F mg (10.1 kg)(9.80 m/s ) m

Size: px
Start display at page:

Download "F mg (10.1 kg)(9.80 m/s ) m"

Transcription

1 Week 9 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution is the same, but you will need to repeat part of the calculation to find out what your answer should have been. WebAssign Problem : A 0.-kg uniform board is wedged into a corner and held by a spring at a 50.0 angle, as the drawing shows. The spring has a spring constant of 76 N/m and is parallel to the floor. Find the amount by which the spring is stretched from its unstrained length. REASONING AND SOLUTION In order to find the amount the spring stretches we need to calculate the force that acts on the spring. The magnitude of this force is F. Since the board is in equilibrium, the net torque acting on it is zero. Taking the axis of rotation to be at the corner and assuming the board has a length L, the net torque is Στ FL sin 50.0 mg (L/) cos Solving for F gives mg cos 50.0 mg F sin 50.0 tan 50.0 The amount x by which the spring stretches is equal to the magnitude F of the force applied to it divided by the spring constant k (see Equation 0.). Thus, F mg (0. kg)(9.80 m/s ) x k k tan 50.0 (76 N/m) tan m WebAssign Problem : Concept Simulation 0.3 at illustrates the concepts pertinent to this problem. An 0.80-kg object is attached to one end of a spring, as in Figure 0.6, and the system is set into simple harmonic motion. The displacement x of the object as a function of time is shown in the drawing. With the aid of these data, determine (a) the amplitude A of the motion, (b) the angular frequency ω (c) the spring constant k, (d) the speed of the object at t.0 s, and (e) the magnitude of the object s acceleration at t.0 s.

2 REASONING AND SOLUTION a. Since the object oscillates between ± m, the amplitude of the motion is m. 0.4, b. From the graph, the period is T 4.0 s. Therefore, according to Equation ω π T π.6 rad/s 4.0 s c. Equation 0. relates the angular frequency to the spring constant: ω k/ m. Solving for k we find k ω m (.6 rad/s) (0.80 kg).0 N/m d. At t.0 s, the graph shows that the spring has its maximum displacement. At this location, the object is momentarily at rest, so that its speed is v 0 m/s. e. The acceleration of the object at t.0 s is a maximum, and its magnitude is a max Aω (0.080 m)(.6 rad/s) 0.0 m/s WebAssign Problem 3: A 3.0-kg block is between two horizontal springs. Neither spring is strained when the block is at the position labeled x 0 m in the drawing. The block is then displaced a distance of m from the position where x 0 m and is released from rest. (a) What is the speed of the block when it passes back through the x 0 m position? (b) Determine the angular frequency ω of this system. REASONING AND SOLUTION a. When the block passes through the position x 0 m, its velocity is a maximum and can be found from Equation 0.8: v max Aω.

3 We can find the angular frequency ω from the following reasoning: When the mass is given a displacement x, one spring is stretched by an amount x, while the other is compressed by an amount x. The total restoring force on the mass is, therefore, F x k x k x (k + k )x Comparison with Equation 0. shows that the two-spring system has an effective spring constant of k eff k + k. Thus, from Equation 0. ω k k + k m m eff Combining this with Equation 0.8 we obtain v max k + k 650 N/m N/m A (0.070 m).3 m/s m 3.0 kg b. The angular frequency of the system is ω k + k 650 N/m N/m m 3.0 kg 9 rad/s WebAssign Problem 4: Concept Simulation 0. at allows you to explore the concepts to which this problem relates. A.00-kg object is hanging from the end of a vertical spring. The spring constant is 50.0 N/m. The object is pulled 0.00 m downward and released from rest. Complete the table below by calculating the translational kinetic energy, the gravitational potential energy, the elastic potential energy, and the total mechanical energy E for each of the vertical positions indicated. The vertical positions h indicate distances above the point of release, where h 0 m. h PE PE (meters) KE (gravity) (elastic) E REASONING AND SOLUTION If we neglect air resistance, only the conservative forces of the spring and gravity act on the ball. Therefore, the principle of conservation of mechanical energy applies.

