n n 1 ( ) n y n n What is the expansion of (x + y) 4? What is the coefficient of x 12 y 13 in the expansion of (2x 3y) 2 5? Xiaocong ZHOU (SYSU) Discrete Mathematics Feb / 19

14 The Binomial Theorem Corollary Let n be a nonnegative integer. Then n ( ) n = 2 n k k=0 Let n be a nonnegative integer. Then ( ) n k = 0 n ( 1) k k = 0 This implies ( ) n 0 ( ) ( ) ( ) ( ) ( ) n n n n n = Let n be a nonnegative integer. Then n ( ) n 2 k = 3 n k k=0 Xiaocong ZHOU (SYSU) Discrete Mathematics Feb / 19

15 Pascal s identity Pascal s Identity and Triangle Theorem (Pascal s Identity) Let n and k be positive ( integers ) with ( n ) k. ( Then ) n + 1 n n = + k k 1 k Suppose that T is a set containing n + 1 elements. Let a T and S = T {a}. there are ( n+1) k subsets of T containing k elements a subset of T with k elements either contains a together with k 1 elements of S, or contains k elements of S and does not contain a Pascal s Identity, together with the initial conditions ( n 0) = ( n n) = 1 for all integers n, can be used to recursively define binomial coefficients This is useful in the computation of binomial coefficients because only addition, and not multiplication, of integers is needed to use this recursive definition Xiaocong ZHOU (SYSU) Discrete Mathematics Feb / 19

16 Pascal s triangle Pascal s Identity and Triangle Pascal s Identity is the basis for a geometric arrangement of the binomial coefficients in a triangle This triangle is known as Pascal s triangle( 中国 : 贾宪三角 ) Xiaocong ZHOU (SYSU) Discrete Mathematics Feb / 19

17 Some Other Identities for Binomial Coefficients Vandermonde s Identity Theorem (Vandermonde s Identity) Let m, n, and r be nonnegative integers with r m and r n. Then ( ) m + n r ( )( ) m n = r r k k k=0 Suppose that there are m items in one set and n items in a second set the total number of ways to pick r elements from the union is ( m+n) r Another way to pick r elements is to pick k elements from the first set and then r k elements from the second set, where k is an integer with 0 k r Corollary If n is a nonnegative integer, then ( ) 2n = n n k=0 ( ) 2 n k Xiaocong ZHOU (SYSU) Discrete Mathematics Feb / 19

18 Some Other Identities for Binomial Coefficients Theorem Let n and r be nonnegative integers with r n. Then ( ) n + 1 n ( ) j = r + 1 r the left-hand side counts the bit strings of length n + 1 containing r + 1 ones the right-hand side counts the same objects by considering the cases corresponding to the possible locations of the final 1 in a string with r + 1 ones This final one must occur at position r + 1, r + 2,, or n + 1 j=r If the last one is the kth bit there must be r ones among the first k 1 positions, there are ( k 1) r such bit strings Summing over k with r + 1 k n + 1, we find that there are ( k 1 ) n ( j n + 1 = r r) k=r+1 j=r bit strings of length n containing exactly r + 1 ones Xiaocong ZHOU (SYSU) Discrete Mathematics Feb / 19

19 Some Other Identities for Binomial Coefficients Assignment: Exercises after 6.3, No. 20, 30, and Exercises after 6.4, No. 16, 22 Further reading: Exercises after 6.4, No. 17, 21 Xiaocong ZHOU (SYSU) Discrete Mathematics Feb / 19

Basics of Counting. The product rule. Product rule example. 22C:19, Chapter 6 Hantao Zhang. Sample question. Total is 18 * 325 = 5850

Basics of Counting. The product rule. Product rule example. 22C:19, Chapter 6 Hantao Zhang. Sample question. Total is 18 * 325 = 5850 Basics of Counting 22C:19, Chapter 6 Hantao Zhang 1 The product rule Also called the multiplication rule If there are n 1 ways to do task 1, and n 2 ways to do task 2 Then there are n 1 n 2 ways to do

More information

Section 6.4: Counting Subsets of a Set: Combinations

Section 6.4: Counting Subsets of a Set: Combinations Section 6.4: Counting Subsets of a Set: Combinations In section 6.2, we learnt how to count the number of r-permutations from an n-element set (recall that an r-permutation is an ordered selection of r

