Dynamic Resource Allocation in Clouds: Smart Placement with Live Migration

Size: px
Start display at page:

Download "Dynamic Resource Allocation in Clouds: Smart Placement with Live Migration"

Transcription

1 Dynac Resource Allocaton n Clouds: Sart Placeent wth Lve Mgraton Mahlouf Had Ingéneur de Recherche [email protected] Avec : Daal Zeghlache (TSP) [email protected]

2 FONDATION DE COOPERATION SCIENTIFIQUE 2

3 NOS VALEURS ❶ Excellence - Talents - Résultats - Echanges ❷ Souplesse - Fonctonneent - Partenarat - Proets ❸ Rgueur - Proprété Intellectuelle - Confdentalté - Exécuton 3

4 PROGRAMMES DE R&D Ingénere nuérque des Systèes et Coposants 4

5 PROJETS R&D Proets opératonnels depus le lanceent 9 15,5 Proets Opératonnels M Fnanceent Industrel ETP/an sur 3 ans Partenares Industrels Partenares Acadéques 29 Thèses 5

6 I- Sart Placeent n Clouds

7 Sart Placeent n Clouds VM Placeent proble Proble: Based on allocatng and hostng N VMs on a physcal nfrastructure of X Serveurs, what s the best anner to optally place worloads to nze dfferent nfrastructure costs? VMs deand anageent Cloud End-Users ESX 1 ESX 2 ESX N Non optal placeent VMs placeent strategy??? Optal placeent ESX 1 ESX 2 ESX N ESX 1 ESX 2 ESX N Benefts Resources optzaton, Mnzaton of nfrastructure costs, Energy consupton optzaton. Challenges of the proble: Exponental nuber of cases to enuerate. Infrastructure servers Defne the best strategy to place VMs worloads leadng to optally reduce nfrastructure costs. 7

8 Sart Placeent n Clouds French Provders Pont of Vew 8

9 Sart Placeent n Clouds Due to fluctuatons n users deands, we use Auto-Regressve (AR()) process, to handle wth future deands: d t 1 d t t Geston de la deande de VM sall Forcastng & Schedulng Utlsateurs des servces Cloud large ESX 1 ESX 2 ESX N Proble Coplexty : NP-Hard Proble: One can construct easly a plynoal reducton fro the NP-Hard notary proble of the Bn- Pacng. Infrastructure serveurs 9

10 Sart Placeent n Clouds Matheatcal forulaton: Forulaton as ILP: The correspondng atheatcal odel s an Integer Lnear Prograng: dffcultes to characterze the convex hull of the consdered proble and the optal soluton. n Z 1 d Subect To: x x N y x C y, I N,, 1f VM 0 else., I, N I y N 1, N s hosted n server I P x 10

11 Sart Placeent n Clouds Mnu Cost Maxu Flow Algorth Instance (2; 0,23) S T Legend: (capacty; cost) 11

12 Sart Placeent n Clouds Sall Instance Mnu Cost Maxu Flow Algorth (2; 0,23) Medu Instance S T (2; 0,23) 12

13 Sart Placeent n Clouds Sulaton Tests: Case of (0;1) Rando Costs Rando Hostng Costs Scenaro We consder (0; 1) Rando hostng costs between each couple of vertces (a, b), where a s a fctf node, and b s a physcal achne (server). 13

14 Inverse Hostng Costs Scenaro Sart Placeent n Clouds Sulatons Tests: Case of Inverse Hostng Costs: We consder nversed hostng costs functon between each couple of vertces (a, b), where a s a fctf node, and b s a physcal achne: g 1 f C ab ab ab f ( Cab) Where C represents the avalable capacty on the consdered arc. est une foncton non nulle. ab f 0, otherwse g 14

15 II- Lve Mgraton of VMs

16 Lve Mgraton of VMs Mgraton process: Xen ESX KVM Hyper-V 16

17 Lve Mgraton of VMs Mn Polytops, faces and facets c x Subect To constrants: a xb, 1,..., 0,1, 1 n x,..., x 1 1 Polyhedral Approachs face x* facets x

