Diffraction of light by a grating

Size: px
Start display at page:

Download "Diffraction of light by a grating"

Transcription

1 1: (ta initials) 2: first name (print) last name (print) brock id (ab13cd) (lab date) Experiment 5 Diffraction of light by a grating In this Experiment you will learn the geometical analysis of a diffraction grating; to use a diffraction grating to measure the Balmer Spectrum of Hydrogen; to visualize data in different ways in order to improve the understanding of a physical system; to extend your data analysis capabilities with a computer-based fitting program; to apply different methods of error analysis to experimental results. Prelab preparation Print a copy of this Experiment to bring to your scheduled lab session. The data, observations and notes entered on these pages will be needed when you write your lab report and as reference material during your final exam. Compile these printouts to create a lab book for the course. To perform this Experiment and the Webwork Prelab Test successfully you need to be familiar with the content of this document and that of the following FLAP modules ( Begin by trying the fast-track quiz to gauge your understanding of the topic and if necessary review the module in depth, then try the exit test. Check off the box when a module is completed. FLAP PHYS 1-1: Introducing measurement FLAP PHYS 1-2: Errors and uncertainty FLAP PHYS 1-3: Graphs and measurements FLAP MATH 1-1: Arithmetic and algebra FLAP MATH 1-2: Numbers, units and physical quantities WEBWORK: the Prelab Diffraction Test must be completed before the lab session! Important! Bring a printout of your Webwork test results and your lab schedule for review by the TAs before the lab session begins. You will not be allowed to perform this Experiment unless the required Webwork module has been completed and you are scheduled to perform the lab on that day.! Important! Be sure to have every page of this printout signed by a TA before you leave at the end of the lab session. All your work needs to be kept for review by the instructor, if so requested. CONGRATULATIONS! YOU ARE NOW READY TO PROCEED WITH THE EXPERIMENT! 40

2 41 The diffraction grating The optical diffraction grating is a glass or plastic plate with many fine, parallel grooves spaced the same distance d from each other on its surface. According to Huygens Principle, when monochromatic light from a distant source or laser hits the grating, each groove behaves as a source of spherical wavelets that re-radiate from the grating in phase with the incident wave. The superposition of these secondary waves will contribute to either enhance or diminish the brightness of ths diffracted beam at a given point in space, resulting in a pattern of bright and dark regions in space. This pattern can be viewed and analysed by placing a screen parallel to and far away from the grating somewhere in the path of the diffracted beam. Then, 1. if the incident light beam is a parallel beam and is incident at a right angle to the grating, a diffracted beam will be offset from its parallel neighbour by a distance dsinα. as shown in Figure When this distance is equal to an integer number m of wavelengths λ of the incident light, the two beams are in phase and will exhibit constructive interference by displaying a series of bright regions on the screen. These interference maxima are given by: dsinα = mλ, m = 0,±1,±2,... (5.1) where λ is the wavelength, d is the grating spacing, and m is an integer called the order number. The zero-order beam m = 0 is a continuation of the incident beam (i.e. α = 0). 3. When the path difference between adjacent beams is (m + 1/2)λ, then destructive interference will result in dark regions, or interference minima, on the screen. 4. There are two first order beams, m = ±1 at angles given by sinα = ±λ/d, two second order beams m = ±2 at sinα = ±2λ/d, et cetera. Hence the measurement of the angle α, together with the order number m, gives the ratio λ/d, and if either λ or d is known, the other can be calculated. To diffract X-rays, electrons, or neutron matter waves, one needs a diffraction grating whose d is comparable with the wavelength of the waves. It turns out that crystal materials have interatomic spacings comparable with the λ of X-rays. X-ray diffraction is now a standard way of determining the atomic arrangements in a crystal. Note that if λ > d one doesn t get diffraction maxima of order m 1 and only the zero-order beam (m = 0) will be visible at the centre of the diffraction pattern. On the other hand, if λ is much less than d, then the corresponding angles become much too small and the diffraction pattern will not beresolved, appearingagain as a bright spot on the screen. Thus, the diffraction effect becomes important when λ is not too small a fraction of d. Figure 5.1: Diffraction by a grating To experimentally determine a value for the grating distance d of a diffraction grating a monochromatic light source of a known wavelength λ is used as the incident beam. The beam is diffracted from the grating and generates an interference pattern on a screen a distance D from the grating, as shown in Figure 5.4. On the screen the distance L between pairs of bright spots from the diffraction of order ±m can be measured and Equation 5.1 can be used to calculate the grating distance d. Note that this equation assumes that the beams from adjacent grating slits are parallel, that is, that D L.

