Machine Learning Business Intelligence, Culturomics and Life Sciences
|
|
|
- Jesse Blake
- 10 years ago
- Views:
Transcription
1 Machine Learning Business Intelligence, Culturomics and Life Sciences Devdatt Dubhashi LAB (Machine Learning. Algorithms, Computational Biology) D&IT Chalmers
2
3
4
5
6 Entity Disambiguation Match names in text with the entity behind them Fundamental problem, addressed at annual competitions like Semeval Disambiguation is needed everywhere. Databases, web mining, linguistics, Used at Recorded Future (exemplified next!)
7
8
9
10
11
12 Judge a man by the company he keeps. - Euripides
13 Pakistan Oxford Uni. India Chris Anderson TED Future Publishing San Francisco
14 Chris Anderson
15 Graph Communities
16 Classification with Graph Kernels
17 Graph Embeddings and Kernels ϑ Embed discrete combinatorial object (graph) into continuous Euclidean space Define kernel based on geometry of Euclidean sp. V. Jethava et al NIPS 2012, JMLR 2013 T. Kerola, L. Hermansson, V. Jethava, F. Johansson CIKM 2013 F. Johansson, V. Jethava et al ICML 2014.
18 Demonstrator at Recorded Future Classifies names as ambiguous or unique Uses graph classification to classify occurrence graphs of names Ambiguous or Unique? Achieved state-of-the-art results (CIKM, 2013). Powerful extension for complete disambiguation in progress Parallel/Distributed implementation in GraphLab
19 Towards a knowledge-based culturomics Språkbanken (Swedish Language Bank), University of Gothenburg Language Technology, Lund University LAB Group Department of Computer Science and Engineering, Chalmers University of Technology
20
21 Word Embeddings
22
23 Deep Learning (Neural Networks) Revolutionized vision and speech systems Dramatic improvements in image classification near human level. Skype real time translation from English to Chinese.
24 Word Embeddings capture meaning
25 Dealing with information overload
26 Document summarization Word vectors + Multiple Kernel learning + Submodular optimization M. Kågeback, O. Mogren et al, Extractive Summarization using Continuous Vector Space Models, Workshop on (CVSC) EACL 2014
27
28
29 Word sense induction Instance cloud for: 'power' energy unit system battery x performance high allows engine equipment processing systems failure management provide him political her government god influence state came us act labour given council about authority M. Kageback, F. Johansson et al, Neural context embeddings for automatic discovery of word senses, (NAACL 2015 workshop on Vector Space Modeling for NLP) Used an innovative clustering technique Exploited word and context vectors.
30 Senses of for paper Medium Essay Scholarly article Newspaper Newspaper firm Material Vis using t-sne
31
32
33
34
35 Probabilistic Regulation of Prediction of metabolic changes due to genetic or environmental perturbations diagnosing metabolic disorders discovering novel drug targets. Metabolism
36 Genetic Regulation of Metabolism: Using Factor Graphs and Belief Propagation
37 genetic regulatory network consisting of transcription factor genes, target genes and metabolic reactions
38 Data mining with Differential Privacy Programming language technology for differential privacy (Sands) Privacy policies for social networks (Schneider) Privacy
39 Chalmers Machine Learning Summer School 2015
40 Big Data Analytics May Hadoop Spark Spotfire
41 SVMs and Kernel Methods Graph Theoretic Methods Probabilistic Graphical Models Deep Learning Bayesian Decision Theory Reinforcement Learning Business intelligence Natural Language Technology Life Sciences Transport (Volvo) Infectious disease epidemiology Medical Imaging Political Science
42 Data Science Securit yprivac y Algorithms Multicores /GPUs Probability and Statistics Optimization Database s Machine Learning Parallel programming Sparse modelling
43 Chalmers Data-X? Life Science and Engineering Transport Energy Smart Cities (Built Environment) Production Volvo cars (connected cars, historical data) AstraZeneca (mining medical literature) Seal software (mining legal contracts)
44 Data Science vs EScience Data-centric Probabilistic models GPUs Computational biology, NLP, social sciences Computation-centric Simulation Large clusters/grids Physics, Turbulent flows, Climate
An Introduction to Data Mining
An Introduction to Intel Beijing [email protected] January 17, 2014 Outline 1 DW Overview What is Notable Application of Conference, Software and Applications Major Process in 2 Major Tasks in Detail
BIOINF 585 Fall 2015 Machine Learning for Systems Biology & Clinical Informatics http://www.ccmb.med.umich.edu/node/1376
Course Director: Dr. Kayvan Najarian (DCM&B, [email protected]) Lectures: Labs: Mondays and Wednesdays 9:00 AM -10:30 AM Rm. 2065 Palmer Commons Bldg. Wednesdays 10:30 AM 11:30 AM (alternate weeks) Rm.