18 Lve Mgraton of VMs Soe Vald Inequaltes of our Proble: Polyhedral Approachs Decson Varables: Z 1 Prevent bacword graton of a VM: f A VM s grated fro to (0 else). Z Z l 1 Server s destnaton unqueness of a VM graton: Z 1, 1 Servers power consupton ltaton constrants: Etc q 1 1 p z p p 1 y,ax, current 18

19 Lve Mgraton of VMs Polyhedral Approachs 19 0 otherwse dle s server 1f 0 otherwse to, fro grated s VM 1f 1 1,, 1,, 1,, 1,,,, 1, 1, Subect To: ax 0 1 ax, 1, ,,ax 1, , y z T t z P P y y q z y P P z p z l l q q z z z p y P M current q q current l q dl

20 Lve Mgraton of VMs Polyhedral Approachs Nuber of used servers when tang nto account Mgratons 20

21 Convergence Te (n seconds) of Mgraton Algorth: 21

22 Lve Mgraton of VMs Polyhedral Approachs Percentage of Ganed Energy when Mgraton s Used ,55 36, ,29 34,00 35,23 38, ,48 27,39 35,21 40,32 41,89 36, ,77 18,85 22,02 32,31 39,90 40, ,86 16,17 19,85 22,30 39,20 36, ,63 14,29 18,01 22,13 25,15 30, ,10 14,00 14,86 15,90 22,91 23, ,01 10,20 10,91 15,34 17,02 21, ,80 09,32 10,31 14,70 16,97 19, ,90 07,50 08,40 12,90 16,00 14,97 22

23 Than you

Capacity Planning for Virtualized Servers

Capacity Planning for Virtualized Servers Capacty Plannng for Vrtualzed Servers Martn Bchler, Thoas Setzer, Benjan Spetkap Departent of Inforatcs, TU München 85748 Garchng/Munch, Gerany (bchler setzer benjan.spetkap)@n.tu.de Abstract Today's data

More information

Stochastic Models of Load Balancing and Scheduling in Cloud Computing Clusters

Stochastic Models of Load Balancing and Scheduling in Cloud Computing Clusters Stochastc Models of Load Balancng and Schedulng n Cloud Coputng Clusters Sva Theja Magulur and R. Srkant Departent of ECE and CSL Unversty of Illnos at Urbana-Chapagn [email protected]; [email protected]

More information

Stochastic Models of Load Balancing and Scheduling in Cloud Computing Clusters

Stochastic Models of Load Balancing and Scheduling in Cloud Computing Clusters Stochastc Models of Load Balancng and Schedulng n Cloud Coputng Clusters Sva Theja Magulur and R. Srkant Departent of ECE and CSL Unversty of Illnos at Urbana-Chapagn [email protected]; [email protected]

More information

Stochastic Models of Load Balancing and Scheduling in Cloud Computing Clusters

Stochastic Models of Load Balancing and Scheduling in Cloud Computing Clusters 01 Proceedngs IEEE INFOCOM Stochastc Models of Load Balancng and Schedulng n Cloud Coputng Clusters Sva heja Magulur and R. Srkant Departent of ECE and CSL Unversty of Illnos at Urbana-Chapagn [email protected];

More information

Virtual machine resource allocation algorithm in cloud environment

Virtual machine resource allocation algorithm in cloud environment COMPUTE MOELLIN & NEW TECHNOLOIES 2014 1(11) 279-24 Le Zheng Vrtual achne resource allocaton algorth n cloud envronent 1, 2 Le Zheng 1 School of Inforaton Engneerng, Shandong Youth Unversty of Poltcal

More information

An Electricity Trade Model for Microgrid Communities in Smart Grid

An Electricity Trade Model for Microgrid Communities in Smart Grid An Electrcty Trade Model for Mcrogrd Countes n Sart Grd Tansong Cu, Yanzh Wang, Shahn Nazaran and Massoud Pedra Unversty of Southern Calforna Departent of Electrcal Engneerng Los Angeles, CA, USA {tcu,

More information

Online Algorithms for Uploading Deferrable Big Data to The Cloud

Online Algorithms for Uploading Deferrable Big Data to The Cloud Onlne lgorths for Uploadng Deferrable Bg Data to The Cloud Lnquan Zhang, Zongpeng L, Chuan Wu, Mnghua Chen Unversty of Calgary, {lnqzhan,zongpeng}@ucalgary.ca The Unversty of Hong Kong, [email protected] The

