Chapter 8. Aromaticity

Size: px
Start display at page:

Download "Chapter 8. Aromaticity"

Transcription

1 Chapter 8. Aromaticity Learning objectives: 1. Name benzene derivatives. 2. Recognize aromatic compounds. 3. Explain the trend for the acidity of substituted phenol using the concept of electrondonating and electron-withdrawing groups, and inductive and resonance effects. 4. Write the oxidation of the benzylic groups with C-H bond(s) to benzoic acid. 5. Write the electron-pushing (arrow-pushing) mechanisms for the electrophilic aromatic substitution of benzene including halogenation, nitration, sulfonation, Friedel-Crafts alkylation, and Friedel-Crafts acylation. 6. Explain the trend for the reactivity of substituted benzene toward electrophilic aromatic substitution using the concept of electron-donating and electron-withdrawing groups. 7. Recognize the reagents for reduction of nitro group to amino group. Sections to be covered 8.1 Introduction of Aromatic Compounds 8.2 Nomenclature of Monosubstituted Benzenes 8.3 Electrophilic Aromatic Substitution 8.4 Chemical Transformation of Some Substituents of Benzene 8.5 Nomenclature of Disubstituted and Polysubstituted Benzene 8.6 Reactivity of Substituted Benzene 8.7 The Effect Substituent on pka 8.1 Introduction of Aromatic Compounds A. Aromatic compounds are unusually stable The resonance of benzene provides additional stabilization. H 2 Ni H = kcal/mol 1

2 + 3H 2 cyclohexatriene (hypothetical) 36 kcal/mol Energy + H 2 + 3H kcal/mol kcal/mol (-28.6x3) kcal/mol B. The Criteria of Being Aromatic (i) Cyclic molecule (ii) Every atom has p orbital (iii) Planar molecule (iv) Number of delocalizable electrons complies with 4n+2 rule (as compared with 4n rule) Integral numbers that comply with the 4n+2 equation: 2, 6, 10, 14, 18, 22, 26 4n+2 2

3 C. Examples 3

4 D. Heterocyclic Compounds Know the type of lone-pair electrons that are delocalizable. H N H N O S N 4

5 D. Self-assessment Questions Can you describe the criteria for aromaticity? Can you use the criteria for aromaticity to identify aromatic and non-aromatic compounds? Can you use orbital hybridization to identify whether the electron pair can contribute and form the aromatic compound? 8.2 Nomenclature of Monosubstituted Benzenes Know the name for all of the monosubstituted benzenes. Cl Br NO 2 CH 3 OH NH 2 SO 3 H OCH 3 CHO CO 2 H CH 3 CHCH 3 5

6 Know the name for all of Benzene-based Substituents. As substituent: A. Self-assessment Questions Can you name all the monosubstituted benzenes (12) and benzene-based substituents (3) listed in this section? 8.3 Electrophilic Aromatic Substitution Know why it s called electrophilic aromatic substitution. A. General reaction equation E + E + + H + 6

7 B. General mechanism C. Comparing Electrophilic Aromatic Substitution and Addition Reaction 7

8 D. Reaction coordinate diagram E. Halogenation of Benzene Cl 2 (Br 2 ) FeCl 3 (FeBr 3 ) Cl (Br) (i) How to derive the mechanism for halogenation of benzene? Retrosynthetic analysis 8

9 (ii) The role(s) of FeCl3 or FeBr3? (iii) Mechanism of halogenation F. Nitration of Benzene HNO 3 H 2 SO 4 NO 2 (i) What is the electrophile needed and how to get it? 9

10 (ii) What is the role of H2SO4? (iii) Mechanism of nitration G. Sulfonation of Benzene SO 3 H 2 SO 4 SO 3 H fuming H 2 SO 4 (i) What is the electrophile needed and how to get it? 10

11 (ii) Mechanism H. Friedel-Crafts acylation and alkylation of benzene RX AlCl 3 R RCOX AlCl 3 O C R 11

12 (i) What are the electrophiles? (ii) Example of Friedel-Crafts alkylation 12

13 (iii) Example of Friedel-Crafts acylation I. Self-assessment Questions Can you explain what is electrophilic aromatic substitution? Can you derive the general mechanism of electrophilic aromatic substitution and identify the rate-determining step Can you write the electron-pushing mechanisms for the electrophilic aromatic substitution of benzene including halogenation, nitration, sulfonation, Friedel- Crafts alkylation, and Friedel-Crafts acylation. Can you identify the reagents and acid catalysts needed for various electrophilic aromatic substitutions, and complete these reactions? Can you explain the difference between electrophilic aromatic substitution and addition reaction? 13

14 8.4 Chemical Transformation of Some Substituents of Benzene A. Reduction O H 2, Pd/C NO 2 H 2, Pd/C 14

15 B. Oxidation 15

16 C. Self-assessment Questions Can you recognize all the reagents used for reduction and oxidation in this section? Can you complete the reduction and oxidation with similar functional groups attached to benzene as shown in this section and provide the corresponding products? Can you combine all the reactions you have learned so far and complete a multi-step synthesis? 8.5 Nomenclature of Disubstituted and Polysubstituted Benzene A. Disubstituted Benzenes 16