Data Isn't Everything
June 17, 2015 Innovate Forward Data Isn't Everything The Challenges of Big Data, Advanced Analytics, and Advance Computation Devices for Transportation Agencies. Using Data to Support Mission, Administration,
Data Integration. Lectures 16 & 17. ECS289A, WQ03, Filkov
Data Integration Lectures 16 & 17 Lectures Outline Goals for Data Integration Homogeneous data integration time series data (Filkov et al. 2002) Heterogeneous data integration microarray + sequence microarray
Learning outcomes. Knowledge and understanding. Competence and skills
Syllabus Master s Programme in Statistics and Data Mining 120 ECTS Credits Aim The rapid growth of databases provides scientists and business people with vast new resources. This programme meets the challenges
The University of Jordan
The University of Jordan Master in Web Intelligence Non Thesis Department of Business Information Technology King Abdullah II School for Information Technology The University of Jordan 1 STUDY PLAN MASTER'S
Introduction to Data Mining
Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association
Master's projects at ITMO University. Daniil Chivilikhin PhD Student @ ITMO University
Master's projects at ITMO University Daniil Chivilikhin PhD Student @ ITMO University General information Guidance from our lab's researchers Publishable results 2 Research areas Research at ITMO Evolutionary
Network Machine Learning Research Group. Intended status: Informational October 19, 2015 Expires: April 21, 2016
Network Machine Learning Research Group S. Jiang Internet-Draft Huawei Technologies Co., Ltd Intended status: Informational October 19, 2015 Expires: April 21, 2016 Abstract Network Machine Learning draft-jiang-nmlrg-network-machine-learning-00
International Journal of Computer Science Trends and Technology (IJCST) Volume 2 Issue 3, May-Jun 2014
RESEARCH ARTICLE OPEN ACCESS A Survey of Data Mining: Concepts with Applications and its Future Scope Dr. Zubair Khan 1, Ashish Kumar 2, Sunny Kumar 3 M.Tech Research Scholar 2. Department of Computer
CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.
Lecture Machine Learning Milos Hauskrecht [email protected] 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht [email protected] 539 Sennott
MSCA 31000 Introduction to Statistical Concepts
MSCA 31000 Introduction to Statistical Concepts This course provides general exposure to basic statistical concepts that are necessary for students to understand the content presented in more advanced
A1 Introduction to Data exploration and Machine Learning
A1 Introduction to Data exploration and Machine Learning 03563545 :- : -:: -,8 / 15 23CE53C5 --- Proposition: This course is aimed at students with little or no prior programming experience. Since Data
Data Analytics at NICTA. Stephen Hardy National ICT Australia (NICTA) [email protected]
Data Analytics at NICTA Stephen Hardy National ICT Australia (NICTA) [email protected] NICTA Copyright 2013 Outline Big data = science! Data analytics at NICTA Discrete Finite Infinite Machine Learning
How To Get A Computer Engineering Degree
COMPUTER ENGINEERING GRADUTE PROGRAM FOR MASTER S DEGREE (With Thesis) PREPARATORY PROGRAM* COME 27 Advanced Object Oriented Programming 5 COME 21 Data Structures and Algorithms COME 22 COME 1 COME 1 COME
CS Master Level Courses and Areas COURSE DESCRIPTIONS. CSCI 521 Real-Time Systems. CSCI 522 High Performance Computing
CS Master Level Courses and Areas The graduate courses offered may change over time, in response to new developments in computer science and the interests of faculty and students; the list of graduate
Page 1 of 5. (Modules, Subjects) SENG DSYS PSYS KMS ADB INS IAT
Page 1 of 5 A. Advanced Mathematics for CS A1. Line and surface integrals 2 2 A2. Scalar and vector potentials 2 2 A3. Orthogonal curvilinear coordinates 2 2 A4. Partial differential equations 2 2 4 A5.