More information

4. Binomial Expansions

4. Binomial Expansions 4. Binomial Expansions 4.. Pascal's Triangle The expansion of (a + x) 2 is (a + x) 2 = a 2 + 2ax + x 2 Hence, (a + x) 3 = (a + x)(a + x) 2 = (a + x)(a 2 + 2ax + x 2 ) = a 3 + ( + 2)a 2 x + (2 + )ax 2 +

More information

MATH 105: Finite Mathematics 6-5: Combinations

MATH 105: Finite Mathematics 6-5: Combinations MATH 105: Finite Mathematics 6-5: Combinations Prof. Jonathan Duncan Walla Walla College Winter Quarter, 2006 Outline 1 Developing Combinations 2 s of Combinations 3 Combinations vs. Permutations 4 Conclusion

More information

COUNTING SUBSETS OF A SET: COMBINATIONS

COUNTING SUBSETS OF A SET: COMBINATIONS COUNTING SUBSETS OF A SET: COMBINATIONS DEFINITION 1: Let n, r be nonnegative integers with r n. An r-combination of a set of n elements is a subset of r of the n elements. EXAMPLE 1: Let S {a, b, c, d}.

More information

Discrete mathematics

Discrete mathematics Discrete mathematics Petr Kovář petr.kovar@vsb.cz VŠB Technical University of Ostrava DiM 470-2301/01, Winter term 2015/2016 About this file This file is meant to be a guideline for the lecturer. Many

More information

SECTION 10-5 Multiplication Principle, Permutations, and Combinations

SECTION 10-5 Multiplication Principle, Permutations, and Combinations 10-5 Multiplication Principle, Permutations, and Combinations 761 54. Can you guess what the next two rows in Pascal s triangle, shown at right, are? Compare the numbers in the triangle with the binomial

More information

Catalan Numbers. Thomas A. Dowling, Department of Mathematics, Ohio State Uni- versity.

Catalan Numbers. Thomas A. Dowling, Department of Mathematics, Ohio State Uni- versity. 7 Catalan Numbers Thomas A. Dowling, Department of Mathematics, Ohio State Uni- Author: versity. Prerequisites: The prerequisites for this chapter are recursive definitions, basic counting principles,

More information

35 Permutations, Combinations and Probability

35 Permutations, Combinations and Probability 35 Permutations, Combinations and Probability Thus far we have been able to list the elements of a sample space by drawing a tree diagram. For large sample spaces tree diagrams become very complex to construct.

More information

Combinatorial Proofs

Combinatorial Proofs Combinatorial Proofs Two Counting Principles Some proofs concerning finite sets involve counting the number of elements of the sets, so we will look at the basics of counting. Addition Principle: If A

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 7, due Wedneday, March 14 Happy Pi Day! (If any errors are spotted, please email them to morrison at math dot berkeley dot edu..5.10 A croissant

More information

k, then n = p2α 1 1 pα k

k, then n = p2α 1 1 pα k Powers of Integers An integer n is a perfect square if n = m for some integer m. Taking into account the prime factorization, if m = p α 1 1 pα k k, then n = pα 1 1 p α k k. That is, n is a perfect square

More information

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

More information

Chapter 3. Distribution Problems. 3.1 The idea of a distribution. 3.1.1 The twenty-fold way

Chapter 3. Distribution Problems. 3.1 The idea of a distribution. 3.1.1 The twenty-fold way Chapter 3 Distribution Problems 3.1 The idea of a distribution Many of the problems we solved in Chapter 1 may be thought of as problems of distributing objects (such as pieces of fruit or ping-pong balls)

More information

Probability. Section 9. Probability. Probability of A = Number of outcomes for which A happens Total number of outcomes (sample space)

Probability. Section 9. Probability. Probability of A = Number of outcomes for which A happens Total number of outcomes (sample space) Probability Section 9 Probability Probability of A = Number of outcomes for which A happens Total number of outcomes (sample space) In this section we summarise the key issues in the basic probability

More information

Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

More information

Sample Induction Proofs

Sample Induction Proofs Math 3 Worksheet: Induction Proofs III, Sample Proofs A.J. Hildebrand Sample Induction Proofs Below are model solutions to some of the practice problems on the induction worksheets. The solutions given

More information

arxiv:math/0202219v1 [math.co] 21 Feb 2002

arxiv:math/0202219v1 [math.co] 21 Feb 2002 RESTRICTED PERMUTATIONS BY PATTERNS OF TYPE (2, 1) arxiv:math/0202219v1 [math.co] 21 Feb 2002 TOUFIK MANSOUR LaBRI (UMR 5800), Université Bordeaux 1, 351 cours de la Libération, 33405 Talence Cedex, France

