Riemann Sums y = f (x)

Size: px
Start display at page:

Download "Riemann Sums y = f (x)"

Transcription

1 Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid the area bouded above by f (x), below by the x-axis, ad by the vertical lies x = a ad x = b See Figure 11 To solve this problem we will eed to use a A f Figure 11: Fid the area A f uder a oegative cotiuous curve o the iterval [a, b] b Basic Area Properties (Axioms) We assume the followig properties 1 The area of a regio A is a o-egative real umber: Area(A) 0 B A Property 2 2 If A is a subset of B, the Area(A) Area(B) 3 If A is subdivided ito two o-overlappig regios A 1 ad A 2, the The area of a rectagle is b h Area(A) = Area(A 1 ) + Area(A 2 ) Property 3 A 1 Figure 12: Properties 2 ad 3 A 2 YOU TRY IT 11 Usig the area properties above, prove that the area of ay triagle is 1 (b h) 2 See Figure 13 Which area properties do you use i your proof? YOU TRY IT 12 How could you use the area formula for a triagle to fid the area of ay polygo? (See Figure 1) What area properties are used to do this? What about curved figures like (semi)circles Why is the area of a circle πr 2 or, equivaletly, the area of a semi-circle 1 2 πr2? If we ca solve the geeral area problem, the we will be able to prove that the area of a semi-circle is 1 2 πr2 because we kow that the graph of the semi-circle of radius r is give by the cotiuous, o-egative fuctio f (x) = r 2 x 2 I other words, a semi-circular regio satisfies the coditios outlied i the geeral area problem Note: We ll solve the area problem two ways Sice the aswer must be the same, this equality will be the proof for the so-called Fudametal Theorem of Calculus To solve the area problem, we ll eed to use the oly area formula we kow we must use rectagle regios Figure 13: Show A = 2 1 (b h) Figure 1: How you ca fid the area of this polygo? f (x) = r 2 x 2 r r Figure 15: This semi-circle satisfies the coditios of the area problem Riema Sums (Theory) The presetatio here is slightly differet tha i your text Make sure that you uderstad what all of the otatio meas Agai, remember what we are tryig to solve:

2 math 131 the area problem ad riema sums, part i 2 The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid the area bouded above by f (x), below by the x-axis, ad by the vertical lies x = a ad x = b As we have just oted, sice the oly area formula we have have to work with is for rectagles, we must use rectagles to approximate the area uder the curve Here s how we go about this approximatio process Step 1 First subdivide or partitio [a, b] by choosig poits {x 0, x 1,, x } where a = x 0 < x 1 < x 2 < < x 1 < x = b Figure 16: A partitio of the iterval [a, b] a = x 0 x 1 x 2 x k 1 x k b = x Step 2 Determie the height of the kth rectagle by choosig a sample poit c k i the kth subiterval so that x k 1 c k x k Use f (c k ) as the height height = f (c k ) Figure 17: f (c k ) is the height of the kth rectagle (see the poit marked with a o the curve) a = x 0 x 1 x 2 x k 1 c k x k b = x Step 3 The width of the base of the kth rectagle is just x k x k 1 We usually call this umber x k (See Figure 18) Step So usig the rectagle area assumptio, the area of the kth rectagle is h b = f (c k ) x k height = f (c k ) Figure 18: x k = x k x k 1 is the width of the kth rectagle So the area of the kth rectagle is f (c k ) x k a = x 0 x 1 x 2 x k 1 c k x k b = x x k Step 5 If we carry out this same process for each subiterval determied by the partitio {x 0, x 1,, x }, we get rectagles The area uder f o [a, b] is approximately the sum of the areas of all rectagles, Area(A) f (c k ) x k

3 math 131 the area problem ad riema sums, part i 3 Figure 19: A rectagular approximatio to the area uder f o the iterval [a, b] a = x 0 x 1 x 2 x k 1 x k b = x DEFINITION 11 (Riema Sum) Suppose f is defied o the iterval [a, b] with partitio a = x 0 < x 1 < x 2 < < x 1 < x = b Let x k = x k x k 1 ad let c k be ay poit chose so that x k 1 c k x k The is called a Riema sum for f o [a, b] f (c k ) x k Notice that i the geeral defiitio of a Riema sum we have ot assumed that f is o-egative or that it is cotiuous The defiitio makes sese as log as f is defied at every poit i [a, b] Let s work out a simple example EXAMPLE 101 Estimate the area uder f (x) = (x 1) o the iterval [0, 2] usig the partitio poits x 0 = 0 x 1 = 1 2 ad sample poits x 2 = 3 2 x 3 = 2 c 1 = 1 2 c 2 = 1 c 3 = 7 SOLUTION We use Defiitio 11 ad form the appropriate Riema sum First x 1 = x 1 x 0 = = 1 2 x 2 = x 2 x 1 = = 1 x 3 = x 3 x 2 = = 1 2 c 1 = 1/2 c 2 = 1 c 3 = 7/ So Area(A) 3 f (c k ) x k = f ( 1 2 ) x 1 + f (1) x 2 + f ( 7 ) x 3 = ( 7 8 )( 1 2 ) + (1)(1) + ( 91 6 )( 1 2 ) = x = 0 x 1 = 1/2 x 2 = 3/2 x 3 = 2 Figure 110: A Riema sum for f (x) = (x 1) o the iterval [0, 2] usig three rectagles The height for each rectagle is marked with a Does the approximatio seem to be a uder- or overestimate of the true area?