3 42 EXPERIMENT 5. DIFFRACTION OF LIGHT BY A GRATING Energy levels of the Hydrogen atom A Hydrogen atom consists of a positively charged proton making up the atomic nucleus and a negatively charged electron orbiting this nucleus. Quantum Theory predicts that the electron may only find itself in one of n = 1,2,3,... discrete orbits, or energy levels, around the nucleus. When a Hydrogen atom is subjected to an electric discharge, its one electron may absorb some of this energy. When this happens, the electron makes a transition from an orbit n 1 to an orbit n 2 where n 2 > n 1. The electron eventually decays back to a lower orbit, releasing this surplus energy in the form of a photon of one of several specific wavelengths λ. Some of these transitions radiate photons that have the wavelength of visible light andcan thus bemeasured with a grating spectrometer. Johann J. Balmer ( ) discovered that for the Hydrogen atom the series of energy transitionswavelengths fromaninitial energylevel n i > 2 Figure 5.2: Electronic energy transitions of H 2 to the energy level n f = 2, the Balmer series, are approximately given by: [ ( 1 λ = R n 2 f 1 n 2 i )] 1 λ = [ ( 1 R )] 1 n 2 (5.2) i This equation is a special case of the more general Rydberg formula that accounts for all transitions from n i to n f. For example, the Lyman series outlines the transitions from an initial energy level n i > 1to afinal energy level n f = 1 that are not in the visible region of the spectrum. The value of the Rydbergconstant R is determined by fitting this empirical equation to experimental data and is equal to R = m 1. The electron energy level transitions that produce wavelengths in the visible region are from an initial orbit n = 3,4 or 5 to a final orbit n = 2, as shown in Figure 5.2. These transitions will be visible as red (n = 3 2), blue (n = 4 2), and violet (n = 5 2) lines in the spectrum of molecular Hydrogen (H 2 ) from an H 2 discharge tube. The combination of these three colors, as in the unscattered beam, is observed as a pink line. Thespectrometer, showninfigure5.5, isanoptical instrument that uses a prism or a diffraction grating to scatter an incident light beam of interest into component wavelengths. The grating used in this spectrometer is chosen to optimally view the first order (m = ±1) diffraction pattern of the incident beam. When the light from the H 2 discharge lamp is viewed through a spectrometer, the three colors Figure 5.3: Diffraction of the H 2 spectrum lines scatter at different angles symmetrically about the direct path of the incident light, as in Figure 5.3.

4 43 Procedure Part 1: Determining the spacing of a diffraction grating In this part of the experiment you will determine the spacing d of a glass grating by passing a laser beam through it and examining the diffraction pattern projected on a screen. The laser beam is parallel and monochromatic, with wavelength λ± λ = 632.8±0.5 nm. Check that the screen and grating surface are perpendicular to the incident beam, and measure the distance D between the grating and the screen, as shown in Figure 5.4. D =...±...m Figure 5.4: Experimental setup for Part I.? What do you note in the diffraction pattern as you slowly rotate the grating? Based on your observation, if the grating was set to some angle θ from being perpendicular to the beam, how would you adjust your L values to account for this offset? Mount a sheet of graph paper on the screen and carefully mark the series of interference maxima. Identify the straight path m = 0 maximum. Each student must make and analyse their own interference pattern. Measure the distance L between the centres of pairs of spots of order m, (+m to m) for m = ±1 to m = ±10. Record your results in Table 5.1. m L (m) d (m) (d d ) (m) (d d ) 2 (m) ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9 ±10 d = variance = σ(d) = Table 5.1: Calculation of x and σ(x) for d. Here, variance(x) = σ 2 (x) = 1 N 1 N i=1 (x i x ) 2.