More information

BANDWIDTH ALLOCATION AND PRICING PROBLEM FOR A DUOPOLY MARKET

BANDWIDTH ALLOCATION AND PRICING PROBLEM FOR A DUOPOLY MARKET Yugoslav Journal of Operatons Research (0), Nuber, 65-78 DOI: 0.98/YJOR0065Y BANDWIDTH ALLOCATION AND PRICING PROBLEM FOR A DUOPOLY MARKET Peng-Sheng YOU Graduate Insttute of Marketng and Logstcs/Transportaton,

More information

Inventory Control in a Multi-Supplier System

Inventory Control in a Multi-Supplier System 3th Intl Workng Senar on Producton Econocs (WSPE), Igls, Autrche, pp.5-6 Inventory Control n a Mult-Suppler Syste Yasen Arda and Jean-Claude Hennet LAAS-CRS, 7 Avenue du Colonel Roche, 3077 Toulouse Cedex

More information

A Multi Due Date Batch Scheduling Model. on Dynamic Flow Shop to Minimize. Total Production Cost

A Multi Due Date Batch Scheduling Model. on Dynamic Flow Shop to Minimize. Total Production Cost Conteporary Enneern Scences, Vol. 9, 2016, no. 7, 315-324 HIKARI Ltd, www.-hkar.co http://dx.do.or/10.12988/ces.2016.617 A Mult Due Date Batch Scheduln Model on Dynac Flow Shop to Mnze Total Producton

More information

The Greedy Method. Introduction. 0/1 Knapsack Problem

The Greedy Method. Introduction. 0/1 Knapsack Problem The Greedy Method Introducton We have completed data structures. We now are gong to look at algorthm desgn methods. Often we are lookng at optmzaton problems whose performance s exponental. For an optmzaton

More information

How To Write A Powerpoint Powerpoint Commandbook For A Data Center

How To Write A Powerpoint Powerpoint Commandbook For A Data Center Internatonal Journal of Innovatve Research n Scence, Engneerng and Technology (An ISO 3297: 2007 ertfed Organzaton) VM Assgnent Algorth Based ost Effectve achng n loud outng Raya.R 1 Assstant Professor,Det

More information

Hosting Virtual Machines on Distributed Datacenters

Hosting Virtual Machines on Distributed Datacenters Hostng Vrtual Machnes on Dstrbuted Datacenters Chuan Pham Scence and Engneerng, KyungHee Unversty, Korea [email protected] Jae Hyeok Son Scence and Engneerng, KyungHee Unversty, Korea [email protected]

More information

Research Article Load Balancing for Future Internet: An Approach Based on Game Theory

Research Article Load Balancing for Future Internet: An Approach Based on Game Theory Appled Matheatcs, Artcle ID 959782, 11 pages http://dx.do.org/10.1155/2014/959782 Research Artcle Load Balancng for Future Internet: An Approach Based on Gae Theory Shaoy Song, Tngje Lv, and Xa Chen School

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2016. All Rghts Reserved. Created: July 15, 1999 Last Modfed: January 5, 2015 Contents 1 Lnear Fttng

More information

Formulating & Solving Integer Problems Chapter 11 289

Formulating & Solving Integer Problems Chapter 11 289 Formulatng & Solvng Integer Problems Chapter 11 289 The Optonal Stop TSP If we drop the requrement that every stop must be vsted, we then get the optonal stop TSP. Ths mght correspond to a ob sequencng

More information

Self-Adaptive Capacity Management for Multi-Tier Virtualized Environments

Self-Adaptive Capacity Management for Multi-Tier Virtualized Environments Self-Adaptve Capacty Management for Mult-Ter Vrtualzed Envronments Ítalo Cunha, Jussara Almeda, Vrgílo Almeda, Marcos Santos Computer Scence Department Federal Unversty of Mnas Geras Belo Horzonte, Brazl,

More information

Multi-timescale Distributed Capacity Allocation and Load Redirect Algorithms for Cloud System