17 17

18 B. Trisubstituted Benzene C. Polysubstituted Benzene 18

19 D. Self-assessment Questions Can you name all the disubstituted benzenes using ortho (O), meta (m) and para (p), or numbering systems? 8.7 Reactivity of Substituted Benzene Know what are Electron-donating group (EDG) and electron-withdrawing group (EWG) Know how to judge EDG and EWG can predict the possible outcomes from a reaction. A. The Influence of EDG and EWG on the Electron Density of Substituted Benzene Know how to use resonance effect and inductive effect B. Strong Electron-donating Group 19

20 C. Moderate Electron-donating Group D. Weak Electron-donating Group 20

21 E. Moderate Electron-Withdrawing Group F. Strong Electron-Withdrawing Group 21

22 G. Influence of EDG and EDW on the Reaction Rate of Benzene (i) What is the correct order of decreasing reactivity (fastest to slowest) toward the electrophilic aromatic substitution for the following compounds? Cl CH 3 OCH 3 NO 2 I II III IV V Resonance effect > inductive effect (mostly) 22

23 H. Self-assessment Questions Can you describe what are resonance effect and inductive effect? Can you recognize EDG and EWG using resonance and inductive effects? Can you explain the trend for the reactivity of substituted benzene toward electrophilic aromatic substitution using the concept of electron-donating and electron-withdrawing groups? 8.7 The Effect of Substituents on pka Know the influence of EDG and EWG on the electron density of substituted benzene. Know the influence of EDG and EWG on the stability of conjugate bases. A. What Influence that EDG and EWG Will Have on Acidity? 23

24 B. Substituted Phenols OH OH OH OH OH OH O H 3 CO H 3 C Cl O I II III IV V 2 N H VI pka C. Substituted Benzoic Acids CO 2 H CO 2 H CO 2 H CO 2 H CO 2 H CO 2 H O H 3 CO H 3 C Br O I II III IV V 2 N CH VI 3 pka

25 D. Substituted Prononated Anilines NH 3 NH 3 NH 3 NH 3 NH 3 NH 3 O H 3 CO H 3 C Br O I II III IV V 2 N H VI pka Which of the following amine is most basic? E. Self-assessment Questions Can you describe the influence of EDG and EWG on the electron density of substituted benzenes? Can you describe the influence of EDG and EWG on the stability of the conjugate bases for the substituted benzenes? Can you explain the trend of acidity for the substituted benzenes using the concept of electron-donating and electron-withdrawing groups? 25

Electrophilic Aromatic Substitution Reactions

Electrophilic Aromatic Substitution Reactions Electrophilic Aromatic Substitution Reactions, Course Notes Archive, 1 Electrophilic Aromatic Substitution Reactions An organic reaction in which an electrophile substitutes a hydrogen atom in an aromatic

More information

4/18/2011. 9.8 Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions

4/18/2011. 9.8 Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions 9.8 Substituent effects in the electrophilic substitution of an aromatic ring Substituents affect the reactivity of the aromatic ring Some substituents activate the ring, making it more reactive than benzene

More information

REACTIONS OF AROMATIC COMPOUNDS

REACTIONS OF AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO: REACTIONS OF AROMATIC COMPOUNDS 1. Predict the product(s) of Electrophilic Aromatic Substitution (EAS), Nucleophilic Aromatic Substitution (S N Ar) and Elimination-Addition

More information

Benzene Benzene is best represented as a resonance hybrid:

Benzene Benzene is best represented as a resonance hybrid: Electrophilic Aromatic Substitution (EAS) is a substitution reaction usually involving the benzene ring; more specifically it is a reaction in which the hydrogen atom of an aromatic ring is replaced as

More information

CHEM 211 CHAPTER 16 - Homework

CHEM 211 CHAPTER 16 - Homework CHEM 211 CHAPTER 16 - Homework SHORT ANSWER Consider the Friedel-Crafts alkylation reaction below to answer the following question(s): 1. Refer to the reaction above. Draw the structure of the electrophilic

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Electrophilic Aromatic Substitution Electrophilic Aromatic Substitution: a reaction in which the hydrogen atom of an aromatic ring is replaced as a result of an electrophilic attack on the aromatic ring

More information

CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway. CHAPTER 14 Substitution Reactions of Aromatic Compounds

CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway. CHAPTER 14 Substitution Reactions of Aromatic Compounds CHEM 322 Organic Chemistry II - Professor Kathleen V. Kilway "Organic Chemistry" by Maitland Jones, 4 th edition Chapter 14 Homework: 1, 2, 5, 7, 13, 19, 20, 23, 26, 27, 28, 30, 31, 34, 35, 36, 41, 46,

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Electrophilic Aromatic Substitution Electrophilic substitution is the typical reaction type for aromatic rings. Generalized electrophilic aromatic substitution: E E Electrophile Lewis acid: may be or neutral.