5 44 EXPERIMENT 5. DIFFRACTION OF LIGHT BY A GRATING With L and D measured, the relationship between these variables and the angle α in Figure 5.4 is given by tan(α) = L/2D. (5.3) If the angle α is small, then sinα tanα and equating these two terms in Equations 5.3 and 5.1 yields d = 2mλD/L. (5.4) Calculate d for the ten measurements of L, then calculate an average value d and standard deviation σ(d) of d and enter the results in Table 5.1. Close any running Physicalab programs, then start a new Physicalab session and enter the address of the group members. Enter the d values as coordinates (m, d). Select bellcurve and bargraph, then click draw to display a distribution of your n values with the average d and standard deviation σ(d) of the sample. Click Send to: to yourself a copy of the graph. Verify that the results from the distribution are identical to those from Table 5.1. If they are not, you need to review your calculations. Report below the grating spacing for this grating: d =...±...m Part 2: Determining the wavelengths of the Balmer spectrum of H 2 The light source is a hydrogen discharge tube. This source illuminates aslit at one end of the collimator tube, and a lens at the other end makes a parallel beam of the light passing through the slit. The beam is diffracted by the grating and collected by the front lens of the telescope, which focuses the light on a set of cross-hairs. The telescope can rotate around the grating, its angular position with respect to an arbitrary zero given by an angular scale on the base of the instrument. Proceed as follows, remembering never Figure 5.5: Experimental setup for part 2 to touch the grating as it is easily damaged and is expensive to replace. Note: to extend the life of the H2 discharge tube, keep it from overheating: turn it on for 30 seconds or less ito adjust the crosshairs then turn it off for at least 30 seconds while you read the Vernier scale. Rotate the telescope to a position opposite the collimator. Looking through the telescope you should see a sharp image of the slit, its colour the same as that of the light emanating from the discharge tube. Gently lock the telescope in place Looking through the telescope you should see a sharp image of the slit, its colour the same as that of the light emanating from the discharge tube. Gently lock the telescope in place with the knob located at the centre of the telescope base. Turn the fine-adjust knob located on the right side of the telescope base to centre the crosshairs diagonally on an edge of the slit image. A screw on the collimator near the light source allows adjustment of the slit width. Be sure to have the slit and crosshairs in focus.? Does it matter which edge of the image is used for reference? How does this choice impact the remainder of your experiment?

6 45 Read the position of the telescope from the angular scale on the base. This can be done to a precision of 1 ( ± one minute, 60 = 1 ). To read the scale: 1. Locate the 0 line on the vernier scale, and note which main scale division it is immediately after, e.g on the main scale in Figure 5.6. Note that the numbers on the main and vernier scales increase from right to left, and not from left to right as you are used to reading. 2. Scan along the line where the main and vernier scales meet, and note which one vernier scale division is directly in line with a main scale division, e.g. 17 on the vernier scale in Figure Add the main and vernier scale readings to obtain the angular scale reading, e.g = in Figure 5.6. Enter your measurement in Table 5.2. Figure 5.6: Example of Angular Vernier Scale Reading Unlock the telescope and slowly rotate it to the right until the first violet slit image is in the field of view. Lock the telescope, and use the fine-adjust knob until the cross hairs are again situated on the same edge of the slit image as was used before. Read the position indicated on the angular scale and let its value be θ +1. This value corresponds to the direction of the diffracted beam with m = +1 for the violet spectral line. Unlock the telescope, rotate it to the left of center until the firstviolet image is seen again. Determine its angular position θ 1, corresponding to the diffracted beam with m = 1. Repeat the above measurements for the blue and violet spectral lines and enter your data in the first row of Table 5.2. Convert your data values from degrees and minutes to decimal degrees, recalling that 1 = 60, and enter these in the second row of Table 5.2., Pink (θ 0 ) Violet (θ +1 ) Violet (θ 1 ) Blue (θ +1 ) Blue (θ 1 ) Red (θ +1 ) Red (θ 1 ) Table 5.2: Measurements for the spectral lines of H 2 in degrees/minutes and decimal degrees