Learning is a very general term denoting the way in which agents:
What is learning? Learning is a very general term denoting the way in which agents: Acquire and organize knowledge (by building, modifying and organizing internal representations of some external reality);
Computer Science Electives and Clusters
Course Number CSCI- Computer Science Electives and Clusters Computer Science electives belong to one or more groupings called clusters. Undergraduate students with the proper prerequisites are permitted
A Review of Data Mining Techniques
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 4, April 2014,
Sanjeev Kumar. contribute
RESEARCH ISSUES IN DATAA MINING Sanjeev Kumar I.A.S.R.I., Library Avenue, Pusa, New Delhi-110012 [email protected] 1. Introduction The field of data mining and knowledgee discovery is emerging as a
Big Data Mining Services and Knowledge Discovery Applications on Clouds
Big Data Mining Services and Knowledge Discovery Applications on Clouds Domenico Talia DIMES, Università della Calabria & DtoK Lab Italy [email protected] Data Availability or Data Deluge? Some decades
Information Management course
Università degli Studi di Milano Master Degree in Computer Science Information Management course Teacher: Alberto Ceselli Lecture 01 : 06/10/2015 Practical informations: Teacher: Alberto Ceselli ([email protected])
A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks
A Systemic Artificial Intelligence (AI) Approach to Difficult Text Analytics Tasks Text Analytics World, Boston, 2013 Lars Hard, CTO Agenda Difficult text analytics tasks Feature extraction Bio-inspired
DATA SCIENCE ADVISING NOTES David Wild - updated May 2015
DATA SCIENCE ADVISING NOTES David Wild - updated May 2015 GENERAL NOTES Lots of information can be found on the website at http://datascience.soic.indiana.edu. Dr David Wild, Data Science Graduate Program
Applications of Deep Learning to the GEOINT mission. June 2015
Applications of Deep Learning to the GEOINT mission June 2015 Overview Motivation Deep Learning Recap GEOINT applications: Imagery exploitation OSINT exploitation Geospatial and activity based analytics
Curriculum Vitae Ruben Sipos
Curriculum Vitae Ruben Sipos Mailing Address: 349 Gates Hall Cornell University Ithaca, NY 14853 USA Mobile Phone: +1 607-229-0872 Date of Birth: 8 October 1985 E-mail: [email protected] Web: http://www.cs.cornell.edu/~rs/
Statistics for BIG data
Statistics for BIG data Statistics for Big Data: Are Statisticians Ready? Dennis Lin Department of Statistics The Pennsylvania State University John Jordan and Dennis K.J. Lin (ICSA-Bulletine 2014) Before
Introduction to Data Mining and Machine Learning Techniques. Iza Moise, Evangelos Pournaras, Dirk Helbing
Introduction to Data Mining and Machine Learning Techniques Iza Moise, Evangelos Pournaras, Dirk Helbing Iza Moise, Evangelos Pournaras, Dirk Helbing 1 Overview Main principles of data mining Definition
Big Data Analytics: Where is it Going and How Can it Be Taught at the Undergraduate Level?
Big Data Analytics: Where is it Going and How Can it Be Taught at the Undergraduate Level? Dr. Frank Lee Chair, ECE/CS/IT New York Institute of Technology Old Westbury, NY 11568 Topics This talk describes:
Comparison of K-means and Backpropagation Data Mining Algorithms
Comparison of K-means and Backpropagation Data Mining Algorithms Nitu Mathuriya, Dr. Ashish Bansal Abstract Data mining has got more and more mature as a field of basic research in computer science and
Using Artificial Intelligence to Manage Big Data for Litigation
FEBRUARY 3 5, 2015 / THE HILTON NEW YORK Using Artificial Intelligence to Manage Big Data for Litigation Understanding Artificial Intelligence to Make better decisions Improve the process Allay the fear
An Overview of Knowledge Discovery Database and Data mining Techniques
An Overview of Knowledge Discovery Database and Data mining Techniques Priyadharsini.C 1, Dr. Antony Selvadoss Thanamani 2 M.Phil, Department of Computer Science, NGM College, Pollachi, Coimbatore, Tamilnadu,
Doctor of Philosophy in Computer Science
Doctor of Philosophy in Computer Science Background/Rationale The program aims to develop computer scientists who are armed with methods, tools and techniques from both theoretical and systems aspects
DATA MINING TECHNIQUES AND APPLICATIONS
DATA MINING TECHNIQUES AND APPLICATIONS Mrs. Bharati M. Ramageri, Lecturer Modern Institute of Information Technology and Research, Department of Computer Application, Yamunanagar, Nigdi Pune, Maharashtra,
The Data Mining Process
Sequence for Determining Necessary Data. Wrong: Catalog everything you have, and decide what data is important. Right: Work backward from the solution, define the problem explicitly, and map out the data
Healthcare data analytics. Da-Wei Wang Institute of Information Science [email protected]
Healthcare data analytics Da-Wei Wang Institute of Information Science [email protected] Outline Data Science Enabling technologies Grand goals Issues Google flu trend Privacy Conclusion Analytics
Introduction. A. Bellaachia Page: 1
Introduction 1. Objectives... 3 2. What is Data Mining?... 4 3. Knowledge Discovery Process... 5 4. KD Process Example... 7 5. Typical Data Mining Architecture... 8 6. Database vs. Data Mining... 9 7.