More information

Q.1 Draw out some suitable structures which fit the molecular formula C 6 H 6

Q.1 Draw out some suitable structures which fit the molecular formula C 6 H 6 Aromatic compounds GE 1 BENZENE Structure Primary analysis revealed benzene had an... empirical formula of and a molecular formula of 6 6 Q.1 Draw out some suitable structures which fit the molecular formula

More information

Aromaticity and Reactions of Benzene

Aromaticity and Reactions of Benzene Aromaticity and eactions of Benzene ark College Benzene is a unique molecule it is highly unsaturated with 6 carbons and 6 hydrogens, it is planar, and has a high degree of symmetry. These features explain

More information

AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO:

AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO: A STUDENT SHULD BE ABLE T: ARMATIC CMPUNDS 1. Name benzene derivatives given the structures, and draw the structures given the names. This includes: Monosubstituted benzenes named as derivatives of benzene:

More information

Determining the Structure of an Organic Compound

Determining the Structure of an Organic Compound Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants In the 19 th and early 20 th

More information

Chemistry Notes for class 12 Chapter 13 Amines

Chemistry Notes for class 12 Chapter 13 Amines 1 P a g e Chemistry Notes for class 12 Chapter 13 Amines Amines constitute an important class of organic compounds derived by replacing one or more hydrogen atoms ofnh 3 molecule by alkyl/aryl group(s).

More information

Physicochemical Properties of Drugs

Physicochemical Properties of Drugs Therapeutics I Michael B. Bolger 1/3/02 bjectives: At the end of the next hour: Physicochemical Properties of Drugs 1. The student should be able to calculate the degree of ionization for an acidic or

More information

NMR Spectroscopy of Aromatic Compounds (#1e)

NMR Spectroscopy of Aromatic Compounds (#1e) NMR Spectroscopy of Aromatic Compounds (#1e) 1 H NMR Spectroscopy of Aromatic Compounds Erich Hückel s study of aromaticity in the 1930s produced a set of rules for determining whether a compound is aromatic.

More information

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate Pahlavan/Cherif Purpose a) Study electrophilic aromatic substitution reaction (EAS) b) Study regioselectivity

More information

Benzene and Aromatic Compounds

Benzene and Aromatic Compounds Benzene and Aromatic Compounds Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Benzene has four degrees of unsaturation, making it a highly unsaturated hydrocarbon. Whereas unsaturated

More information

Studying an Organic Reaction. How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction?

Studying an Organic Reaction. How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction? Studying an Organic Reaction How do we know if a reaction can occur? And if a reaction can occur what do we know about the reaction? Information we want to know: How much heat is generated? How fast is

More information

Figure 8. Example of simple benzene naming with chlorine and NO 2 as substituents.

Figure 8. Example of simple benzene naming with chlorine and NO 2 as substituents. BENZENE NAMING EXPLAINED. This was excerpted from CHEM WIKI and is used with appreciation to the authors. http://chemwiki.ucdavis.edu/organic_chemistry/hydrocarbons/aromatics/naming_the_benzenes. Simple

More information

Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes

Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes History and Application: The rate of a reaction directly impacts the commercial

More information

California State Polytechnic University, Pomona. Exam Points 1. Nomenclature (1) 30

California State Polytechnic University, Pomona. Exam Points 1. Nomenclature (1) 30 Chem 316 Final Exam Winter, 2008 Beauchamp ame: Topic Total Points Exam Points 1. omenclature (1) 30 Credit 2. Explanation of elative eactivities of Aromatic 20 Compounds or Carbonyl Compounds 3. eactions

More information

CHEM 203 Exam 1. KEY Name Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

CHEM 203 Exam 1. KEY Name Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. CHEM 203 Exam 1 KEY Name Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. _D C 1. Which of the following elements is a large percentage of both

More information

Chapter 2 Polar Covalent Bonds: Acids and Bases

Chapter 2 Polar Covalent Bonds: Acids and Bases John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds: Acids and Bases Modified by Dr. Daniela R. Radu Why This Chapter? Description of basic ways chemists account for chemical

More information

Conjugation is broken completely by the introduction of saturated (sp3) carbon:

Conjugation is broken completely by the introduction of saturated (sp3) carbon: Chapter 16 Conjugation, resonance, and dienes Conjugation relies on the partial overlap of p-orbitals on adjacent double or triple bonds. A common conjugated system involves 1,3-dienes, such as 1,3-butadiene.

More information

C 2 H 5 L L LC 2 H 5 l max = 256 nm (e = 20,000) 283 nm (e = 5,100) CH 3 H 3 C. CH 3 i. B bimesityl l max = 266 nm (e = 700)

C 2 H 5 L L LC 2 H 5 l max = 256 nm (e = 20,000) 283 nm (e = 5,100) CH 3 H 3 C. CH 3 i. B bimesityl l max = 266 nm (e = 700) 750 CAPTER 6 TE CEITRY F BENZENE AND IT DERIVATIVE This hybridization allows one of its electron pairs to occupy a 2p orbital, which has the same size, shape, and orientation as the carbon 2p orbitals

More information

Mass Spec - Fragmentation

Mass Spec - Fragmentation Mass Spec - Fragmentation An extremely useful result of EI ionization in particular is a phenomenon known as fragmentation. The radical cation that is produced when an electron is knocked out of a neutral