4 math 131 the area problem ad riema sums, part i The Riema sum provides a estimate of as the area uder the curve Yet we do t kow how accurate that estimate is ad we still do t kow the true area uder the curve Further, otice that the use of summatio otatio was ot particularly helpful here If we use Riema sums i a more systematic way, Riema sum otatio ca be very helpful Ad, if we are careful about how we form such sums, we ca eve say whether the sum is a over- or uderestimate of the actual area uder the curve Regular Partitios, Upper ad Lower Sums Agai let us assume that is a o-egative, cotiuous fuctio o the iterval [a, b] We will ow take a more systematic approach to formig Riema sums for f o [a, b] that will allow us to make more accurate approximatios to the area uder the curve Agai we proceed i a series of steps Step 1 Divide the iterval [a, b] ito equal-width subitervals The width of each iterval will be x = b a We ca express the partitio poits i terms of a ad x x 0 = a = a + 0 x x 1 = a + x x 2 = a + 2 x x k = a + k x x = b = a + x Equal width partitios are called regular partitios The formula for the kth poit i a regular partitio is x k = a + k x (11) Figure 111: A regular partitio of the iterval [a, b] ito subitervals each of legth x = b a This meas that x k = a + k x x 0 = a x 1 x 2 x k 1 x k x 1 x = b x x x Step 2 Sice f is cotiuous, it achieves a maximum value ad a miimum value

5 math 131 the area problem ad riema sums, part i 5 o each subiterval We use the followig otatio to represet these poits f (M k ) = maximum value of f o the kth subiterval f (m k ) = miimum value of f o the kth subiterval These poits are illustrated i Figure 112 f (M k ) f (m k ) Figure 112: O the kth subiterval the maximum height f (M k ) occurs betwee the two edpoits The miimum height f (m k ) happes to occur at the right edpoit of the iterval, m k = x k x k 1 M k x k x x k 1 x k = m k x Figure 112 shows that we get two differet rectagles for each subiterval depedig o whether we choose the maximum or the miimum value of f as the height These are called the circumscribed ad iscribed rectagles, respectively We see that area of the circumscribed rectagle = f (M k ) x area of the iscribed rectagle = f (m k ) x Step 3 To obtai a approximatio for the area uder the curve, we form a Riema sum usig either the circumscribed (upper) or iscribed (lower) rectagles If we add up all the circumscribed rectagles for a regular partitio with subitervals we get the upper sum for the partitio: Upper Riema Sum = Upper() = f (M k ) x (12) If we add up all the iscribed rectagles for a regular partitio we get the lower sum for the partitio: Lower Riema Sum = Lower() = f (m k ) x (13) Take a momet to review all of the otatio Ok? Let s see how these upper ad lower sums are computed i a simple case EXAMPLE 102 Let = x2 o [0, 2] Determie Upper() ad Lower(), the upper ad lower Riema sums for a regular partitio ito four subitervals SOLUTION We use the steps outlied above Step 1 Determie x Here [a, b] = [0, 2] ad = so x = b a = 2 0 = 1 2 Step 2 Determie the partitio poits, x k Usig (11) ( ) 1 x k = a + k x = 0 + k = k 2 2 (1)