7 46 EXPERIMENT 5. DIFFRACTION OF LIGHT BY A GRATING The diffraction angle α ±1 for a particular colour is the measured angle of deviation θ ±1 of that colour from the light s direct path reference angle θ 0. Calculating the difference between the angular positions of the pink and coloured lines will give you α ±1, i.e. α ±1 = θ 0 θ ±1 (5.5) Calculate from the data in Table 5.2 the values of the diffraction angle α ±1 for the three lines of the H 2 spectrum. There will be two results for each colour, α ±1, one for each side of the reference angle θ 0. Calculate the average α of these two angles then estimate the error with (α) = 1 2 α +1 α 1. line α +1 α 1 α (α) Violet (α V ) Blue (α B ) Red (α R ) Table 5.3: Calculated diffraction angles for the spectral lines of H 2 The diffraction grating used in the spectrometer is made with a line density of N ± (N) = 600±1 lines/mm. This is not the same value as the grating spacing in Part 1. The line density and grating spacing are related via d = 1/N. The distance d between the lines and error (d) for the grating used in this spectrometer is d =...=...=... mm (d) =...=...=... mm Calculate a wavelength λ(α) and the associated error (λ(α)) for the violet, blue and red spectral line of H 2. Angle errors must be expressed in radians. Record this data in Table 5.4. λ V = d m sin(α V) =... =... λ B = =... =... =... λ R = =... =... =... ( (d) ) 2 ( ) cos(αv ) (α V ) 2 (λ V ) = λ V + =... =... d sin(α V ) (λ B ) = =... =... =... (λ R ) = =... =... =...

8 47 Use the Balmer Equation 5.2 to calculate the theoretical wavelengths λ(balmer) of the violet, blue and red lines of the H 2 spectrum. Append this data to Table 5.4. λ V (Balmer) =...=...=... λ B (Balmer) =...=...=... λ R (Balmer) =...=...=... line transition λ(α) (λ(α)) λ(balmer) violet blue red Table 5.4: Calculated λ(α) from angles α and λ(balmer) from Equation 5.2 IMPORTANT: BEFORE LEAVING THE LAB, HAVE A T.A. INITIAL YOUR WORKBOOK! Lab report Go to your course homepage on Sakai (Resources, Lab templates) to access the online lab report worksheet for this experiment. The worksheet has to be completed as instructed and sent to Turnitin before the lab report submission deadline, at 11:55pm six days following your scheduled lab session. Turnitin will not accept submissions after the due date. Unsubmitted lab reports are assigned a grade of zero.

THE BOHR QUANTUM MODEL

THE BOHR QUANTUM MODEL THE BOHR QUANTUM MODEL INTRODUCTION When light from a low-pressure gas is subject to an electric discharge, a discrete line spectrum is emitted. When light from such a low-pressure gas is examined with

More information

WAVELENGTH OF LIGHT - DIFFRACTION GRATING

WAVELENGTH OF LIGHT - DIFFRACTION GRATING PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant

More information

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block. 1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown

More information

GRID AND PRISM SPECTROMETERS

GRID AND PRISM SPECTROMETERS FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing

More information

Experiment #12: The Bohr Atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes, Holder, and Variac Flashlight

Experiment #12: The Bohr Atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes, Holder, and Variac Flashlight Experiment #12: The Bohr Atom Purpose: To observe the visible spectrum of hydrogen and helium and verify the Bohr model of the hydrogen atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes,

More information

Interference. Physics 102 Workshop #3. General Instructions

Interference. Physics 102 Workshop #3. General Instructions Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by

More information

O6: The Diffraction Grating Spectrometer

O6: The Diffraction Grating Spectrometer 2B30: PRACTICAL ASTROPHYSICS FORMAL REPORT: O6: The Diffraction Grating Spectrometer Adam Hill Lab partner: G. Evans Tutor: Dr. Peter Storey 1 Abstract The calibration of a diffraction grating spectrometer

More information

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm? Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through

More information

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

More information

How To Understand Light And Color

How To Understand Light And Color PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

More information

Diffraction of Laser Light

Diffraction of Laser Light Diffraction of Laser Light No Prelab Introduction The laser is a unique light source because its light is coherent and monochromatic. Coherent light is made up of waves, which are all in phase. Monochromatic

More information

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent

More information

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours) INSURANCE SCAM OPTICS - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as

More information

Experiment IV: Atomic Spectra and the Bohr model

Experiment IV: Atomic Spectra and the Bohr model P19: INTRODUCTORY PHYSICS III Experiment IV: Atomic Spectra and the Bohr model Department of Physics and Astronomy Dartmouth College 6127 Wilder Laboratory Hanover, NH 03755 USA Overview In this lab, we

More information

Using the Spectrophotometer

Using the Spectrophotometer Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to

More information

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2 Forensic Spectral Anaylysis: Warm up! The study of triangles has been done since ancient times. Many of the early discoveries about triangles are still used today. We will only be concerned with the "right

More information

Diffraction and Young s Single Slit Experiment

Diffraction and Young s Single Slit Experiment Diffraction and Young s Single Slit Experiment Developers AB Overby Objectives Preparation Background The objectives of this experiment are to observe Fraunhofer, or far-field, diffraction through a single