More information

Chapter 2 Polar Covalent Bonds; Acids and Bases

Chapter 2 Polar Covalent Bonds; Acids and Bases John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds; Acids and Bases Javier E. Horta, M.D., Ph.D. University of Massachusetts Lowell Polar Covalent Bonds: Electronegativity

More information

Typical Infrared Absorption Frequencies. Functional Class Range (nm) Intensity Assignment Range (nm) Intensity Assignment

Typical Infrared Absorption Frequencies. Functional Class Range (nm) Intensity Assignment Range (nm) Intensity Assignment Typical Infrared Absorption Frequencies Functional Class Range (nm) Intensity Assignment Range (nm) Intensity Assignment Alkanes 2850-3000 CH 3, CH 2 & CH 2 or 3 bands Alkenes 3020-3100 1630-1680 1900-2000

More information

Chapter 10. Conjugation in Alkadienes and Allylic Systems. Class Notes. B. The allyl group is both a common name and an accepted IUPAC name

Chapter 10. Conjugation in Alkadienes and Allylic Systems. Class Notes. B. The allyl group is both a common name and an accepted IUPAC name Chapter 10 Conjugation in Alkadienes and Allylic Systems Chapter 10 suggested problems: I. The allyl group Class Notes A. B. The allyl group is both a common name and an accepted IUPAC name 1. Allyl alcohol

More information

Nucleophilic Substitution and Elimination

Nucleophilic Substitution and Elimination Nucleophilic Substitution and Elimination What does the term "nucleophilic substitution" imply? A nucleophile is an the electron rich species that will react with an electron poor species A substitution

More information

CHE 232 - Organic Chemistry Exam 1, February 10, 2004

CHE 232 - Organic Chemistry Exam 1, February 10, 2004 CE 232 - rganic Chemistry Exam 1, February 10, 2004 ame Student ID o. Before you begin this exam: First: You are allowed to have a simple model set at your seat. Please put away all other materials. Second:

More information

STANDARD ANSWERS AND DEFINITIONS

STANDARD ANSWERS AND DEFINITIONS Evidence for Kekule s model to be wrong: STANDARD ANSWERS AND DEFINITIONS All C-C bond lengths are the same length, between C-C and C=C. Only reacts with Br2 with a halogen carrier Benzene is lower in

More information

Electrophilic Addition Reactions

Electrophilic Addition Reactions Electrophilic Addition Reactions Electrophilic addition reactions are an important class of reactions that allow the interconversion of C=C and C C into a range of important functional groups. Conceptually,

More information

Acids and Bases. but we will use the term Lewis acid to denote only those acids to which a bond can be made without breaking another bond

Acids and Bases. but we will use the term Lewis acid to denote only those acids to which a bond can be made without breaking another bond Acids and Bases. Brønsted acids are proton donors, and Brønsted bases are proton acceptors. Examples of Brønsted acids: HCl, HBr, H 2 SO 4, HOH, H 3 O +, + NH 4, NH 3, CH 3 CO 2 H, H CH 2 COCH 3, H C CH,

More information

RESONANCE, USING CURVED ARROWS AND ACID-BASE REACTIONS

RESONANCE, USING CURVED ARROWS AND ACID-BASE REACTIONS RESONANCE, USING CURVED ARROWS AND ACID-BASE REACTIONS A STUDENT SHOULD BE ABLE TO: 1. Properly use curved arrows to draw resonance structures: the tail and the head of every arrow must be drawn in exactly

More information

SN2 Ionic Substitution Reactions

SN2 Ionic Substitution Reactions SN2 Ionic Substitution Reactions Chem 14D Winter 2005 SN2 Ionic Substitution Reactions Substitution can occur in organic compounds that have an electronegative atom or group bonded to an sp 3 hybridized

More information

Carboxylic Acid Structure and Chemistry: Part 2

Carboxylic Acid Structure and Chemistry: Part 2 Principles of Drug Action 1, pring 2005, Carboxylic Acids Part 2 Carboxylic Acid tructure and Chemistry: Part 2 Jack Deuiter IV. eactions of the Carboxylic Acid eactions Depending on their overall structure,

More information

EXPERIMENT 1: Survival Organic Chemistry: Molecular Models

EXPERIMENT 1: Survival Organic Chemistry: Molecular Models EXPERIMENT 1: Survival Organic Chemistry: Molecular Models Introduction: The goal in this laboratory experience is for you to easily and quickly move between empirical formulas, molecular formulas, condensed

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch 13_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) In organic chemistry, the term unsaturated means a molecule A) which contains one or more

More information

Experiment 11. Infrared Spectroscopy

Experiment 11. Infrared Spectroscopy Chem 22 Spring 2010 Experiment 11 Infrared Spectroscopy Pre-lab preparation. (1) In Ch 5 and 12 of the text you will find examples of the most common functional groups in organic molecules. In your notebook,

More information

Principles of Drug Action 1, Spring 2005, Aromatics HYDROCARBON STRUCTURE AND CHEMISTRY: AROMATICS. Jack DeRuiter

Principles of Drug Action 1, Spring 2005, Aromatics HYDROCARBON STRUCTURE AND CHEMISTRY: AROMATICS. Jack DeRuiter I. Introduction YDOABON STUTUE AND EMISTY: AOMATIS Jack Deuiter ydrocarbons are organic compounds consisting of - and - bonds. arbon has a valence of four and thus requires four electrons or bonds to complete