Machine Learning. Chapter 18, 21. Some material adopted from notes by Chuck Dyer
Machine Learning Chapter 18, 21 Some material adopted from notes by Chuck Dyer What is learning? Learning denotes changes in a system that... enable a system to do the same task more efficiently the next
IEEE International Conference on Computing, Analytics and Security Trends CAST-2016 (19 21 December, 2016) Call for Paper
IEEE International Conference on Computing, Analytics and Security Trends CAST-2016 (19 21 December, 2016) Call for Paper CAST-2015 provides an opportunity for researchers, academicians, scientists and
How To Understand And Understand The Theory Of Computational Finance
This course consists of three separate modules. Coordinator: Omiros Papaspiliopoulos Module I: Machine Learning in Finance Lecturer: Argimiro Arratia, Universitat Politecnica de Catalunya and BGSE Overview
REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc])
299 REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc]) (See also General Regulations) Any publication based on work approved for a higher degree should contain a reference
Master of Science in Computer Science
Master of Science in Computer Science Background/Rationale The MSCS program aims to provide both breadth and depth of knowledge in the concepts and techniques related to the theory, design, implementation,
Machine Learning CS 6830. Lecture 01. Razvan C. Bunescu School of Electrical Engineering and Computer Science [email protected]
Machine Learning CS 6830 Razvan C. Bunescu School of Electrical Engineering and Computer Science [email protected] What is Learning? Merriam-Webster: learn = to acquire knowledge, understanding, or skill
Data Mining for Customer Service Support. Senioritis Seminar Presentation Megan Boice Jay Carter Nick Linke KC Tobin
Data Mining for Customer Service Support Senioritis Seminar Presentation Megan Boice Jay Carter Nick Linke KC Tobin Traditional Hotline Services Problem Traditional Customer Service Support (manufacturing)
Advice for Students completing the B.S. degree in Computer Science based on Quarters How to Satisfy Computer Science Related Electives
Advice for Students completing the B.S. degree in Computer Science based on Quarters How to Satisfy Computer Science Related Electives Students completing their B.S. degree under quarters had a requirement
Professional Organization Checklist for the Computer Science Curriculum Updates. Association of Computing Machinery Computing Curricula 2008
Professional Organization Checklist for the Computer Science Curriculum Updates Association of Computing Machinery Computing Curricula 2008 The curriculum guidelines can be found in Appendix C of the report
A STUDY ON DATA MINING INVESTIGATING ITS METHODS, APPROACHES AND APPLICATIONS
A STUDY ON DATA MINING INVESTIGATING ITS METHODS, APPROACHES AND APPLICATIONS Mrs. Jyoti Nawade 1, Dr. Balaji D 2, Mr. Pravin Nawade 3 1 Lecturer, JSPM S Bhivrabai Sawant Polytechnic, Pune (India) 2 Assistant
BIG DATA & DATA SCIENCE
BIG DATA & DATA SCIENCE ACADEMY PROGRAMS IN-COMPANY TRAINING PORTFOLIO 2 TRAINING PORTFOLIO 2016 Synergic Academy Solutions BIG DATA FOR LEADING BUSINESS Big data promises a significant shift in the way
Data Mining Part 5. Prediction
Data Mining Part 5. Prediction 5.1 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Classification vs. Numeric Prediction Prediction Process Data Preparation Comparing Prediction Methods References Classification
life science data mining
life science data mining - '.)'-. < } ti» (>.:>,u» c ~'editors Stephen Wong Harvard Medical School, USA Chung-Sheng Li /BM Thomas J Watson Research Center World Scientific NEW JERSEY LONDON SINGAPORE.