Multi-timescale Distributed Capacity Allocation and Load Redirect Algorithms for Cloud System Mult-tmescale Dstrbuted Capacty Allocaton and Load Redrect Algorthms for Cloud System Danlo Ardagna, Sara Casolar Mchele Colajann, Barbara Pancucc Report n. 2011.23 Mult-tme Scale Dstrbuted Capacty Allocaton

More information

Basic Queueing Theory M/M/* Queues. Introduction

Basic Queueing Theory M/M/* Queues. Introduction Basc Queueng Theory M/M/* Queues These sldes are created by Dr. Yh Huang of George Mason Unversty. Students regstered n Dr. Huang's courses at GMU can ake a sngle achne-readable copy and prnt a sngle copy

More information

Naglaa Raga Said Assistant Professor of Operations. Egypt.

Naglaa Raga Said Assistant Professor of Operations. Egypt. Volue, Issue, Deceer ISSN: 77 8X Internatonal Journal of Adanced Research n Coputer Scence and Software Engneerng Research Paper Aalale onlne at: www.jarcsse.co Optal Control Theory Approach to Sole Constraned

More information

Network Aware Load-Balancing via Parallel VM Migration for Data Centers

Network Aware Load-Balancing via Parallel VM Migration for Data Centers Network Aware Load-Balancng va Parallel VM Mgraton for Data Centers Kun-Tng Chen 2, Chen Chen 12, Po-Hsang Wang 2 1 Informaton Technology Servce Center, 2 Department of Computer Scence Natonal Chao Tung

More information

Loop Parallelization

Loop Parallelization - - Loop Parallelzaton C-52 Complaton steps: nested loops operatng on arrays, sequentell executon of teraton space DECLARE B[..,..+] FOR I :=.. FOR J :=.. I B[I,J] := B[I-,J]+B[I-,J-] ED FOR ED FOR analyze

More information

The Packing Server for Real-Time Scheduling of MapReduce Workflows

The Packing Server for Real-Time Scheduling of MapReduce Workflows The Packng Server for Real-Te Schedulng of MapReduce Workflows Shen L, Shaohan Hu, Tarek Abdelzaher Unversty of Illnos at Urbana-Chapagn {shenl3, shu7, zaher}@llnos.edu Abstract Ths paper develops new

More information

Self-Adaptive SLA-Driven Capacity Management for Internet Services

Self-Adaptive SLA-Driven Capacity Management for Internet Services Self-Adaptve SLA-Drven Capacty Management for Internet Servces Bruno Abrahao, Vrglo Almeda and Jussara Almeda Computer Scence Department Federal Unversty of Mnas Geras, Brazl Alex Zhang, Drk Beyer and

More information

An Analytical Model of Web Server Load Distribution by Applying a Minimum Entropy Strategy

An Analytical Model of Web Server Load Distribution by Applying a Minimum Entropy Strategy Internatonal Journal of Coputer and Councaton Engneerng, Vol. 2, No. 4, July 203 An Analytcal odel of Web Server Load Dstrbuton by Applyng a nu Entropy Strategy Teeranan Nandhakwang, Settapong alsuwan,

More information

INSTITUT FÜR INFORMATIK

INSTITUT FÜR INFORMATIK INSTITUT FÜR INFORMATIK Schedulng jobs on unform processors revsted Klaus Jansen Chrstna Robene Bercht Nr. 1109 November 2011 ISSN 2192-6247 CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL Insttut für Informat

More information

II. THE QUALITY AND REGULATION OF THE DISTRIBUTION COMPANIES I. INTRODUCTION

II. THE QUALITY AND REGULATION OF THE DISTRIBUTION COMPANIES I. INTRODUCTION Fronter Methodology to fx Qualty goals n Electrcal Energy Dstrbuton Copanes R. Rarez 1, A. Sudrà 2, A. Super 3, J.Bergas 4, R.Vllafáfla 5 1-2 -3-4-5 - CITCEA - UPC UPC., Unversdad Poltécnca de Cataluña,

More information

Fragility Based Rehabilitation Decision Analysis

Fragility Based Rehabilitation Decision Analysis .171. Fraglty Based Rehabltaton Decson Analyss Cagdas Kafal Graduate Student, School of Cvl and Envronmental Engneerng, Cornell Unversty Research Supervsor: rcea Grgoru, Professor Summary A method s presented

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada [email protected] Abstract Ths s a note to explan support vector machnes.