4 When the.00 kg object is hung on the end of the vertical spring, it stretches the spring by an amount y, where F mg (.00 kg)(9.80 m/s ) y 0.39 m k k 50.0 N/m (0.) This position represents the equilibrium position of the system with the.00-kg object suspended from the spring. The object is then pulled down another 0.00 m and released from rest ( v 0 0 m/s). At this point the spring is stretched by an amount of 0.39 m m 0.59 m. This point represents the zero reference level ( h 0 m) for the gravitational potential energy. h 0 m: The kinetic energy, the gravitational potential energy, and the elastic potential energy at the point of release are: mv 0 m KE (0 m/s) 0 J PE mgh mg(0 m) 0 J gravity elastic ky 0 PE (50.0 N/m)(0.59 m) 8.76 J The total mechanical energy E 0 at the point of release is the sum of the three energies above: E J. h 0.00 m: When the object has risen a distance of h 0.00 m above the release point, the spring is stretched by an amount of 0.59 m 0.00 m 0.39 m. Since the total mechanical energy is conserved, its value at this point is still E 8.76 J. The gravitational and elastic potential energies are: PE mgh (.00 kg)(9.80 m/s )(0.00 m) 3.9 J gravity elastic ky PE (50.0 N/m)(0.39 m) 3.84 J Since KE + PEgravity + PEelastic E, KE E PE PE 8.76 J 3.9 J 3.84 J.00 J gravity elastic h m: When the object has risen a distance of h m above the release point, the spring is stretched by an amount of 0.59 m m 0.9 m. At

5 this point, the total mechanical energy is still E potential energies are: 8.76 J. The gravitational and elastic PE mgh (.00 kg)(9.80 m/s )(0.400 m) 7.84 J gravity The kinetic energy is elastic ky PE (50.0 N/m)(0.9 m) 0.9 J KE E PE PE 8.76 J 7.84 J 0.9 J 0 J gravity elastic The results are summarized in the table below: h KE PEgrav PEelastic E 0 m 0 J 0 J 8.76 J 8.76 J 0.00 m.00 J 3.9 J 3.84 J 8.76 J m 0.00 J 7.84 J 0.9 J 8.76 J WebAssign Problem 5: United States currency is printed using intaglio presses that generate a printing pressure of. A $0 bill is 6. in. by.6 in. Calculate the magnitude of the force that the printing press applies to one side of the bill. REASONING Pressure is the magnitude of the force applied perpendicularly to a surface divided by the area of the surface, according to Equation.3. The force magnitude, therefore, is equal to the pressure times the area. SOLUTION According to Equation.3, we have c h b gb g 4 6 F PA lb / in. 6. in.. 6 in lb WebAssign Problem 6: Two identical containers are open at the top and are connected at the bottom via a tube of negligible volume and a valve that is closed. Both containers are filled initially to the same height of.00 m, one with water, the other with mercury, as the drawing indicates. The valve is then opened. Water and mercury are immiscible. Determine the fluid level in the left container when equilibrium is reestablished.

6 REASONING AND SOLUTION The mercury, being more dense, will flow from the right container into the left container until the pressure is equalized. Then the pressure at the bottom of the left container will be P ρ w gh w + ρ m gh ml and the pressure at the bottom of the right container will be P ρ m gh mr. Equating gives ρ w gh w + ρ m g(h ml h mr ) 0 () Both liquids are incompressible and immiscible so h w.00 m and h ml + h mr.00 m Using these in () and solving for h ml gives, h ml (/)(.00 ρ w /ρ m ) 0.46 m. So the fluid level in the left container is.00 m m.46 m from the bottom. WebAssign Problem 7: Interactive Solution.33 at presents a model for solving this problem. Multiple-Concept Example 8 also presents an approach to problems of this kind. The hydraulic oil in a car lift has a density of. The weight of the input piston is negligible. The radii of the input piston and output plunger are and 0.5 m, respectively. What input force F is needed to support the N combined weight of a car and the output plunger, when (a) the bottom surfaces of the piston and plunger are at the same level, and (b) the bottom surface of the output plunger is.30 m above that of the input piston? REASONING We label the input piston as and the output plunger as. When the bottom surfaces of the input piston and output plunger are at the same level, F F A / A, applies. However, this equation is not applicable Equation.5, ( ) when the bottom surface of the output plunger is h.50 m above the input piston. In this case we must use Equation.4, P P + ρ gh, to account for the difference in heights. In either case, we will see that the input force is less than the combined weight of the output plunger and car. SOLUTION a. Using A π r for the circular areas of the piston and plunger, the input force required to support the N weight is