More information

ACID and BASES - a Summary

ACID and BASES - a Summary AID and BASES - a Summary Stefan Svensson 2004 Brönsted-Lowry : Acids donate protons Lewis -acid : Electron pair acceptor Bases accept protons Lewis-base: Electron pair donator. Acetic acid ättiksyra 3

More information

Identification of Unknown Organic Compounds

Identification of Unknown Organic Compounds Identification of Unknown Organic Compounds Introduction The identification and characterization of the structures of unknown substances are an important part of organic chemistry. Although it is often

More information

Amines H 3 C H. CH 2 CH 3 ethylmethylamine. Nomenclature. 1 o : RNH 2, 2 o : RR'NH, 3 o : RR'R"N, 4 o (salt) RR'R"R'"N + R = alkyl or aryl

Amines H 3 C H. CH 2 CH 3 ethylmethylamine. Nomenclature. 1 o : RNH 2, 2 o : RR'NH, 3 o : RR'RN, 4 o (salt) RR'RR'N + R = alkyl or aryl Amines omenclature 1 o :, 2 o : 'H, 3 o : '", 4 o (salt) '"'" + = alkyl or aryl ommon names For simple amines name groups attached to alphabetically; use suffix -amine. H 3 H H 2 ethylmethylamine In complicated

More information

CHEM 208(Organic Chemistry I) Instructor: Dr. Niranjan Goswami. Tel: (618)545-3361. Email: Ngoswami@kaskaskia.edu. Web: www.kc.cc.il.

CHEM 208(Organic Chemistry I) Instructor: Dr. Niranjan Goswami. Tel: (618)545-3361. Email: Ngoswami@kaskaskia.edu. Web: www.kc.cc.il. CHEM 208(Organic Chemistry I) Instructor: Dr. Niranjan Goswami Tel: (618)545-3361 Email: Ngoswami@kaskaskia.edu Web: www.kc.cc.il.us/ngoswami CHEM 208 COURSE SYLLABUS KASKASKIA COLLEGE NAME TERM YEAR TEXT:

More information

10 Cl atoms. 10 H2O molecules. 8.3 mol HCN = 8.3 mol N atoms 1 mol HCN. 2 mol H atoms 2.63 mol CH2O = 5.26 mol H atoms 1 mol CH O

10 Cl atoms. 10 H2O molecules. 8.3 mol HCN = 8.3 mol N atoms 1 mol HCN. 2 mol H atoms 2.63 mol CH2O = 5.26 mol H atoms 1 mol CH O Chem 100 Mole conversions and stoichiometry worksheet 1. How many Ag atoms are in.4 mol Ag atoms? 6.0 10 Ag atoms 4.4 mol Ag atoms = 1.46 10 Ag atoms 1 mol Ag atoms. How many Br molecules are in 18. mol

More information

Carboxylic Acid Derivatives and Nitriles

Carboxylic Acid Derivatives and Nitriles Carboxylic Acid Derivatives and itriles Carboxylic Acid Derivatives: There are really only four things to worry about under this heading; acid chlorides, anhydrides, esters and amides. We ll start with

More information

Survival Organic Chemistry Part I: Molecular Models

Survival Organic Chemistry Part I: Molecular Models Survival Organic Chemistry Part I: Molecular Models The goal in this laboratory experience is to get you so you can easily and quickly move between empirical formulas, molecular formulas, condensed formulas,

More information

Ultraviolet Spectroscopy

Ultraviolet Spectroscopy Ultraviolet Spectroscopy The wavelength of UV and visible light are substantially shorter than the wavelength of infrared radiation. The UV spectrum ranges from 100 to 400 nm. A UV-Vis spectrophotometer

More information

Everything You Need to Know About Mechanisms. First rule: Arrows are used to indicate movement of electrons

Everything You Need to Know About Mechanisms. First rule: Arrows are used to indicate movement of electrons Everything You eed to Know About Mechanisms A) The orrect Use of Arrows to Indicate Electron Movement The ability to write an organic reaction mechanism properly is key to success in organic chemistry

More information

the double or triple bond. If the multiple bond is CH 3 C CCHCCH 3

the double or triple bond. If the multiple bond is CH 3 C CCHCCH 3 Alkenes, Alkynes, and Aromatic ompounds Alkenes and Alkynes Unsaturated contain carbon-carbon double and triple bond to which more hydrogen atoms can be added. Alkenes: carbon-carbon double bonds Alkynes:

More information

Chapter 22 Carbonyl Alpha-Substitution Reactions

Chapter 22 Carbonyl Alpha-Substitution Reactions John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 22 Carbonyl Alpha-Substitution Reactions The α Position The carbon next to the carbonyl group is designated as being in the α position Electrophilic

More information

IDENTIFICATION OF ALCOHOLS

IDENTIFICATION OF ALCOHOLS IDENTIFICATION OF ALCOHOLS Alcohols are organic compounds that which considered as derivatives of water. One of the hydrogen atoms of water molecule (H-O-H) has been replaced by an alkyl or substituted

More information

Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate.

Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate. Series ONS SET-3 Roll No. Candiates must write code on the title page of the answer book Please check that this question paper contains 15 printed pages. Code number given on the right hand side of the

More information

Chapter 11 Homework and practice questions Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations

Chapter 11 Homework and practice questions Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations Chapter 11 Homework and practice questions Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations SHORT ANSWER Exhibit 11-1 Circle your response in each set below. 1. Circle the least

More information

Chapter 2 - Polar Covalent Bonds; Acids and Bases

Chapter 2 - Polar Covalent Bonds; Acids and Bases Chapter 2 - Polar Covalent Bonds; Acids and Bases For questions 1-10 give the letter of the term that best matches the given definition. a. Brønsted-Lowry Acid f. Ionic Bond b. Brønsted-Lowry Base g. Covalent

More information

CHEM 121. Chapter 17. Name: Date:

CHEM 121. Chapter 17. Name: Date: CHEM 121. Chapter 17. Name: Date: 1. The elements present in a tertiary amine with two phenyl groups are A) carbon and nitrogen B) carbon, nitrogen and hydrogen C) carbon, nitrogen and oxygen D) carbon,

More information

Alkanes. Chapter 1.1

Alkanes. Chapter 1.1 Alkanes Chapter 1.1 Organic Chemistry The study of carbon-containing compounds and their properties What s so special about carbon? Carbon has 4 bonding electrons. Thus, it can form 4 strong covalent bonds

More information

How to Quickly Solve Spectrometry Problems

How to Quickly Solve Spectrometry Problems How to Quickly Solve Spectrometry Problems You should be looking for: Mass Spectrometry (MS) Chemical Formula DBE Infrared Spectroscopy (IR) Important Functional Groups o Alcohol O-H o Carboxylic Acid

More information

ammonium salt (acidic)

ammonium salt (acidic) Chem 360 Jasperse Ch. 19 otes. Amines 1 eactions of Amines 1. eaction as a proton base (Section 19-5 and 19-6) amine base -X (proton acid) a X ammonium salt (acidic) Mechanism: equired (protonation) everse

More information

ORGANIC CHEMISTRY I PRACTICE PROBLEMS FOR BRONSTED-LOWRY ACID-BASE CHEMISTRY

ORGANIC CHEMISTRY I PRACTICE PROBLEMS FOR BRONSTED-LOWRY ACID-BASE CHEMISTRY RGANIC CHEMISTRY I PRACTICE PRBLEMS FR BRNSTED-LWRY ACID-BASE CHEMISTRY 1. For each of the species below, identify the most acidic proton and provide the structure of the corresponding conjugate base.

More information

CHM220 Addition lab. Experiment: Reactions of alkanes, alkenes, and cycloalkenes*

CHM220 Addition lab. Experiment: Reactions of alkanes, alkenes, and cycloalkenes* CM220 Addition lab Experiment: Reactions of alkanes, alkenes, and cycloalkenes* Purpose: To investigate the physical properties, solubility, and density of some hydrocarbon. To compare the chemical reactivity

More information

Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure

Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure Chapter 9 Molecular Geometry & Bonding Theories I) Molecular Geometry (Shapes) Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure Molecular

More information

IR Applied to Isomer Analysis

IR Applied to Isomer Analysis DiscovIR-LC TM Application Note 025 April 2008 Deposition and Detection System IR Applied to Isomer Analysis Infrared spectra provide valuable information about local configurations of atoms in molecules.

More information

Unit Vocabulary: o Organic Acid o Alcohol. o Ester o Ether. o Amine o Aldehyde

Unit Vocabulary: o Organic Acid o Alcohol. o Ester o Ether. o Amine o Aldehyde Unit Vocabulary: Addition rxn Esterification Polymer Alcohol Ether Polymerization Aldehyde Fermentation Primary Alkane Functional group Saponification Alkene Halide (halocarbon) Saturated hydrocarbon Alkyne

More information

Chapter 6 An Overview of Organic Reactions

Chapter 6 An Overview of Organic Reactions John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 6 An Overview of Organic Reactions Why this chapter? To understand organic and/or biochemistry, it is necessary to know: -What occurs -Why and

More information

2. Rank the following three compounds in decreasing order of basicity. O NHCCH 3 NH 2

2. Rank the following three compounds in decreasing order of basicity. O NHCCH 3 NH 2 1. To convert a nitrile to a primary amine you must: A) hydrolyze it with water. B) oxidize it with chromic acid. C) reduce it with hydrogen or lithium aluminum hydride. D) substitute it with an alkyl

More information

IR Summary - All numerical values in the tables below are given in wavenumbers, cm -1

IR Summary - All numerical values in the tables below are given in wavenumbers, cm -1 Spectroscopy Data Tables Infrared Tables (short summary of common absorption frequencies) The values given in the tables that follow are typical values. Specific bands may fall over a range of wavenumbers,

More information

CHEMISTRY 101 EXAM 3 (FORM B) DR. SIMON NORTH

CHEMISTRY 101 EXAM 3 (FORM B) DR. SIMON NORTH 1. Is H 3 O + polar or non-polar? (1 point) a) Polar b) Non-polar CHEMISTRY 101 EXAM 3 (FORM B) DR. SIMON NORTH 2. The bond strength is considerably greater in HF than in the other three hydrogen halides