More information

GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM

GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM BARRIOT Jean-Perre, SARRAILH Mchel BGI/CNES 18.av.E.Beln 31401 TOULOUSE Cedex 4 (France) Emal: [email protected] 1/Introducton The

More information

CONSTRUCTION OF A COLLABORATIVE VALUE CHAIN IN CLOUD COMPUTING ENVIRONMENT

CONSTRUCTION OF A COLLABORATIVE VALUE CHAIN IN CLOUD COMPUTING ENVIRONMENT CONSTRUCTION OF A COLLAORATIVE VALUE CHAIN IN CLOUD COMPUTING ENVIRONMENT Png Wang, School of Econoy and Manageent, Jangsu Unversty of Scence and Technology, Zhenjang Jangsu Chna, [email protected] Zhyng

More information

Tourism Demand Forecasting by Improved SVR Model

Tourism Demand Forecasting by Improved SVR Model Internatonal Journal of u- and e- Servce, Scence and Technology, pp403-4 http://dxdoorg/0457/junesst058538 Tours Deand Forecastng by Iproved SVR Model L Me Departent of Socal Servces,Zhengzhou Tours College,Henan,PRChna

More information

A Statistical Model for Detecting Abnormality in Static-Priority Scheduling Networks with Differentiated Services

A Statistical Model for Detecting Abnormality in Static-Priority Scheduling Networks with Differentiated Services A Statstcal odel for Detectng Abnoralty n Statc-Prorty Schedulng Networks wth Dfferentated Servces ng L 1 and We Zhao 1 School of Inforaton Scence & Technology, East Chna Noral Unversty, Shangha 0006,

More information

Jimmy Goffaux @amto_res. Hébergement Cloud - TechDay

Jimmy Goffaux @amto_res. Hébergement Cloud - TechDay Jimmy Goffaux @amto_res Hébergement Cloud - TechDay Sommaire Besoin Chiffres Stockage : Ceph et local ACL et Permissions Hooks DNS Contextualisation Conclusion Besoin Besoin interne : - Industrialisation

More information

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College

Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College Feature selecton for ntruson detecton Slobodan Petrovć NISlab, Gjøvk Unversty College Contents The feature selecton problem Intruson detecton Traffc features relevant for IDS The CFS measure The mrmr measure

More information

Resource Management For Workflows In Cloud Computing Environment Based On Group Technology Approach

Resource Management For Workflows In Cloud Computing Environment Based On Group Technology Approach Proceedns of the 2015 Internatonal Conference on Industral Enneern and Oeratons Manaeent Duba, Unted Arab Erates (UAE), March 3 5, 2015 Resource Manaeent For Worflows In Cloud Coutn Envronent Based On

More information

LITERATURE REVIEW: VARIOUS PRIORITY BASED TASK SCHEDULING ALGORITHMS IN CLOUD COMPUTING

LITERATURE REVIEW: VARIOUS PRIORITY BASED TASK SCHEDULING ALGORITHMS IN CLOUD COMPUTING LITERATURE REVIEW: VARIOUS PRIORITY BASED TASK SCHEDULING ALGORITHMS IN CLOUD COMPUTING 1 MS. POOJA.P.VASANI, 2 MR. NISHANT.S. SANGHANI 1 M.Tech. [Software Systems] Student, Patel College of Scence and

More information

Virtual Network Embedding with Coordinated Node and Link Mapping

Virtual Network Embedding with Coordinated Node and Link Mapping Vrtual Network Embeddng wth Coordnated Node and Lnk Mappng N. M. Mosharaf Kabr Chowdhury Cherton School of Computer Scence Unversty of Waterloo Waterloo, Canada Emal: [email protected] Muntasr Rahan

More information

CLoud computing technologies have enabled rapid

CLoud computing technologies have enabled rapid 1 Cost-Mnmzng Dynamc Mgraton of Content Dstrbuton Servces nto Hybrd Clouds Xuana Qu, Hongxng L, Chuan Wu, Zongpeng L and Francs C.M. Lau Department of Computer Scence, The Unversty of Hong Kong, Hong Kong,