7 3 ( m) A π F F ( N ) 93.0 N A π ( 0.5 m) (.5) b. The pressure P at the input piston is related to the pressure P at the bottom of the output plunger by Equation.4, P P + ρgh, where h is the difference in heights. Setting P F / A F / ( π r ), ( P ) F / π r have F F gh r π r + ρ π r ( N ) π π ( π ) 3 ( m) ( 0.5 m), and solving for F, we (.4) 3 3 ( ) ( ) ( ) π ( ) kg/m 9.80 m/s.30 m m 94.9 N WebAssign Problem 8: A paperweight, when weighed in air, has a weight of. When completely immersed in water, however, it has a weight of. Find the volume of the paperweight. REASONING The paperweight weighs less in water than in air, because of the buoyant force F B of the water. The buoyant force points upward, while the weight points downward, leading to an effective weight in water of W In water W F B. There is also a buoyant force when the paperweight is weighed in air, but it is negligibly small. Thus, from the given weights, we can obtain the buoyant force, which is the weight of the displaced water, according to Archimedes principle. From the weight of the displaced water and the density of water, we can obtain the volume of the water, which is also the volume of the completely immersed paperweight. SOLUTION We have W W F or F W W In water B B In water According to Archimedes principle, the buoyant force is the weight of the displaced water, which is mg, where m is the mass of the displaced water. Using Equation., we can write the mass as the density times the volume or m ρv. Thus, for the buoyant force, we have F W W ρ Vg B In water

8 Solving for the volume and using ρ kg/m 3 for the density of water (see Table.), we find V W W ρ g In water 6. 9 N 4. 3 N c.00 0 kg / m hc9. 80 m / s h 4 m 3 WebAssign Problem 9: Concept Simulation. at reviews the concept that plays the central role in this problem. (a) The volume flow rate in an artery supplying the brain is. If the radius of the artery is 5. mm, determine the average blood speed. (b) Find the average blood speed at a constriction in the artery if the constriction reduces the radius by a factor of 3. Assume that the volume flow rate is the same as that in part (a). REASONING a. According to Equation.0, the volume flow rate Q is equal to the product of the cross-sectional area A of the artery and the speed v of the blood, Q Av. Since Q and A are known, we can determine v. b. Since the volume flow rate Q through the constriction is the same as the volume flow rate Q in the normal part of the artery, Q Q. We can use this relation to find the blood speed in the constricted region. SOLUTION a. Since the artery is assumed to have a circular cross-section, its cross-sectional area is A π, where r is the radius. Thus, the speed of the blood is r Q 6 3 Q m / s A π r v 3 ( 5. 0 m) 4. 0 m/s π (.0) b. The volume flow rate is the same in the normal and constricted parts of the artery, so Q Q. Since Q A v, the blood speed is v Q /A Q /A. We are given that the radius of the constricted part of the artery is one-third that of the normal artery, so r r. Thus, the speed of the blood at the constriction is 3 v Q 6 3 Q Q m / s A π r π r π ( ) ( 5. 0 m) 0.38 m/s

9 WebAssign Problem 0: See Multiple-Concept Example 5 to review the concepts that are pertinent to this problem. The blood speed in a normal segment of a horizontal artery is 0. m/s. An abnormal segment of the artery is narrowed down by an arteriosclerotic plaque to one-fourth the normal cross-sectional area. What is the difference in blood pressures between the normal and constricted segments of the artery? REASONING We assume that region contains the constriction and region is the normal region. The difference in blood pressures between the two points in the horizontal artery is given by Bernoulli s equation (Equation.) as P P ρ v ρ v, where v and v are the speeds at the two points. Since the volume flow rate is the same at the two points, the speed at is related to the speed at by Equation.9, the equation of continuity: A v A v, where A and A are the cross-sectional areas of the artery. By combining these two relations, we will be able to determine the pressure difference. SOLUTION Solving the equation of continuity for the blood speed in region gives v v A /A. Substituting this result into Bernoulli s equation yields Since A 4 v A ρ ρ ρ ρ A P P v v v A, the pressure difference is v A ρ ρ ρ A 4 3 ( ) ( ) ( ) ( ) P P v v kg/m 0. m/s 5 96 Pa We have taken the density ρ of blood from Table.. WebAssign Problem : Poiseuilles' law remains valid as long as the fluid flow is laminar. For sufficiently high speed, however, the flow becomes turbulent, even if the fluid is moving through a smooth pipe with no restrictions. It is found experimentally that the flow is laminar as long as the Reynolds number Re is less than about 00. Re R / Here,, and are, respectively, the average speed, density, and viscosity of the fluid, and R is the radius of the pipe. Calculate the highest average speed that blood ( 060 kg/m 3, Pa s) could have and still remain in laminar flow when it flows through the aorta (R m).