Introduction to Data Mining
Introduction to Data Mining 1 Why Data Mining? Explosive Growth of Data Data collection and data availability Automated data collection tools, Internet, smartphones, Major sources of abundant data Business:
Role Description. Position of a Data Scientist Machine Learning at Fractal Analytics
Opportunity to work with leading analytics firm that creates Insights, Impact and Innovation. Role Description Position of a Data Scientist Machine Learning at Fractal Analytics March 2014 About the Company
not possible or was possible at a high cost for collecting the data.
Data Mining and Knowledge Discovery Generating knowledge from data Knowledge Discovery Data Mining White Paper Organizations collect a vast amount of data in the process of carrying out their day-to-day
Bachelor Degree in Informatics Engineering Master courses
Bachelor Degree in Informatics Engineering Master courses Donostia School of Informatics The University of the Basque Country, UPV/EHU For more information: Universidad del País Vasco / Euskal Herriko
Search and Data Mining: Techniques. Applications Anya Yarygina Boris Novikov
Search and Data Mining: Techniques Applications Anya Yarygina Boris Novikov Introduction Data mining applications Data mining system products and research prototypes Additional themes on data mining Social
MapReduce Approach to Collective Classification for Networks
MapReduce Approach to Collective Classification for Networks Wojciech Indyk 1, Tomasz Kajdanowicz 1, Przemyslaw Kazienko 1, and Slawomir Plamowski 1 Wroclaw University of Technology, Wroclaw, Poland Faculty
BIG DATA AND ANALYTICS
BIG DATA AND ANALYTICS Björn Bjurling, [email protected] Daniel Gillblad, [email protected] Anders Holst, [email protected] Swedish Institute of Computer Science AGENDA What is big data and analytics? and why one must bother
Graduate Co-op Students Information Manual. Department of Computer Science. Faculty of Science. University of Regina
Graduate Co-op Students Information Manual Department of Computer Science Faculty of Science University of Regina 2014 1 Table of Contents 1. Department Description..3 2. Program Requirements and Procedures
Challenges for Data Driven Systems
Challenges for Data Driven Systems Eiko Yoneki University of Cambridge Computer Laboratory Quick History of Data Management 4000 B C Manual recording From tablets to papyrus to paper A. Payberah 2014 2
Prediction of Heart Disease Using Naïve Bayes Algorithm
Prediction of Heart Disease Using Naïve Bayes Algorithm R.Karthiyayini 1, S.Chithaara 2 Assistant Professor, Department of computer Applications, Anna University, BIT campus, Tiruchirapalli, Tamilnadu,
01219211 Software Development Training Camp 1 (0-3) Prerequisite : 01204214 Program development skill enhancement camp, at least 48 person-hours.
(International Program) 01219141 Object-Oriented Modeling and Programming 3 (3-0) Object concepts, object-oriented design and analysis, object-oriented analysis relating to developing conceptual models
Machine Learning and Data Analysis overview. Department of Cybernetics, Czech Technical University in Prague. http://ida.felk.cvut.
Machine Learning and Data Analysis overview Jiří Kléma Department of Cybernetics, Czech Technical University in Prague http://ida.felk.cvut.cz psyllabus Lecture Lecturer Content 1. J. Kléma Introduction,
Data, Measurements, Features
Data, Measurements, Features Middle East Technical University Dep. of Computer Engineering 2009 compiled by V. Atalay What do you think of when someone says Data? We might abstract the idea that data are
MA2823: Foundations of Machine Learning
MA2823: Foundations of Machine Learning École Centrale Paris Fall 2015 Chloé-Agathe Azencot Centre for Computational Biology, Mines ParisTech chloe agathe.azencott@mines paristech.fr TAs: Jiaqian Yu [email protected]
REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc])
305 REGULATIONS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE (MSc[CompSc]) (See also General Regulations) Any publication based on work approved for a higher degree should contain a reference
Mining Online GIS for Crime Rate and Models based on Frequent Pattern Analysis
, 23-25 October, 2013, San Francisco, USA Mining Online GIS for Crime Rate and Models based on Frequent Pattern Analysis John David Elijah Sandig, Ruby Mae Somoba, Ma. Beth Concepcion and Bobby D. Gerardo,
Data Mining and Soft Computing. Francisco Herrera
Francisco Herrera Research Group on Soft Computing and Information Intelligent Systems (SCI 2 S) Dept. of Computer Science and A.I. University of Granada, Spain Email: [email protected] http://sci2s.ugr.es
Ming-Wei Chang. Machine learning and its applications to natural language processing, information retrieval and data mining.