More information

2008/8. An integrated model for warehouse and inventory planning. Géraldine Strack and Yves Pochet

2008/8. An integrated model for warehouse and inventory planning. Géraldine Strack and Yves Pochet 2008/8 An ntegrated model for warehouse and nventory plannng Géraldne Strack and Yves Pochet CORE Voe du Roman Pays 34 B-1348 Louvan-la-Neuve, Belgum. Tel (32 10) 47 43 04 Fax (32 10) 47 43 01 E-mal: [email protected]

More information

Maximizing profit using recommender systems

Maximizing profit using recommender systems Maxzng proft usng recoender systes Aparna Das Brown Unversty rovdence, RI [email protected] Clare Matheu Brown Unversty rovdence, RI [email protected] Danel Rcketts Brown Unversty rovdence, RI [email protected]

More information

Project Networks With Mixed-Time Constraints

Project Networks With Mixed-Time Constraints Project Networs Wth Mxed-Tme Constrants L Caccetta and B Wattananon Western Australan Centre of Excellence n Industral Optmsaton (WACEIO) Curtn Unversty of Technology GPO Box U1987 Perth Western Australa

More information

Introduction CONTENT. - Whitepaper -

Introduction CONTENT. - Whitepaper - OneCl oud ForAl l YourCr t c al Bus nes sappl c at ons Bl uew r esol ut ons www. bl uew r e. c o. uk Introducton Bluewre Cloud s a fully customsable IaaS cloud platform desgned for organsatons who want

More information

Scan Detection in High-Speed Networks Based on Optimal Dynamic Bit Sharing

Scan Detection in High-Speed Networks Based on Optimal Dynamic Bit Sharing Scan Detecton n Hgh-Speed Networks Based on Optal Dynac Bt Sharng Tao L Shgang Chen Wen Luo Mng Zhang Departent of Coputer & Inforaton Scence & Engneerng, Unversty of Florda Abstract Scan detecton s one

More information

Minkowski Sum of Polytopes Defined by Their Vertices

Minkowski Sum of Polytopes Defined by Their Vertices Minkowski Sum of Polytopes Defined by Their Vertices Vincent Delos, Denis Teissandier To cite this version: Vincent Delos, Denis Teissandier. Minkowski Sum of Polytopes Defined by Their Vertices. Journal

More information

How To Calculate An Approxmaton Factor Of 1 1/E

How To Calculate An Approxmaton Factor Of 1 1/E Approxmaton algorthms for allocaton problems: Improvng the factor of 1 1/e Urel Fege Mcrosoft Research Redmond, WA 98052 [email protected] Jan Vondrák Prnceton Unversty Prnceton, NJ 08540 [email protected]

More information

POLYSA: A Polynomial Algorithm for Non-binary Constraint Satisfaction Problems with and

POLYSA: A Polynomial Algorithm for Non-binary Constraint Satisfaction Problems with and POLYSA: A Polynomal Algorthm for Non-bnary Constrant Satsfacton Problems wth and Mguel A. Saldo, Federco Barber Dpto. Sstemas Informátcos y Computacón Unversdad Poltécnca de Valenca, Camno de Vera s/n

More information

Elastic Systems for Static Balancing of Robot Arms

Elastic Systems for Static Balancing of Robot Arms . th World ongress n Mechans and Machne Scence, Guanajuato, Méco, 9- June, 0 _ lastc Sstes for Statc alancng of Robot rs I.Sonescu L. uptu Lucana Ionta I.Ion M. ne Poltehnca Unverst Poltehnca Unverst Poltehnca

More information

Netherlands Published online: 27 Jun 2013.