More information

Theremino System Theremino Spectrometer Technology

Theremino System Theremino Spectrometer Technology Theremino System Theremino Spectrometer Technology theremino System - Theremino Spectrometer Technology - August 15, 2014 - Page 1 Operation principles By placing a digital camera with a diffraction grating

More information

Alignement of a ring cavity laser

Alignement of a ring cavity laser Alignement of a ring cavity laser 1 Introduction This manual describes a procedure to align the cavity of our Ti:Sapphire ring laser and its injection with an Argon-Ion pump laser beam. The setup is shown

More information

DIFFRACTION AND INTERFERENCE

DIFFRACTION AND INTERFERENCE DIFFRACTION AND INTERFERENCE In this experiment you will emonstrate the wave nature of light by investigating how it bens aroun eges an how it interferes constructively an estructively. You will observe

More information

INTERFERENCE OBJECTIVES PRE-LECTURE. Aims

INTERFERENCE OBJECTIVES PRE-LECTURE. Aims 53 L4 INTERFERENCE Aims OBJECTIVES When you have finished this chapter you should understand how the wave model of light can be used to explain the phenomenon of interference. You should be able to describe

More information

1 Laboratory #5: Grating Spectrometer

1 Laboratory #5: Grating Spectrometer SIMG-215-20061: LABORATORY #5 1 Laboratory #5: Grating Spectrometer 1.1 Objective: To observe and measure the spectra of different light sources. 1.2 Materials: 1. OSA optics kit. 2. Nikon digital camera

More information

Interferometers. OBJECTIVES To examine the operation of several kinds of interferometers. d sin = n (1)

Interferometers. OBJECTIVES To examine the operation of several kinds of interferometers. d sin = n (1) Interferometers The true worth of an experimenter consists in his pursuing not only what he seeks in his experiment, but also what he did not seek. Claude Bernard (1813-1878) OBJECTIVES To examine the

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.

More information

Atoms Absorb & Emit Light

Atoms Absorb & Emit Light Atoms Absorb & Emit Light Spectra The wavelength of the light that an element emits or absorbs is its fingerprint. Atoms emit and absorb light First Test is Thurs, Feb 1 st About 30 multiple choice questions

More information

Fraunhofer Diffraction

Fraunhofer Diffraction Physics 334 Spring 1 Purpose Fraunhofer Diffraction The experiment will test the theory of Fraunhofer diffraction at a single slit by comparing a careful measurement of the angular dependence of intensity

More information

!! Regarding the information about figures (Fig.XY) please have a look at the german version!! Spektroscopy

!! Regarding the information about figures (Fig.XY) please have a look at the german version!! Spektroscopy 1. Introduction (under construction) Spektroscopy 2. Prism and Grid Spectrometers Basics of Construction and Operation The experiment can be conducted with one of two types of spectrometer in which the

More information

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law

Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine

More information

Polarization of Light

Polarization of Light Polarization of Light References Halliday/Resnick/Walker Fundamentals of Physics, Chapter 33, 7 th ed. Wiley 005 PASCO EX997A and EX999 guide sheets (written by Ann Hanks) weight Exercises and weights

More information

Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

More information

Diffraction of a Circular Aperture

Diffraction of a Circular Aperture Diffraction of a Circular Aperture Diffraction can be understood by considering the wave nature of light. Huygen's principle, illustrated in the image below, states that each point on a propagating wavefront

More information

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

More information

Solution Derivations for Capa #14

Solution Derivations for Capa #14 Solution Derivations for Capa #4 ) An image of the moon is focused onto a screen using a converging lens of focal length (f = 34.8 cm). The diameter of the moon is 3.48 0 6 m, and its mean distance from

More information

Physics 10. Lecture 29A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 10. Lecture 29A. There are two ways of spreading light: to be the candle or the mirror that reflects it. --Edith Wharton Physics 10 Lecture 29A "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton Converging Lenses What if we wanted to use refraction to converge parallel

More information

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

More information

1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002

1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 05-232 Imaging Systems Laboratory II Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 Abstract: For designing the optics of an imaging system, one of the main types of tools used today is optical

More information

PHYSICS PAPER 1 (THEORY)

PHYSICS PAPER 1 (THEORY) PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------

More information

Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

More information

Basic Optics System OS-8515C

Basic Optics System OS-8515C 40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 C 70 20 80 10 90 90 0 80 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B Basic Optics System