Ming-Wei Chang 201 N Goodwin Ave, Department of Computer Science University of Illinois at Urbana-Champaign, Urbana, IL 61801 +1 (917) 345-6125 [email protected] http://flake.cs.uiuc.edu/~mchang21 Research
Predictive Analytics Techniques: What to Use For Your Big Data. March 26, 2014 Fern Halper, PhD
Predictive Analytics Techniques: What to Use For Your Big Data March 26, 2014 Fern Halper, PhD Presenter Proven Performance Since 1995 TDWI helps business and IT professionals gain insight about data warehousing,
Veterinary epidemiology in the era of big data: Value, Volume and Velocity of information extraction
VETERINARY EPIDEMIOLOGY IN THE ERA OF BIG DATA: VALUE, VOLUME AND VELOCITY OF INFORMATION EXTRACTION Fernanda Dórea Swedish Zoonoses Centre National Veterinary Institute 1 Data Mining and Knowledge Discovery
Steven C.H. Hoi. School of Computer Engineering Nanyang Technological University Singapore
Steven C.H. Hoi School of Computer Engineering Nanyang Technological University Singapore Acknowledgments: Peilin Zhao, Jialei Wang, Hao Xia, Jing Lu, Rong Jin, Pengcheng Wu, Dayong Wang, etc. 2 Agenda
Machine Learning and Data Mining. Fundamentals, robotics, recognition
Machine Learning and Data Mining Fundamentals, robotics, recognition Machine Learning, Data Mining, Knowledge Discovery in Data Bases Their mutual relations Data Mining, Knowledge Discovery in Databases,
Big Data Analytics. Prof. Dr. Lars Schmidt-Thieme
Big Data Analytics Prof. Dr. Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute of Computer Science University of Hildesheim, Germany 33. Sitzung des Arbeitskreises Informationstechnologie,
Machine Learning: Overview
Machine Learning: Overview Why Learning? Learning is a core of property of being intelligent. Hence Machine learning is a core subarea of Artificial Intelligence. There is a need for programs to behave
ADVANCED MACHINE LEARNING. Introduction
1 1 Introduction Lecturer: Prof. Aude Billard ([email protected]) Teaching Assistants: Guillaume de Chambrier, Nadia Figueroa, Denys Lamotte, Nicola Sommer 2 2 Course Format Alternate between: Lectures
Deep Learning For Text Processing
Deep Learning For Text Processing Jeffrey A. Bilmes Professor Departments of Electrical Engineering & Computer Science and Engineering University of Washington, Seattle http://melodi.ee.washington.edu/~bilmes
EFFICIENT DATA PRE-PROCESSING FOR DATA MINING
EFFICIENT DATA PRE-PROCESSING FOR DATA MINING USING NEURAL NETWORKS JothiKumar.R 1, Sivabalan.R.V 2 1 Research scholar, Noorul Islam University, Nagercoil, India Assistant Professor, Adhiparasakthi College
Course Requirements for the Ph.D., M.S. and Certificate Programs
Health Informatics Course Requirements for the Ph.D., M.S. and Certificate Programs Health Informatics Core (6 s.h.) All students must take the following two courses. 173:120 Principles of Public Health
Challenges of Cloud Scale Natural Language Processing
Challenges of Cloud Scale Natural Language Processing Mark Dredze Johns Hopkins University My Interests? Information Expressed in Human Language Machine Learning Natural Language Processing Intelligent
Tensor Factorization for Multi-Relational Learning
Tensor Factorization for Multi-Relational Learning Maximilian Nickel 1 and Volker Tresp 2 1 Ludwig Maximilian University, Oettingenstr. 67, Munich, Germany [email protected] 2 Siemens AG, Corporate
CPSC 340: Machine Learning and Data Mining. Mark Schmidt University of British Columbia Fall 2015
CPSC 340: Machine Learning and Data Mining Mark Schmidt University of British Columbia Fall 2015 Outline 1) Intro to Machine Learning and Data Mining: Big data phenomenon and types of data. Definitions
Introduction to Machine Learning Lecture 1. Mehryar Mohri Courant Institute and Google Research [email protected]
Introduction to Machine Learning Lecture 1 Mehryar Mohri Courant Institute and Google Research [email protected] Introduction Logistics Prerequisites: basics concepts needed in probability and statistics
Advanced analytics at your hands
2.3 Advanced analytics at your hands Neural Designer is the most powerful predictive analytics software. It uses innovative neural networks techniques to provide data scientists with results in a way previously
Why is Internal Audit so Hard?