Netherlands Published online: 27 Jun 2013. Th artcle wa downloaded by: [Bblotheek TU Delft] On: 04 Noveber 2013, At: 08:09 Publher: Routledge Infora Ltd Regtered n England and Wale Regtered Nuber: 1072954 Regtered offce: Morter Houe, 37-41 Morter

More information

A method for a robust optimization of joint product and supply chain design

A method for a robust optimization of joint product and supply chain design DOI 10.1007/s10845-014-0908-5 A method for a robust optmzaton of jont product and supply chan desgn Bertrand Baud-Lavgne Samuel Bassetto Bruno Agard Receved: 10 September 2013 / Accepted: 21 March 2014

More information

An MILP model for planning of batch plants operating in a campaign-mode

An MILP model for planning of batch plants operating in a campaign-mode An MILP model for plannng of batch plants operatng n a campagn-mode Yanna Fumero Insttuto de Desarrollo y Dseño CONICET UTN [email protected] Gabrela Corsano Insttuto de Desarrollo y Dseño

More information

INVENTORY CONTROL FOR HIGH TECHNOLOGY CAPITAL EQUIPMENT FIRMS. Hari Shreeram Abhyankar. B.S. Mathematics B.S. Economics Purdue University.

INVENTORY CONTROL FOR HIGH TECHNOLOGY CAPITAL EQUIPMENT FIRMS. Hari Shreeram Abhyankar. B.S. Mathematics B.S. Economics Purdue University. INVENTORY CONTRO FOR IG TECNOOGY CAPITA EQUIPMENT FIRM by ar hreera Abhyankar B.. Matheatcs B.. Econocs Purdue Unversty. 99 M.. Industral Engneerng Purdue Unversty. 994 ubtted to the loan chool of Manageent

More information

Economic Models for Cloud Service Markets

Economic Models for Cloud Service Markets Economc Models for Cloud Servce Markets Ranjan Pal and Pan Hu 2 Unversty of Southern Calforna, USA, [email protected] 2 Deutsch Telekom Laboratores, Berln, Germany, [email protected] Abstract. Cloud computng

More information

Fair Virtual Bandwidth Allocation Model in Virtual Data Centers

Fair Virtual Bandwidth Allocation Model in Virtual Data Centers Far Vrtual Bandwdth Allocaton Model n Vrtual Data Centers Yng Yuan, Cu-rong Wang, Cong Wang School of Informaton Scence and Engneerng ortheastern Unversty Shenyang, Chna School of Computer and Communcaton

More information

J. Parallel Distrib. Comput.

J. Parallel Distrib. Comput. J. Parallel Dstrb. Comput. 71 (2011) 62 76 Contents lsts avalable at ScenceDrect J. Parallel Dstrb. Comput. journal homepage: www.elsever.com/locate/jpdc Optmzng server placement n dstrbuted systems n

More information

Allocating Collaborative Profit in Less-than-Truckload Carrier Alliance

Allocating Collaborative Profit in Less-than-Truckload Carrier Alliance J. Servce Scence & Management, 2010, 3: 143-149 do:10.4236/jssm.2010.31018 Publshed Onlne March 2010 (http://www.scrp.org/journal/jssm) 143 Allocatng Collaboratve Proft n Less-than-Truckload Carrer Allance

More information

Efficient On-Demand Data Service Delivery to High-Speed Trains in Cellular/Infostation Integrated Networks

Efficient On-Demand Data Service Delivery to High-Speed Trains in Cellular/Infostation Integrated Networks IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, MONTH 2XX 1 Effcent On-Demand Data Servce Delvery to Hgh-Speed Trans n Cellular/Infostaton Integrated Networks Hao Lang, Student Member,

More information

CALL ADMISSION CONTROL IN WIRELESS MULTIMEDIA NETWORKS

CALL ADMISSION CONTROL IN WIRELESS MULTIMEDIA NETWORKS CALL ADMISSION CONTROL IN WIRELESS MULTIMEDIA NETWORKS Novella Bartoln 1, Imrch Chlamtac 2 1 Dpartmento d Informatca, Unverstà d Roma La Sapenza, Roma, Italy [email protected] 2 Center for Advanced

More information

A Novel Dynamic Role-Based Access Control Scheme in User Hierarchy

A Novel Dynamic Role-Based Access Control Scheme in User Hierarchy Journal of Coputatonal Inforaton Systes 6:7(200) 2423-2430 Avalable at http://www.jofcs.co A Novel Dynac Role-Based Access Control Schee n User Herarchy Xuxa TIAN, Zhongqn BI, Janpng XU, Dang LIU School