More information

Physics 111 Homework Solutions Week #9 - Tuesday

Physics 111 Homework Solutions Week #9 - Tuesday Physics 111 Homework Solutions Week #9 - Tuesday Friday, February 25, 2011 Chapter 22 Questions - None Multiple-Choice 223 A 224 C 225 B 226 B 227 B 229 D Problems 227 In this double slit experiment we

More information

Crystal Optics of Visible Light

Crystal Optics of Visible Light Crystal Optics of Visible Light This can be a very helpful aspect of minerals in understanding the petrographic history of a rock. The manner by which light is transferred through a mineral is a means

More information

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014 Introduction Following our previous lab exercises, you now have the skills and understanding to control

More information

Experiment 5. Lasers and laser mode structure

Experiment 5. Lasers and laser mode structure Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,

More information

Building your own Spectroscope

Building your own Spectroscope Building your own Spectroscope 0-0.341-0.445-0.606-0.872-1.36 Lyman Balmer Paschen n=4 n=8 n=7 n=6 n=5 n=4 ENERGY/10-19 J -2.42-5.45 E 5 2 E 4 2 E 3 2 E E 5 3 4 3 n=3 n=2 (Many other transitions beyond

More information

Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

More information

Reflection and Refraction

Reflection and Refraction Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,

More information

Blackbody Radiation References INTRODUCTION

Blackbody Radiation References INTRODUCTION Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt

More information

This is a reminder that Experiment 2 does not necessarily follow Experiment 1. My Lab dates: Exp.2:... Exp.3:... Exp.4:... Exp.5...

This is a reminder that Experiment 2 does not necessarily follow Experiment 1. My Lab dates: Exp.2:... Exp.3:... Exp.4:... Exp.5... Check your schedule! This is a reminder that Experiment 2 does not necessarily follow Experiment 1. You need to login to your course homepage on Sakai and check your lab schedule to determine the experiment

More information

Automatic and Objective Measurement of Residual Stress and Cord in Glass

Automatic and Objective Measurement of Residual Stress and Cord in Glass Automatic and Objective Measurement of Residual Stress and Cord in Glass GlassTrend - ICG TC15/21 Seminar SENSORS AND PROCESS CONTROL 13-14 October 2015, Eindhoven Henning Katte, ilis gmbh copyright ilis

More information

Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed

Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed Theory Refer to your Lab Manual, pages 291 294. Geometrical Optics Equipment Needed Light Source Ray Table and Base Three-surface Mirror Convex Lens Ruler Optics Bench Cylindrical Lens Concave Lens Rhombus

More information

RAY OPTICS II 7.1 INTRODUCTION

RAY OPTICS II 7.1 INTRODUCTION 7 RAY OPTICS II 7.1 INTRODUCTION This chapter presents a discussion of more complicated issues in ray optics that builds on and extends the ideas presented in the last chapter (which you must read first!)

More information

Lab 9: The Acousto-Optic Effect

Lab 9: The Acousto-Optic Effect Lab 9: The Acousto-Optic Effect Incoming Laser Beam Travelling Acoustic Wave (longitudinal wave) O A 1st order diffracted laser beam A 1 Introduction qb d O 2qb rarefractions compressions Refer to Appendix

More information

Introduction to microstructure

Introduction to microstructure Introduction to microstructure 1.1 What is microstructure? When describing the structure of a material, we make a clear distinction between its crystal structure and its microstructure. The term crystal

More information

- the. or may. scales on. Butterfly wing. magnified about 75 times.

- the. or may. scales on. Butterfly wing. magnified about 75 times. Lecture Notes (Applications of Diffraction) Intro: - the iridescent colors seen in many beetles is due to diffraction of light rays hitting the small groovess of its exoskeleton - these ridges are only

More information

Physics 30 Worksheet # 14: Michelson Experiment

Physics 30 Worksheet # 14: Michelson Experiment Physics 30 Worksheet # 14: Michelson Experiment 1. The speed of light found by a Michelson experiment was found to be 2.90 x 10 8 m/s. If the two hills were 20.0 km apart, what was the frequency of the

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 SPECTROPHOTOMETRY Absorption Measurements & their Application to Quantitative Analysis study of the interaction of light (or other electromagnetic

More information

EXPERIMENT #1: MICROSCOPY

EXPERIMENT #1: MICROSCOPY EXPERIMENT #1: MICROSCOPY Brightfield Compound Light Microscope The light microscope is an important tool in the study of microorganisms. The compound light microscope uses visible light to directly illuminate

More information

Review of the isotope effect in the hydrogen spectrum

Review of the isotope effect in the hydrogen spectrum Review of the isotope effect in the hydrogen spectrum 1 Balmer and Rydberg Formulas By the middle of the 19th century it was well established that atoms emitted light at discrete wavelengths. This is in

More information

Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate.

Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate. Series ONS SET-1 Roll No. Candiates must write code on the title page of the answer book Please check that this question paper contains 16 printed pages. Code number given on the right hand side of the

More information

Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 )

Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) 1 of 13 2/17/2016 5:28 PM Signed in as Weida Wu, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) My Courses Course Settings University Physics with Modern Physics,

More information

A Guide to Acousto-Optic Modulators

A Guide to Acousto-Optic Modulators A Guide to Acousto-Optic Modulators D. J. McCarron December 7, 2007 1 Introduction Acousto-optic modulators (AOMs) are useful devices which allow the frequency, intensity and direction of a laser beam

More information

Physics 221 Classical Physics II Lab Gustavus Adolphus College Spring 2007

Physics 221 Classical Physics II Lab Gustavus Adolphus College Spring 2007 Physics 221 Classical Physics II Lab Gustavus Adolphus College Spring 2007 Instructors: Thomas Huber James Miller Office: Olin Hall 209 Olin Hall 204 Telephone: 933-7036 933-6130 email: huber@gustavus.edu

More information

Refraction of Light at a Plane Surface. Object: To study the refraction of light from water into air, at a plane surface.

Refraction of Light at a Plane Surface. Object: To study the refraction of light from water into air, at a plane surface. Refraction of Light at a Plane Surface Object: To study the refraction of light from water into air, at a plane surface. Apparatus: Refraction tank, 6.3 V power supply. Theory: The travel of light waves

More information

Experiment 8: Undriven & Driven RLC Circuits

Experiment 8: Undriven & Driven RLC Circuits Experiment 8: Undriven & Driven RLC Circuits Answer these questions on a separate sheet of paper and turn them in before the lab 1. RLC Circuits Consider the circuit at left, consisting of an AC function

More information

Acousto-optic modulator

Acousto-optic modulator 1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).

More information

Sample Exercise 6.1 Concepts of Wavelength and Frequency

Sample Exercise 6.1 Concepts of Wavelength and Frequency Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the

More information

Light Control and Efficacy using Light Guides and Diffusers

Light Control and Efficacy using Light Guides and Diffusers Light Control and Efficacy using Light Guides and Diffusers LEDs 2012 Michael Georgalis, LC Marketing Manager, Fusion Optix October 11, 2012 Agenda Introduction What Is Light Control? Improves Application

More information

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of: ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which

More information

1 of 9 2/9/2010 3:38 PM

1 of 9 2/9/2010 3:38 PM 1 of 9 2/9/2010 3:38 PM Chapter 23 Homework Due: 8:00am on Monday, February 8, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

Chapter 17: Light and Image Formation

Chapter 17: Light and Image Formation Chapter 17: Light and Image Formation 1. When light enters a medium with a higher index of refraction it is A. absorbed. B. bent away from the normal. C. bent towards from the normal. D. continues in the

More information

2 Spectrophotometry and the Analysis of Riboflavin

2 Spectrophotometry and the Analysis of Riboflavin 2 Spectrophotometry and the Analysis of Riboflavin Objectives: A) To become familiar with operating the Platereader; B) to learn how to use the Platereader in determining the absorption spectrum of a compound

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Computer 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab

More information

Efficiency, Dispersion and Straylight Performance Tests of Immersed Gratings for High Resolution Spectroscopy in the Near Infra-red

Efficiency, Dispersion and Straylight Performance Tests of Immersed Gratings for High Resolution Spectroscopy in the Near Infra-red Changing the economics of space Efficiency, Dispersion and Straylight Performance Tests of Immersed Gratings for High Resolution Spectroscopy in the Near Infra-red J. Fernandez-Saldivar 1, F. Culfaz 1,

More information

Physics 41 Chapter 38 HW Key

Physics 41 Chapter 38 HW Key Physics 41 Chapter 38 HW Key 1. Helium neon laser light (63..8 nm) is sent through a 0.300-mm-wide single slit. What is the width of the central imum on a screen 1.00 m from the slit? 7 6.38 10 sin θ.11