More information

Math 319 Problem Set #3 Solution 21 February 2002

Math 319 Problem Set #3 Solution 21 February 2002 Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod

More information

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH

SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH 31 Kragujevac J. Math. 25 (2003) 31 49. SHARP BOUNDS FOR THE SUM OF THE SQUARES OF THE DEGREES OF A GRAPH Kinkar Ch. Das Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, W.B.,

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

More information

Discrete Mathematics: Homework 7 solution. Due: 2011.6.03

Discrete Mathematics: Homework 7 solution. Due: 2011.6.03 EE 2060 Discrete Mathematics spring 2011 Discrete Mathematics: Homework 7 solution Due: 2011.6.03 1. Let a n = 2 n + 5 3 n for n = 0, 1, 2,... (a) (2%) Find a 0, a 1, a 2, a 3 and a 4. (b) (2%) Show that

More information

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact

More information

SCORE SETS IN ORIENTED GRAPHS

SCORE SETS IN ORIENTED GRAPHS Applicable Analysis and Discrete Mathematics, 2 (2008), 107 113. Available electronically at http://pefmath.etf.bg.ac.yu SCORE SETS IN ORIENTED GRAPHS S. Pirzada, T. A. Naikoo The score of a vertex v in

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Spring 2012 Homework # 9, due Wednesday, April 11 8.1.5 How many ways are there to pay a bill of 17 pesos using a currency with coins of values of 1 peso, 2 pesos,

More information

The thing that started it 8.6 THE BINOMIAL THEOREM

The thing that started it 8.6 THE BINOMIAL THEOREM 476 Chapter 8 Discrete Mathematics: Functions on the Set of Natural Numbers (b) Based on your results for (a), guess the minimum number of moves required if you start with an arbitrary number of n disks.

More information

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +... 6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

Elements of probability theory

Elements of probability theory 2 Elements of probability theory Probability theory provides mathematical models for random phenomena, that is, phenomena which under repeated observations yield di erent outcomes that cannot be predicted

More information

MATH10040 Chapter 2: Prime and relatively prime numbers

MATH10040 Chapter 2: Prime and relatively prime numbers MATH10040 Chapter 2: Prime and relatively prime numbers Recall the basic definition: 1. Prime numbers Definition 1.1. Recall that a positive integer is said to be prime if it has precisely two positive

More information

How To Solve The Social Studies Test

How To Solve The Social Studies Test Math 00 Homework #0 Solutions. Section.: ab. For each map below, determine the number of southerly paths from point to point. Solution: We just have to use the same process as we did in building Pascal

More information

Math 55: Discrete Mathematics

Math 55: Discrete Mathematics Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 5, due Wednesday, February 22 5.1.4 Let P (n) be the statement that 1 3 + 2 3 + + n 3 = (n(n + 1)/2) 2 for the positive integer n. a) What

More information

8.3 Probability Applications of Counting Principles

8.3 Probability Applications of Counting Principles 8. Probability Applications of Counting Principles In this section, we will see how we can apply the counting principles from the previous two sections in solving probability problems. Many of the probability

More information

Pigeonhole Principle Solutions

Pigeonhole Principle Solutions Pigeonhole Principle Solutions 1. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then some pair of numbers will have no factors in common. Solution: Note that consecutive numbers (such

More information

INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

More information

SECTION 10-2 Mathematical Induction

SECTION 10-2 Mathematical Induction 73 0 Sequences and Series 6. Approximate e 0. using the first five terms of the series. Compare this approximation with your calculator evaluation of e 0.. 6. Approximate e 0.5 using the first five terms

More information

Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett

Lecture Note 1 Set and Probability Theory. MIT 14.30 Spring 2006 Herman Bennett Lecture Note 1 Set and Probability Theory MIT 14.30 Spring 2006 Herman Bennett 1 Set Theory 1.1 Definitions and Theorems 1. Experiment: any action or process whose outcome is subject to uncertainty. 2.