More information

Fisher Markets and Convex Programs

Fisher Markets and Convex Programs Fsher Markets and Convex Programs Nkhl R. Devanur 1 Introducton Convex programmng dualty s usually stated n ts most general form, wth convex objectve functons and convex constrants. (The book by Boyd and

More information

OPTIMAL INVESTMENT POLICIES FOR THE HORSE RACE MODEL. Thomas S. Ferguson and C. Zachary Gilstein UCLA and Bell Communications May 1985, revised 2004

OPTIMAL INVESTMENT POLICIES FOR THE HORSE RACE MODEL. Thomas S. Ferguson and C. Zachary Gilstein UCLA and Bell Communications May 1985, revised 2004 OPTIMAL INVESTMENT POLICIES FOR THE HORSE RACE MODEL Thomas S. Ferguson and C. Zachary Glsten UCLA and Bell Communcatons May 985, revsed 2004 Abstract. Optmal nvestment polces for maxmzng the expected

More information

8 Algorithm for Binary Searching in Trees

8 Algorithm for Binary Searching in Trees 8 Algorthm for Bnary Searchng n Trees In ths secton we present our algorthm for bnary searchng n trees. A crucal observaton employed by the algorthm s that ths problem can be effcently solved when the

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

Extending Probabilistic Dynamic Epistemic Logic

Extending Probabilistic Dynamic Epistemic Logic Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σ-algebra: a set

More information

GENERALIZED PROCRUSTES ANALYSIS AND ITS APPLICATIONS IN PHOTOGRAMMETRY

GENERALIZED PROCRUSTES ANALYSIS AND ITS APPLICATIONS IN PHOTOGRAMMETRY SWISS FEDERL INSIUE OF ECHNOLOGY Insttute of Geodes and Photograetr EH-Hoenggerberg, Zuerch GENERLIZED PROCRUSES NLYSIS ND IS PPLICIONS IN PHOOGRMMERY Prepared for: Praktku n Photograetre, Fernerkundung

More information

How To Trade Water Quality

How To Trade Water Quality Movng Beyond Open Markets for Water Qualty Tradng: The Gans from Structured Blateral Trades Tanl Zhao Yukako Sado Rchard N. Bosvert Gregory L. Poe Cornell Unversty EAERE Preconference on Water Economcs

More information

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2) MATH 16T Exam 1 : Part I (In-Class) Solutons 1. (0 pts) A pggy bank contans 4 cons, all of whch are nckels (5 ), dmes (10 ) or quarters (5 ). The pggy bank also contans a con of each denomnaton. The total

More information

Section 2 Introduction to Statistical Mechanics

Section 2 Introduction to Statistical Mechanics Secton 2 Introducton to Statstcal Mechancs 2.1 Introducng entropy 2.1.1 Boltzmann s formula A very mportant thermodynamc concept s that of entropy S. Entropy s a functon of state, lke the nternal energy.

More information

Price Competition in an Oligopoly Market with Multiple IaaS Cloud Providers

Price Competition in an Oligopoly Market with Multiple IaaS Cloud Providers Prce Competton n an Olgopoly Market wth Multple IaaS Cloud Provders Yuan Feng, Baochun L, Bo L Department of Computng, Hong Kong Polytechnc Unversty Department of Electrcal and Computer Engneerng, Unversty

More information

Availability-Based Path Selection and Network Vulnerability Assessment

Availability-Based Path Selection and Network Vulnerability Assessment Avalablty-Based Path Selecton and Network Vulnerablty Assessment Song Yang, Stojan Trajanovsk and Fernando A. Kupers Delft Unversty of Technology, The Netherlands {S.Yang, S.Trajanovsk, F.A.Kupers}@tudelft.nl

More information

Resource Allocation Model to Find Optimal Allocation of Workforce, Material, and Tools in an Aircraft Line Maintenance

Resource Allocation Model to Find Optimal Allocation of Workforce, Material, and Tools in an Aircraft Line Maintenance Proceedngs of the Internatonal ultconference of Engneers and Coputer Scentsts 2016 Vol II,, arch 16-18, 2016, Hong Kong Resource Allocaton odel to Fnd Optal Allocaton of Worforce, ateral, and Tools n an

More information