Why is Internal Audit so Hard? 2 2014 Why is Internal Audit so Hard? 3 2014 Why is Internal Audit so Hard? Waste Abuse Fraud 4 2014 Waves of Change 1 st Wave Personal Computers Electronic Spreadsheets
Analytics on Big Data
Analytics on Big Data Riccardo Torlone Università Roma Tre Credits: Mohamed Eltabakh (WPI) Analytics The discovery and communication of meaningful patterns in data (Wikipedia) It relies on data analysis
Connecting Basic Research and Healthcare Big Data
Elsevier Health Analytics WHS 2015 Big Data in Health Connecting Basic Research and Healthcare Big Data Olaf Lodbrok Managing Director Elsevier Health Analytics [email protected] t +49 89 5383 600
The INFUSIS Project Data and Text Mining for In Silico Modeling
The INFUSIS Project Data and Text Mining for In Silico Modeling Henrik Boström 1,2, Ulf Norinder 3, Ulf Johansson 4, Cecilia Sönströd 4, Tuve Löfström 4, Elzbieta Dura 5, Ola Engkvist 6, Sorel Muresan
CAPTURING THE VALUE OF UNSTRUCTURED DATA: INTRODUCTION TO TEXT MINING
CAPTURING THE VALUE OF UNSTRUCTURED DATA: INTRODUCTION TO TEXT MINING Mary-Elizabeth ( M-E ) Eddlestone Principal Systems Engineer, Analytics SAS Customer Loyalty, SAS Institute, Inc. Is there valuable
Data-intensive HPC: opportunities and challenges. Patrick Valduriez
Data-intensive HPC: opportunities and challenges Patrick Valduriez Big Data Landscape Multi-$billion market! Big data = Hadoop = MapReduce? No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard,
Reference Books. Data Mining. Supervised vs. Unsupervised Learning. Classification: Definition. Classification k-nearest neighbors
Classification k-nearest neighbors Data Mining Dr. Engin YILDIZTEPE Reference Books Han, J., Kamber, M., Pei, J., (2011). Data Mining: Concepts and Techniques. Third edition. San Francisco: Morgan Kaufmann
HT2015: SC4 Statistical Data Mining and Machine Learning
HT2015: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford http://www.stats.ox.ac.uk/~sejdinov/sdmml.html Bayesian Nonparametrics Parametric vs Nonparametric
Data Mining Solutions for the Business Environment
Database Systems Journal vol. IV, no. 4/2013 21 Data Mining Solutions for the Business Environment Ruxandra PETRE University of Economic Studies, Bucharest, Romania [email protected] Over
Integrating Genetic Data into Clinical Workflow with Clinical Decision Support Apps
White Paper Healthcare Integrating Genetic Data into Clinical Workflow with Clinical Decision Support Apps Executive Summary The Transformation Lab at Intermountain Healthcare in Salt Lake City, Utah,
and Hung-Wen Chang 1 Department of Human Resource Development, Hsiuping University of Science and Technology, Taichung City 412, Taiwan 3
A study using Genetic Algorithm and Support Vector Machine to find out how the attitude of training personnel affects the performance of the introduction of Taiwan TrainQuali System in an enterprise Tung-Shou
Business Intelligence Integration. Joel Da Costa, Takudzwa Mabande, Richard Migwalla Antoine Bagula, Joseph Balikuddembe
Business Intelligence Integration Joel Da Costa, Takudzwa Mabande, Richard Migwalla Antoine Bagula, Joseph Balikuddembe Project Description Business Intelligence (BI) is the practice of using computer
ICSES Journal on Image Processing and Pattern Recognition (IJIPPR), Aug. 2015, Vol. 1, No. 1
2 ICSES Journal on Image Processing and Pattern Recognition (IJIPPR), Aug. 2015, Vol. 1, No. 1 1. About ICSES Journal on Image Processing and Pattern Recognition (IJIPPR) The ICSES Journal on Image Processing