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

Solutions for Practice problems on proofs

Solutions for Practice problems on proofs Solutions for Practice problems on proofs Definition: (even) An integer n Z is even if and only if n = 2m for some number m Z. Definition: (odd) An integer n Z is odd if and only if n = 2m + 1 for some

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

Homework until Test #2

Homework until Test #2 MATH31: Number Theory Homework until Test # Philipp BRAUN Section 3.1 page 43, 1. It has been conjectured that there are infinitely many primes of the form n. Exhibit five such primes. Solution. Five such

More information

Lecture 18: Applications of Dynamic Programming Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY 11794 4400

Lecture 18: Applications of Dynamic Programming Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY 11794 4400 Lecture 18: Applications of Dynamic Programming Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Problem of the Day

More information

Lecture 13 - Basic Number Theory.

Lecture 13 - Basic Number Theory. Lecture 13 - Basic Number Theory. Boaz Barak March 22, 2010 Divisibility and primes Unless mentioned otherwise throughout this lecture all numbers are non-negative integers. We say that A divides B, denoted

More information

Probability Generating Functions

Probability Generating Functions page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence

More information

The Determinant: a Means to Calculate Volume

The Determinant: a Means to Calculate Volume The Determinant: a Means to Calculate Volume Bo Peng August 20, 2007 Abstract This paper gives a definition of the determinant and lists many of its well-known properties Volumes of parallelepipeds are

More information

SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me

SYSTEMS OF PYTHAGOREAN TRIPLES. Acknowledgements. I would like to thank Professor Laura Schueller for advising and guiding me SYSTEMS OF PYTHAGOREAN TRIPLES CHRISTOPHER TOBIN-CAMPBELL Abstract. This paper explores systems of Pythagorean triples. It describes the generating formulas for primitive Pythagorean triples, determines

More information

Mathematical Induction. Lecture 10-11

Mathematical Induction. Lecture 10-11 Mathematical Induction Lecture 10-11 Menu Mathematical Induction Strong Induction Recursive Definitions Structural Induction Climbing an Infinite Ladder Suppose we have an infinite ladder: 1. We can reach

More information

P. Jeyanthi and N. Angel Benseera

P. Jeyanthi and N. Angel Benseera Opuscula Math. 34, no. 1 (014), 115 1 http://dx.doi.org/10.7494/opmath.014.34.1.115 Opuscula Mathematica A TOTALLY MAGIC CORDIAL LABELING OF ONE-POINT UNION OF n COPIES OF A GRAPH P. Jeyanthi and N. Angel

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

Formal Languages and Automata Theory - Regular Expressions and Finite Automata -

Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March

More information

Notes on Probability and Statistics

Notes on Probability and Statistics Notes on Probability and Statistics Andrew Forrester January 28, 2009 Contents 1 The Big Picture 1 2 Counting with Combinatorics 2 2.1 Possibly Useful Notation...................................... 2 2.2

More information

9.2 Summation Notation

9.2 Summation Notation 9. Summation Notation 66 9. Summation Notation In the previous section, we introduced sequences and now we shall present notation and theorems concerning the sum of terms of a sequence. We begin with a

More information

DETERMINANTS IN THE KRONECKER PRODUCT OF MATRICES: THE INCIDENCE MATRIX OF A COMPLETE GRAPH

DETERMINANTS IN THE KRONECKER PRODUCT OF MATRICES: THE INCIDENCE MATRIX OF A COMPLETE GRAPH DETERMINANTS IN THE KRONECKER PRODUCT OF MATRICES: THE INCIDENCE MATRIX OF A COMPLETE GRAPH CHRISTOPHER RH HANUSA AND THOMAS ZASLAVSKY Abstract We investigate the least common multiple of all subdeterminants,

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Combinatorics. Chapter 1. 1.1 Factorials

Combinatorics. Chapter 1. 1.1 Factorials Chapter 1 Combinatorics Copyright 2009 by David Morin, morin@physics.harvard.edu (Version 4, August 30, 2009) This file contains the first three chapters (plus some appendices) of a potential book on Probability

More information

WRITING PROOFS. Christopher Heil Georgia Institute of Technology

WRITING PROOFS. Christopher Heil Georgia Institute of Technology WRITING PROOFS Christopher Heil Georgia Institute of Technology A theorem is just a statement of fact A proof of the theorem is a logical explanation of why the theorem is true Many theorems have this

More information

A characterization of trace zero symmetric nonnegative 5x5 matrices

A characterization of trace zero symmetric nonnegative 5x5 matrices A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the

More information

Basic Probability Concepts

Basic Probability Concepts page 1 Chapter 1 Basic Probability Concepts 1.1 Sample and Event Spaces 1.1.1 Sample Space A probabilistic (or statistical) experiment has the following characteristics: (a) the set of all possible outcomes

More information

Jacobi s four squares identity Martin Klazar

Jacobi s four squares identity Martin Klazar Jacobi s four squares identity Martin Klazar (lecture on the 7-th PhD conference) Ostrava, September 10, 013 C. Jacobi [] in 189 proved that for any integer n 1, r (n) = #{(x 1, x, x 3, x ) Z ( i=1 x i

More information

Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set.