10 REASONING AND SOLUTION The Reynold's number, Re, can be written as Re v ρ R / η. To find the average speed v, v 3 ( 000) ( Pa s) 3 3 ( ) ( ) (Re) η ρ R 060 kg/m m 0.5 m/s

11 Practice conceptual problems: Note: Chapter 0 problems were included in last week s solutions. Chapter : 3. A person could not balance her entire weight on the pointed end of a single nail, because it would penetrate her skin. However, she can lie safely on a bed of nails. A bed of nails consists of many nails driven through a sheet of wood so that the pointed ends form a flat array. Why is the bed of nails trick safe? REASONING AND SOLUTION A person could not balance her entire weight on the pointed end of a single nail, because it would penetrate her skin. According to Equation.3, the pressure exerted by the nail is P F / A where F represents the weight of the person, and A is the area of the tip of the nail. Since the tip of the nail has a very small radius, its area is very small; therefore, the pressure that the nail exerts on the person is large. The reason she can safely lie on a "bed of nails" is that the effective area of the nails is very large if the nails are closely spaced. Thus, the weight of the person F is distributed over all the nails so that the pressure exerted by any one nail is small. 8. Could you use a straw to sip a drink on the moon? Explain. REASONING AND SOLUTION When you drink through a straw, you draw the air out of the straw, and the external air pressure leads to the unbalanced force that pushes the liquid up into the straw. This action requires the presence of an atmosphere. The moon has no atmosphere, so you could not use a straw to sip a drink on the moon. 3. On a distant planet the acceleration due to gravity is less than it is on earth. Would you float more easily in water on this planet than on earth? Account for your answer. REASONING AND SOLUTION According to Archimedes' principle, any fluid applies a buoyant force to an object that is partially or completely immersed in it; the magnitude of the buoyant force equals the weight of the fluid that the object displaces. Therefore, the magnitude of the buoyant force exerted on an object immersed in water is given by F ρ Vg B water, where ρ water is the density of water, V is the volume displaced by the immersed object, and g is the magnitude of the acceleration due to gravity. If the acceleration due to gravity on a distant planet is less than it is on earth, then, other factors remaining the same, the buoyant force will be less on the planet than it is on earth. However, the weight of the object will also be less than the weight of the object on earth.

12 When an object floats in water, the upward buoyant force exerted by the water must be equal in magnitude and opposite in direction to the weight of the object, as shown at the right. Hence, F m g B object. It follows that ρ water Vg m object g. Notice that the acceleration due to gravity, g, appears on both sides of this equation. Algebraically canceling the g's we have ρ water V m object. Therefore, the object will float so that it displaces a volume of water V, where V m / ρ object water. This result is independent of g. It is the same on earth as it is on the distant planet. Therefore, it would be no more difficult to float in water on this planet than it would be on earth. B u o y a n t f o r c e o n o b j e c t W e i g h t o f o b j e c t 8. In steady flow, the velocity of a fluid particle at any point is constant in time. On the other hand, a fluid accelerates when it moves into a region of smaller cross-sectional area. (a) Explain what causes the acceleration. (b) Explain why the condition of steady flow does not rule out such an acceleration. REASONING AND SOLUTION In steady flow, the velocity v of a fluid particle at any point is constant in time. On the other hand, a fluid accelerates when it moves into a region of smaller cross-sectional area, as shown in the figure below. X v X Y v Y a. A fluid particle at X with speed v X must be accelerated to the right in order to acquire the greater speed v Y at Y. From Newton's second law, this acceleration can arise only from a net force that acts in the direction XY. If there are no other external forces acting on the fluid, this force must arise from the change in pressure within the fluid. The pressure at X must be greater than the pressure at Y. b. The definition of steady flow makes no reference as to how the velocity of a fluid particle varies from point to point as the fluid flows. It simply states that the velocity of a fluid particle at any particular point is constant in time. Therefore, the condition of steady flow does not rule out the acceleration discussed in part (a). 3. Which way would you have to spin a baseball so that it curves upward on its way to the plate? In describing the spin, state how you are viewing the ball. Justify your answer. REASONING AND SOLUTION The figure below shows a baseball, as viewed from the side, moving to the right with no spin. Since the air flows with the same speed above and below the ball, the pressure is reduced by the same amount above