More information

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens). Reactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. Normally: Oxidation

More information

Atomic Masses. Chapter 3. Stoichiometry. Chemical Stoichiometry. Mass and Moles of a Substance. Average Atomic Mass

Atomic Masses. Chapter 3. Stoichiometry. Chemical Stoichiometry. Mass and Moles of a Substance. Average Atomic Mass Atomic Masses Chapter 3 Stoichiometry 1 atomic mass unit (amu) = 1/12 of the mass of a 12 C atom so one 12 C atom has a mass of 12 amu (exact number). From mass spectrometry: 13 C/ 12 C = 1.0836129 amu

More information

Chapter 14 - Acids and Bases

Chapter 14 - Acids and Bases Chapter 14 - Acids and Bases 14.1 The Nature of Acids and Bases A. Arrhenius Model 1. Acids produce hydrogen ions in aqueous solutions 2. Bases produce hydroxide ions in aqueous solutions B. Bronsted-Lowry

More information

Acids and Bases: A Brief Review

Acids and Bases: A Brief Review Acids and : A Brief Review Acids: taste sour and cause dyes to change color. : taste bitter and feel soapy. Arrhenius: acids increase [H ] bases increase [OH ] in solution. Arrhenius: acid base salt water.

More information

Suggested solutions for Chapter 7

Suggested solutions for Chapter 7 s for Chapter 7 7 PRBLEM 1 Are these molecules conjugated? Explain your answer in any reasonable way. C Et C Et C Et Revision of the basic kinds of conjugation and how to show conjugation with curly arrows.

More information

Writing and Balancing Chemical Equations

Writing and Balancing Chemical Equations Name Writing and Balancing Chemical Equations Period When a substance undergoes a chemical reaction, chemical bonds are broken and new bonds are formed. This results in one or more new substances, often

More information

Chapter 12: Oxidation and Reduction.

Chapter 12: Oxidation and Reduction. 207 Oxidation- reduction (redox) reactions Chapter 12: Oxidation and Reduction. At different times, oxidation and reduction (redox) have had different, but complimentary, definitions. Compare the following

More information

These instructions are for a classroom activity which supports OCR A Level Chemistry A.

These instructions are for a classroom activity which supports OCR A Level Chemistry A. Lesson Element Keyword activities Instructions for teachers These instructions are for a classroom activity which supports OCR A Level Chemistry A. Just a minute! To run this activity you will need a set

More information

Amides and Amines: Organic Nitrogen Compounds

Amides and Amines: Organic Nitrogen Compounds Chapter 25 Amides and Amines: Organic Nitrogen Compounds Nylon is one of the materials used to give these colorful sails their strength and durability. Introduction to General, Organic, and Biochemistry,

More information

GCE. Chemistry A. Mark Scheme for June 2011. Advanced GCE. Unit F324: Rings, Polymers and Analysis. Oxford Cambridge and RSA Examinations

GCE. Chemistry A. Mark Scheme for June 2011. Advanced GCE. Unit F324: Rings, Polymers and Analysis. Oxford Cambridge and RSA Examinations GCE Chemistry A Advanced GCE Unit F324: Rings, Polymers and Analysis Mark Scheme for June 20 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing

More information

WRITING CHEMICAL FORMULA

WRITING CHEMICAL FORMULA WRITING CHEMICAL FORMULA For ionic compounds, the chemical formula must be worked out. You will no longer have the list of ions in the exam (like at GCSE). Instead you must learn some and work out others.

More information

for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency of the vibration

for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency of the vibration ! = 1 2"c k (m + M) m M wavenumbers! =!/c = 1/" wavelength frequency! units: cm 1 for excitation to occur, there must be an exact match between the frequency of the applied radiation and the frequency

More information

Chapter 5 Classification of Organic Compounds by Solubility

Chapter 5 Classification of Organic Compounds by Solubility Chapter 5 Classification of Organic Compounds by Solubility Deductions based upon interpretation of simple solubility tests can be extremely useful in organic structure determination. Both solubility and

More information

Acids and Bases: Molecular Structure and Acidity

Acids and Bases: Molecular Structure and Acidity Acids and Bases: Molecular Structure and Acidity Review the Acids and Bases Vocabulary List as needed. Tutorial Contents A. Introduction B. Resonance C. Atomic Radius D. Electronegativity E. Inductive

More information

Resonance Structures Arrow Pushing Practice

Resonance Structures Arrow Pushing Practice Resonance Structures Arrow Pushing Practice The following is a collection of ions and neutral molecules for which several resonance structures can be drawn. For the ions, the charges can be delocalized

More information

Writing a Correct Mechanism

Writing a Correct Mechanism Chapter 2 1) Balancing Equations Writing a Correct Mechanism 2) Using Arrows to show Electron Movement 3) Mechanisms in Acidic and Basic Media 4) Electron rich Species: Nucleophile or Base? 5) Trimolecular