Cardinality. The set of all finite strings over the alphabet of lowercase letters is countable. The set of real numbers R is an uncountable set. Section 2.5 Cardinality (another) Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted A = B, if and only if there is a bijection from A to B. If there is an injection

More information

Section IV.1: Recursive Algorithms and Recursion Trees

Section IV.1: Recursive Algorithms and Recursion Trees Section IV.1: Recursive Algorithms and Recursion Trees Definition IV.1.1: A recursive algorithm is an algorithm that solves a problem by (1) reducing it to an instance of the same problem with smaller

More information

We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b

We can express this in decimal notation (in contrast to the underline notation we have been using) as follows: 9081 + 900b + 90c = 9001 + 100c + 10b In this session, we ll learn how to solve problems related to place value. This is one of the fundamental concepts in arithmetic, something every elementary and middle school mathematics teacher should

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

Factoring Trinomials of the Form x 2 bx c

Factoring Trinomials of the Form x 2 bx c 4.2 Factoring Trinomials of the Form x 2 bx c 4.2 OBJECTIVES 1. Factor a trinomial of the form x 2 bx c 2. Factor a trinomial containing a common factor NOTE The process used to factor here is frequently

More information

T ( a i x i ) = a i T (x i ).

T ( a i x i ) = a i T (x i ). Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)

More information

Maths class 11 Chapter 7. Permutations and Combinations

Maths class 11 Chapter 7. Permutations and Combinations 1 P a g e Maths class 11 Chapter 7. Permutations and Combinations Fundamental Principles of Counting 1. Multiplication Principle If first operation can be performed in m ways and then a second operation

More information

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers)

Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) Probability and Statistics Vocabulary List (Definitions for Middle School Teachers) B Bar graph a diagram representing the frequency distribution for nominal or discrete data. It consists of a sequence

More information

Full and Complete Binary Trees

Full and Complete Binary Trees Full and Complete Binary Trees Binary Tree Theorems 1 Here are two important types of binary trees. Note that the definitions, while similar, are logically independent. Definition: a binary tree T is full

More information

8 Primes and Modular Arithmetic

8 Primes and Modular Arithmetic 8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

1 Sufficient statistics

1 Sufficient statistics 1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =

More information

Factoring Special Polynomials

Factoring Special Polynomials 6.6 Factoring Special Polynomials 6.6 OBJECTIVES 1. Factor the difference of two squares 2. Factor the sum or difference of two cubes In this section, we will look at several special polynomials. These

More information

Determinants in the Kronecker product of matrices: The incidence matrix of a complete graph

Determinants in the Kronecker product of matrices: The incidence matrix of a complete graph FPSAC 2009 DMTCS proc (subm), by the authors, 1 10 Determinants in the Kronecker product of matrices: The incidence matrix of a complete graph Christopher R H Hanusa 1 and Thomas Zaslavsky 2 1 Department

More information

Reading 13 : Finite State Automata and Regular Expressions

Reading 13 : Finite State Automata and Regular Expressions CS/Math 24: Introduction to Discrete Mathematics Fall 25 Reading 3 : Finite State Automata and Regular Expressions Instructors: Beck Hasti, Gautam Prakriya In this reading we study a mathematical model

More information

Lecture 3: Finding integer solutions to systems of linear equations

Lecture 3: Finding integer solutions to systems of linear equations Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Lecture Notes, Yale University, Spring 1999 L. Lovász and K. Vesztergombi Parts of these lecture notes are based on L. Lovász J. Pelikán K. Vesztergombi: Kombinatorika (Tankönyvkiadó,

More information

Lecture 1: Systems of Linear Equations

Lecture 1: Systems of Linear Equations MTH Elementary Matrix Algebra Professor Chao Huang Department of Mathematics and Statistics Wright State University Lecture 1 Systems of Linear Equations ² Systems of two linear equations with two variables

More information

God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886)