13 and below the ball. There is no net force to cause the ball to curve in any particular direction (except for gravity which results in the usual parabolic trajectory). up v ball right Without spin If the ball is given a spin that is counterclockwise when viewed from the side, as shown below, the air close to the surface of the ball is dragged with the ball. In accord with Bernoulli's equation, the air on the top half of the ball is "speeded up" (pressure reduced by a greater amount), while that on the lower half of the ball is also speeded up, but less so (pressure reduced by a smaller amount). Thus, the pressure on the top half of the ball is lower than on the bottom half. F a s t e r a i r, l o w e r p r e s s u r e D e f l e c t i o n f o r c e u p v b a l l r i g h t S l o w e r a i r, h i g h p r e s s u r e Because of the pressure difference, a deflection force is generated that is directed from the higher pressure side of the ball to the lower pressure side of the ball. Therefore, the ball curves upward on its way to the plate.

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J 1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

More information

PHY231 Section 1, Form B March 22, 2012

PHY231 Section 1, Form B March 22, 2012 1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

3600 s 1 h. 24 h 1 day. 1 day

3600 s 1 h. 24 h 1 day. 1 day Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

More information

Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions

Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.

More information

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential 8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy

More information

Physics 1120: Simple Harmonic Motion Solutions

Physics 1120: Simple Harmonic Motion Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

More information

oil liquid water water liquid Answer, Key Homework 2 David McIntyre 1

oil liquid water water liquid Answer, Key Homework 2 David McIntyre 1 Answer, Key Homework 2 David McIntyre 1 This print-out should have 14 questions, check that it is complete. Multiple-choice questions may continue on the next column or page: find all choices before making

More information

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

More information

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PHYS 101-4M, Fall 2005 Exam #3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A bicycle wheel rotates uniformly through 2.0 revolutions in

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.

Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía. 1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.

More information

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

Physics 201 Homework 8

Physics 201 Homework 8 Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

More information

Chapter 13 - Solutions

Chapter 13 - Solutions = Chapter 13 - Solutions Description: Find the weight of a cylindrical iron rod given its area and length and the density of iron. Part A On a part-time job you are asked to bring a cylindrical iron rod

More information

AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

More information

EDUH 1017 - SPORTS MECHANICS

EDUH 1017 - SPORTS MECHANICS 4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017 - SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use

More information

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Forces Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy Definition of Force Force = a push or pull that causes a change

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold.

So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold. Name: MULTIPLE CHOICE: Questions 1-11 are 5 points each. 1. A safety device brings the blade of a power mower from an angular speed of ω 1 to rest in 1.00 revolution. At the same constant angular acceleration,

More information

Physics 1A Lecture 10C

Physics 1A Lecture 10C Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

More information

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5

Physics 112 Homework 5 (solutions) (2004 Fall) Solutions to Homework Questions 5 Solutions to Homework Questions 5 Chapt19, Problem-2: (a) Find the direction of the force on a proton (a positively charged particle) moving through the magnetic fields in Figure P19.2, as shown. (b) Repeat

More information

226 Chapter 15: OSCILLATIONS

226 Chapter 15: OSCILLATIONS Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion

More information

WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

More information

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations

Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring

More information

Physics 1114: Unit 6 Homework: Answers

Physics 1114: Unit 6 Homework: Answers Physics 1114: Unit 6 Homework: Answers Problem set 1 1. A rod 4.2 m long and 0.50 cm 2 in cross-sectional area is stretched 0.20 cm under a tension of 12,000 N. a) The stress is the Force (1.2 10 4 N)

More information

XI / PHYSICS FLUIDS IN MOTION 11/PA

XI / PHYSICS FLUIDS IN MOTION 11/PA Viscosity It is the property of a liquid due to which it flows in the form of layers and each layer opposes the motion of its adjacent layer. Cause of viscosity Consider two neighboring liquid layers A

More information

HOOKE S LAW AND SIMPLE HARMONIC MOTION

HOOKE S LAW AND SIMPLE HARMONIC MOTION HOOKE S LAW AND SIMPLE HARMONIC MOTION Alexander Sapozhnikov, Brooklyn College CUNY, New York, alexs@brooklyn.cuny.edu Objectives Study Hooke s Law and measure the spring constant. Study Simple Harmonic

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

Chapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.

Chapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion. Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Consider a vertical spring oscillating with mass m attached to one end. At the extreme ends of travel

More information

Objective: Work Done by a Variable Force Work Done by a Spring. Homework: Assignment (1-25) Do PROBS # (64, 65) Ch. 6, + Do AP 1986 # 2 (handout)

Objective: Work Done by a Variable Force Work Done by a Spring. Homework: Assignment (1-25) Do PROBS # (64, 65) Ch. 6, + Do AP 1986 # 2 (handout) Double Date: Objective: Work Done by a Variable Force Work Done by a Spring Homework: Assignment (1-25) Do PROBS # (64, 65) Ch. 6, + Do AP 1986 # 2 (handout) AP Physics B Mr. Mirro Work Done by a Variable

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N) Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

Density (r) Chapter 10 Fluids. Pressure 1/13/2015

Density (r) Chapter 10 Fluids. Pressure 1/13/2015 1/13/015 Density (r) Chapter 10 Fluids r = mass/volume Rho ( r) Greek letter for density Units - kg/m 3 Specific Gravity = Density of substance Density of water (4 o C) Unitless ratio Ex: Lead has a sp.

More information

Simple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines

Simple Harmonic Motion(SHM) Period and Frequency. Period and Frequency. Cosines and Sines Simple Harmonic Motion(SHM) Vibration (oscillation) Equilibrium position position of the natural length of a spring Amplitude maximum displacement Period and Frequency Period (T) Time for one complete

More information

Solution Derivations for Capa #11

Solution Derivations for Capa #11 Solution Derivations for Capa #11 1) A horizontal circular platform (M = 128.1 kg, r = 3.11 m) rotates about a frictionless vertical axle. A student (m = 68.3 kg) walks slowly from the rim of the platform

More information

Three Methods for Calculating the Buoyant Force Gleue: Physics

Three Methods for Calculating the Buoyant Force Gleue: Physics Three Methods for Calculating the Buoyant Force Gleue: Physics Name Hr. The Buoyant Force (F b ) is the apparent loss of weight for an object submerged in a fluid. For example if you have an object immersed

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

Grade 8 Science Chapter 9 Notes

Grade 8 Science Chapter 9 Notes Grade 8 Science Chapter 9 Notes Force Force - Anything that causes a change in the motion of an object. - usually a push or a pull. - the unit for force is the Newton (N). Balanced Forces - forces that

More information

WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS

WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS WORKSHEET: KINETIC AND POTENTIAL ENERGY PROBLEMS 1. Stored energy or energy due to position is known as Potential energy. 2. The formula for calculating potential energy is mgh. 3. The three factors that

More information

Chapter 11 Equilibrium

Chapter 11 Equilibrium 11.1 The First Condition of Equilibrium The first condition of equilibrium deals with the forces that cause possible translations of a body. The simplest way to define the translational equilibrium of

More information

At the skate park on the ramp

At the skate park on the ramp At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

More information

CHAPTER 3: FORCES AND PRESSURE

CHAPTER 3: FORCES AND PRESSURE CHAPTER 3: FORCES AND PRESSURE 3.1 UNDERSTANDING PRESSURE 1. The pressure acting on a surface is defined as.. force per unit. area on the surface. 2. Pressure, P = F A 3. Unit for pressure is. Nm -2 or

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

Lecture L22-2D Rigid Body Dynamics: Work and Energy

Lecture L22-2D Rigid Body Dynamics: Work and Energy J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE 1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2014

Candidate Number. General Certificate of Education Advanced Level Examination June 2014 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday

More information

Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43

Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state

More information

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013 PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

More information

Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

More information

Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same.

Kinetic Energy (A) stays the same stays the same (B) increases increases (C) stays the same increases (D) increases stays the same. 1. A cart full of water travels horizontally on a frictionless track with initial velocity v. As shown in the diagram, in the back wall of the cart there is a small opening near the bottom of the wall

More information

3 Work, Power and Energy

3 Work, Power and Energy 3 Work, Power and Energy At the end of this section you should be able to: a. describe potential energy as energy due to position and derive potential energy as mgh b. describe kinetic energy as energy

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

Serway_ISM_V1 1 Chapter 4

Serway_ISM_V1 1 Chapter 4 Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As

More information

KE =? v o. Page 1 of 12

KE =? v o. Page 1 of 12 Page 1 of 12 CTEnergy-1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.

Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6. Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed

More information

Work. Work = Force x parallel distance (parallel component of displacement) F v

Work. Work = Force x parallel distance (parallel component of displacement) F v Work Work = orce x parallel distance (parallel component of displacement) W k = d parallel d parallel Units: N m= J = " joules" = ( kg m2/ s2) = average force computed over the distance r r When is not

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

AP Physics C Fall Final Web Review

AP Physics C Fall Final Web Review Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

More information

Chapter 27 Static Fluids

Chapter 27 Static Fluids Chapter 27 Static Fluids 27.1 Introduction... 1 27.2 Density... 1 27.3 Pressure in a Fluid... 2 27.4 Pascal s Law: Pressure as a Function of Depth in a Fluid of Uniform Density in a Uniform Gravitational

More information

FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

More information

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work. PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance

More information

CHAPTER 15 FORCE, MASS AND ACCELERATION

CHAPTER 15 FORCE, MASS AND ACCELERATION CHAPTER 5 FORCE, MASS AND ACCELERATION EXERCISE 83, Page 9. A car initially at rest accelerates uniformly to a speed of 55 km/h in 4 s. Determine the accelerating force required if the mass of the car

More information

Lecture 24 - Surface tension, viscous flow, thermodynamics

Lecture 24 - Surface tension, viscous flow, thermodynamics Lecture 24 - Surface tension, viscous flow, thermodynamics Surface tension, surface energy The atoms at the surface of a solid or liquid are not happy. Their bonding is less ideal than the bonding of atoms

More information

Work, Energy and Power

Work, Energy and Power Work, Energy and Power In this section of the Transport unit, we will look at the energy changes that take place when a force acts upon an object. Energy can t be created or destroyed, it can only be changed

More information

Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

More information

Mercury is poured into a U-tube as in Figure (14.18a). The left arm of the tube has crosssectional

Mercury is poured into a U-tube as in Figure (14.18a). The left arm of the tube has crosssectional Chapter 14 Fluid Mechanics. Solutions of Selected Problems 14.1 Problem 14.18 (In the text book) Mercury is poured into a U-tube as in Figure (14.18a). The left arm of the tube has crosssectional area

More information

SURFACE TENSION. Definition

SURFACE TENSION. Definition SURFACE TENSION Definition In the fall a fisherman s boat is often surrounded by fallen leaves that are lying on the water. The boat floats, because it is partially immersed in the water and the resulting

More information

Acceleration due to Gravity

Acceleration due to Gravity Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity. 5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Practice final for Basic Physics spring 2005 answers on the last page Name: Date:

Practice final for Basic Physics spring 2005 answers on the last page Name: Date: Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible

More information

Energy transformations

Energy transformations Energy transformations Objectives Describe examples of energy transformations. Demonstrate and apply the law of conservation of energy to a system involving a vertical spring and mass. Design and implement

More information

Exam 4 Review Questions PHY 2425 - Exam 4

Exam 4 Review Questions PHY 2425 - Exam 4 Exam 4 Review Questions PHY 2425 - Exam 4 Section: 12 2 Topic: The Center of Gravity Type: Conceptual 8. After a shell explodes at the top of its trajectory, the center of gravity of the fragments has

More information

Determination of Acceleration due to Gravity

Determination of Acceleration due to Gravity Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two

More information

Work, Energy and Power Practice Test 1

Work, Energy and Power Practice Test 1 Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill

More information

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26 Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

More information

Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

More information

W i f(x i ) x. i=1. f(x i ) x = i=1

W i f(x i ) x. i=1. f(x i ) x = i=1 Work Force If an object is moving in a straight line with position function s(t), then the force F on the object at time t is the product of the mass of the object times its acceleration. F = m d2 s dt

More information

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information

Work-Energy Bar Charts

Work-Energy Bar Charts Name: Work-Energy Bar Charts Read from Lesson 2 of the Work, Energy and Power chapter at The Physics Classroom: http://www.physicsclassroom.com/class/energy/u5l2c.html MOP Connection: Work and Energy:

More information