More information

Unit 2 Review: Answers: Review for Organic Chemistry Unit Test

Unit 2 Review: Answers: Review for Organic Chemistry Unit Test Unit 2 Review: Answers: Review for Organic Chemistry Unit Test 2. Write the IUPAC names for the following organic molecules: a) acetone: propanone d) acetylene: ethyne b) acetic acid: ethanoic acid e)

More information

Theme 3: Bonding and Molecular Structure. (Chapter 8)

Theme 3: Bonding and Molecular Structure. (Chapter 8) Theme 3: Bonding and Molecular Structure. (Chapter 8) End of Chapter questions: 5, 7, 9, 12, 15, 18, 23, 27, 28, 32, 33, 39, 43, 46, 67, 77 Chemical reaction valence electrons of atoms rearranged (lost,

More information

HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone:

HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone: HMEWRK PRBLEMS: IR SPECTRSCPY AND 13C NMR 1. You find a bottle on the shelf only labeled C 3 H 6. You take an IR spectrum of the compound and find major peaks at 2950, 1720, and 1400 cm -1. Draw a molecule

More information

1. How many hydrogen atoms are in 1.00 g of hydrogen?

1. How many hydrogen atoms are in 1.00 g of hydrogen? MOLES AND CALCULATIONS USING THE MOLE CONCEPT INTRODUCTORY TERMS A. What is an amu? 1.66 x 10-24 g B. We need a conversion to the macroscopic world. 1. How many hydrogen atoms are in 1.00 g of hydrogen?

More information

Chapter 6 Notes Science 10 Name:

Chapter 6 Notes Science 10 Name: 6.1 Types of Chemical Reactions a) Synthesis (A + B AB) Synthesis reactions are also known as reactions. When this occurs two or more reactants (usually elements) join to form a. A + B AB, where A and

More information

For example: (Example is from page 50 of the Thinkbook)

For example: (Example is from page 50 of the Thinkbook) SOLVING COMBINED SPECTROSCOPY PROBLEMS: Lecture Supplement: page 50-53 in Thinkbook CFQ s and PP s: page 216 241 in Thinkbook Introduction: The structure of an unknown molecule can be determined using

More information

Chapter 12 Organic Compounds with Oxygen and Sulfur

Chapter 12 Organic Compounds with Oxygen and Sulfur Chapter 12 Organic Compounds with Oxygen and Sulfur 1 Alcohols An alcohol contains a hydroxyl group ( OH) that replaces a hydrogen atom in a hydrocarbon. A phenol contains a hydroxyl group ( OH) attached

More information

e. What are the compositions and uses of fractions of crude oil? f. How are further fractions lubricationg oils and waxes obtained?

e. What are the compositions and uses of fractions of crude oil? f. How are further fractions lubricationg oils and waxes obtained? CRUDE OIL AND ITS COMPOSITION 1. Use a textbook to answer the following questions: a. How was crude oil formed? b. What is crude oil chemically? c. How can the components of crude oil be separated? d.

More information

Chemistry Themed. Types of Reactions

Chemistry Themed. Types of Reactions Chemistry Themed Types of Reactions 1 2 Chemistry in the Community-2015-2016 Types of Reactions Date In-Class Assignment Homework T 10/20 TEST on Reactivity of Metals and Redox None W 10/21 Late Start

More information

2/10/2011. Stability of Cycloalkanes: Ring Strain. Stability of Cycloalkanes: Ring Strain. 4.3 Stability of Cycloalkanes: Ring Strain

2/10/2011. Stability of Cycloalkanes: Ring Strain. Stability of Cycloalkanes: Ring Strain. 4.3 Stability of Cycloalkanes: Ring Strain 4.3 Stability of Cycloalkanes: Ring Strain Angle strain The strain induced in a molecule when bond angles are forced to deviate from the ideal 109º tetrahedral value (Adolf von Baeyer 1885) Stability of

More information

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134)

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) 1. Helium atoms do not combine to form He 2 molecules, What is the strongest attractive

More information

passing through (Y-axis). The peaks are those shown at frequencies when less than

passing through (Y-axis). The peaks are those shown at frequencies when less than Infrared Spectroscopy used to analyze the presence of functional groups (bond types) in organic molecules The process for this analysis is two-fold: 1. Accurate analysis of infrared spectra to determine

More information

2. DECOMPOSITION REACTION ( A couple have a heated argument and break up )

2. DECOMPOSITION REACTION ( A couple have a heated argument and break up ) TYPES OF CHEMICAL REACTIONS Most reactions can be classified into one of five categories by examining the types of reactants and products involved in the reaction. Knowing the types of reactions can help

More information

neutrons are present?

neutrons are present? AP Chem Summer Assignment Worksheet #1 Atomic Structure 1. a) For the ion 39 K +, state how many electrons, how many protons, and how many 19 neutrons are present? b) Which of these particles has the smallest

More information

MULTIPLE CHOICE QUESTIONS Part 3: Syror och baser (Answers on page 18)

MULTIPLE CHOICE QUESTIONS Part 3: Syror och baser (Answers on page 18) MULTIPLE CHICE QUESTINS Part 3: Syror och baser (Answers on page 18) Topic: Acid-Base Definitions 1. According to the Lewis definition, a base is a(n): A) Proton donor. B) Electron pair donor. C) Hydroxide

More information