God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) Chapter 2 Numbers God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) God created the integers and the rest is the work

More information

Texas Hold em. From highest to lowest, the possible five card hands in poker are ranked as follows:

Texas Hold em. From highest to lowest, the possible five card hands in poker are ranked as follows: Texas Hold em Poker is one of the most popular card games, especially among betting games. While poker is played in a multitude of variations, Texas Hold em is the version played most often at casinos

More information

6.2 Permutations continued

6.2 Permutations continued 6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of

More information

Mathematics Higher Level

Mathematics Higher Level Mathematics Higher Level for the IB Diploma Exam Preparation Guide Paul Fannon, Vesna Kadelburg, Ben Woolley, Stephen Ward INTRODUCTION ABOUT THIS BOOK If you are using this book, you re probably getting

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice,

More information

On an anti-ramsey type result

On an anti-ramsey type result On an anti-ramsey type result Noga Alon, Hanno Lefmann and Vojtĕch Rödl Abstract We consider anti-ramsey type results. For a given coloring of the k-element subsets of an n-element set X, where two k-element

More information

Every Positive Integer is the Sum of Four Squares! (and other exciting problems)

Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Every Positive Integer is the Sum of Four Squares! (and other exciting problems) Sophex University of Texas at Austin October 18th, 00 Matilde N. Lalín 1. Lagrange s Theorem Theorem 1 Every positive integer

More information

Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80)

Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80) Discrete Math in Computer Science Homework 7 Solutions (Max Points: 80) CS 30, Winter 2016 by Prasad Jayanti 1. (10 points) Here is the famous Monty Hall Puzzle. Suppose you are on a game show, and you

More information

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.

Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook. Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole

More information

Permutations & Combinations

Permutations & Combinations Permutations & Combinations Extension 1 Mathematics HSC Revision Multiplication Rule If one event can occur in m ways, a second event in n ways and a third event in r, then the three events can occur in

More information

Handout #1: Mathematical Reasoning

Handout #1: Mathematical Reasoning Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or

More information

7: The CRR Market Model

7: The CRR Market Model Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney MATH3075/3975 Financial Mathematics Semester 2, 2015 Outline We will examine the following issues: 1 The Cox-Ross-Rubinstein

More information

Student Outcomes. Lesson Notes. Classwork. Discussion (10 minutes)

Student Outcomes. Lesson Notes. Classwork. Discussion (10 minutes) NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 5 8 Student Outcomes Students know the definition of a number raised to a negative exponent. Students simplify and write equivalent expressions that contain

More information

Tiers, Preference Similarity, and the Limits on Stable Partners

Tiers, Preference Similarity, and the Limits on Stable Partners Tiers, Preference Similarity, and the Limits on Stable Partners KANDORI, Michihiro, KOJIMA, Fuhito, and YASUDA, Yosuke February 7, 2010 Preliminary and incomplete. Do not circulate. Abstract We consider

More information

THE BANACH CONTRACTION PRINCIPLE. Contents

THE BANACH CONTRACTION PRINCIPLE. Contents THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

Problem-Solving Methods in Combinatorics

Problem-Solving Methods in Combinatorics Problem-Solving Methods in Combinatorics Pablo Soberón Problem-Solving Methods in Combinatorics An Approach to Olympiad Problems Pablo Soberón Department of Mathematics University College London London,

More information

CONTRIBUTIONS TO ZERO SUM PROBLEMS

CONTRIBUTIONS TO ZERO SUM PROBLEMS CONTRIBUTIONS TO ZERO SUM PROBLEMS S. D. ADHIKARI, Y. G. CHEN, J. B. FRIEDLANDER, S. V. KONYAGIN AND F. PAPPALARDI Abstract. A prototype of zero sum theorems, the well known theorem of Erdős, Ginzburg

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

Using the ac Method to Factor

Using the ac Method to Factor 4.6 Using the ac Method to Factor 4.6 OBJECTIVES 1. Use the ac test to determine factorability 2. Use the results of the ac test 3. Completely factor a trinomial In Sections 4.2 and 4.3 we used the trial-and-error

More information

About the inverse football pool problem for 9 games 1

About the inverse football pool problem for 9 games 1 Seventh International Workshop on Optimal Codes and Related Topics September 6-1, 013, Albena, Bulgaria pp. 15-133 About the inverse football pool problem for 9 games 1 Emil Kolev Tsonka Baicheva Institute

More information