More information

Experiment: Crystal Structure Analysis in Engineering Materials

Experiment: Crystal Structure Analysis in Engineering Materials Experiment: Crystal Structure Analysis in Engineering Materials Objective The purpose of this experiment is to introduce students to the use of X-ray diffraction techniques for investigating various types

More information

Light and its effects

Light and its effects Light and its effects Light and the speed of light Shadows Shadow films Pinhole camera (1) Pinhole camera (2) Reflection of light Image in a plane mirror An image in a plane mirror is: (i) the same size

More information

Guide to Understanding X-ray Crystallography

Guide to Understanding X-ray Crystallography Guide to Understanding X-ray Crystallography What is X-ray Crystallography and why do I need to learn it? X-ray Crystallography is a scientific method of determining the precise positions/arrangements

More information

Care and Use of the Compound Microscope

Care and Use of the Compound Microscope Revised Fall 2011 Care and Use of the Compound Microscope Objectives After completing this lab students should be able to 1. properly clean and carry a compound and dissecting microscope. 2. focus a specimen

More information

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. Outcomes After completing this experiment, the student should be able to: 1. Prepare

More information

Geometric Optics Converging Lenses and Mirrors Physics Lab IV

Geometric Optics Converging Lenses and Mirrors Physics Lab IV Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The

More information

Motion of Charges in Combined Electric and Magnetic Fields; Measurement of the Ratio of the Electron Charge to the Electron Mass

Motion of Charges in Combined Electric and Magnetic Fields; Measurement of the Ratio of the Electron Charge to the Electron Mass Motion of Charges in Combined Electric and Magnetic Fields; Measurement of the Ratio of the Electron Charge to the Electron Mass Object: Understand the laws of force from electric and magnetic fields.

More information

Using light scattering method to find The surface tension of water

Using light scattering method to find The surface tension of water Experiment (8) Using light scattering method to find The surface tension of water The aim of work: The goals of this experiment are to confirm the relationship between angular frequency and wave vector

More information

MITOSIS IN ONION ROOT TIP CELLS: AN INTRODUCTION TO LIGHT MICROSCOPY

MITOSIS IN ONION ROOT TIP CELLS: AN INTRODUCTION TO LIGHT MICROSCOPY MITOSIS IN ONION ROOT TIP CELLS: AN INTRODUCTION TO LIGHT MICROSCOPY Adapted from Foundations of Biology I; Lab 6 Introduction to Microscopy Dr. John Robertson, Westminster College Biology Department,

More information

Atomic Force Microscope

Atomic Force Microscope Atomic Force Microscope (Veeco Nanoman) User Manual Basic Operation 4 th Edition Aug 2012 NR System Startup If the system is currently ON To start the NanoScope software, double-click the NanoScope startup

More information

Infrared Spectroscopy: Theory

Infrared Spectroscopy: Theory u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used

More information

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics 13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves 5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

More information

Boardworks AS Physics

Boardworks AS Physics Boardworks AS Physics Vectors 24 slides 11 Flash activities Prefixes, scalars and vectors Guide to the SI unit prefixes of orders of magnitude Matching powers of ten to their SI unit prefixes Guide to

More information

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

More information

The Phenomenon of Photoelectric Emission:

The Phenomenon of Photoelectric Emission: The Photoelectric Effect. The Wave particle duality of light Light, like any other E.M.R (electromagnetic radiation) has got a dual nature. That is there are experiments that prove that it is made up of

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Study Guide for Exam on Light

Study Guide for Exam on Light Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used

More information

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9

Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9 Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation

More information

Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy

Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy 2-1 Experiment 2 Kinetics II Concentration-Time Relationships and Activation Energy Introduction: The kinetics of a decomposition reaction involving hydroxide ion and crystal violet, an organic dye used

More information

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

More information

Lenses and Telescopes

Lenses and Telescopes A. Using single lenses to form images Lenses and Telescopes The simplest variety of telescope uses a single lens. The image is formed at the focus of the telescope, which is simply the focal plane of the

More information

Lab 3 - DC Circuits and Ohm s Law

Lab 3 - DC Circuits and Ohm s Law Lab 3 DC Circuits and Ohm s Law L3-1 Name Date Partners Lab 3 - DC Circuits and Ohm s Law OBJECTIES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in

More information