6 math 131 the area problem ad riema sums, part i 6 Step 3 Take a look at the graph of f (x) = x2 o [0, 2] i Figure 113 Sice f is a icreasig fuctio, the maximum value of f o each subiterval occurs at the righthad edpoit of the iterval The right-had edpoit of the i iterval is just x k So M k = x k = k 2 Cosequetly, the maximum value of f o the kth iterval is f (M k ) = f ( ) k = Step Puttig this all together, the upper Riema sum is Upper() = f (M k ) x = f ( ) k 2 = 1 + k2 2 8 ( ) k = ] [1 + k Now use the basic summatio rules ad formulæ to evaluate the sum Figure 113: The upper sum Upper() for the fuctio f (x) = x2 o [0, 2] The maximum value of the fuctio occurs at the right-had edpoit, x k for each subiterval Upper() = [1 + k2 8 ] 1 2 = = 1 2 [(1)] = 31 8 k 2 ( ) (5)(9) 6 The lower sum Lower() ca be calculated i a similar way Agai, because the fuctio is icreasig, the miimum value of f o the kth subiterval occurs at the lefthad edpoit x k 1 Usig the formula i (1) m k = x k 1 = k 1 2 Cosequetly, the miimum value of f o the kth iterval is ( ) k 1 f (m k ) = f = ( ) k 1 2 = 1 + k2 2i = 9 8 k + k2 8 Puttig this all together, the lower Riema sum is Lower() = [ 9 f (m k ) x = 8 k ] + k Agai use the basic summatio rules ad formulæ to evaluate the sum Lower() = [ 9 8 k ] + k = 1 2 = [ ( 9 8 = 23 8 k ( (5) )] k 2 ) ( ) (5)(9) The advatage of upper ad lower sums is that the true area uder the curve is trapped betwee their values Upper() is always a overestimate ad Lower() is a uderestimate More precisely, Figure 11: The lower sum Lower() for the fuctio f (x) = x2 o [0, 2] The miimum value of the fuctio occurs at the left-had edpoit, x k 1 for each subiterval Lower() area uder f Upper() I this example, Lower() = 23 8 area uder f 31 8 = Upper()

7 math 131 the area problem ad riema sums, part i 7 Here are two questios to thik about: How ca we improve the estimate? Which sum was easier to compute, the lower or the upper? Why? Now let s do the whole process agai This time, though we will use subitervals, without specifyig what the actual value of is This is where the summatio otatio that we have developed really comes to the rescue EXAMPLE 103 Let = x2 o [0, 2] Determie Upper() ad Lower(), the upper ad lower Riema sums for a regular partitio ito subitervals SOLUTION Step 1 Determie x Here [a, b] = [0, 2] so x = b a = 2 0 = 2 Step 2 Determie the partitio poits, x k Usig (11) ( ) 2 x k = a + k x = 0 + k = 2k (15) Step 3 Sice f is a icreasig fuctio, the maximum value of f o each subiterval occurs at the right-had edpoit of the iterval So M k = x k So M k = x k = 2k Cosequetly, the maximum value of f o the kth iterval is f (M k ) = f ( ) 2k = ( ) 2k 2 = 1 + k2 2 2 = 1 + 2k Figure 115: The upper sum Upper() for the fuctio f (x) = x2 o [0, 2] As icreases, Upper() better approximates the area uder the curve (Compare to Figure 112) Puttig this all together, the upper Riema sum is Upper() = f (M k ) x = ] [1 + 2k2 2 2 = k 2 = 2 [(1)] + ( ) ( + 1)(2 + 1) 3 6 = ( 2 2 ) ( = ) 3 2 = The lower sum Lower() ca be calculated i a similar way The miimum value of f o the kth subiterval occurs at the left-had edpoit: m k = x k 1 = The miimum value of f o the kth iterval is 2(k 1) ( ) 2(k 1) f (m k ) = f = ( ) 2(k 1) 2 = 1 + (k2 2k + 1) = 1 + 2(k2 2k + 1) 2 Puttig this all together, the lower Riema sum is Figure 116: The lower sum Lower() for the fuctio f (x) = x2 o [0, 2] The lower sum is a uderestimate of the area uder f

8 math 131 the area problem ad riema sums, part i 8 Lower() = We kow that f (m k ) x = = 2 [ 1 + 2(k2 2k + 1) 2 ] (k 2 2k + 1) = 2 [(1)] + 3 k k = 2 + [ ] ( + 1)(2 + 1) 3 8 [ ( + 1) [ = ] [ ] = Lower() area uder f Upper() ] + 3 [()1] The formulæ for Upper() ad Lower() are valid for all positive itegers We expect that as icreases the approximatios improve I this case, takig limits lim Lower() area uder f lim Upper(), equivaletly, [ 10 lim ] [ area uder f lim ] 3 2, or 10 3 area uder f 10 3 The oly way this ca happe is if area uder f = 10 3 Take-home Message This is great! We have maaged to determie the area uder a actual curve by usig approximatios by lower ad upper Riema sums The approximatios improve as icreases By takig limits we hoe i o the precise area This is more carefully described i Theorem 11 at the begiig of the ext sectio Fially, agai ask yourself which of the two sums was easier to calculate? Why was it easier? Shortly we will take advatage of this situatio 0 2 Figure 117: The differece betwee the upper sum Upper() for the fuctio f (x) = x2 o [0, 2] ad the lower sum Lower() (shaded) The true area lies betwee the two

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

Math 113 HW #11 Solutions

Math 113 HW #11 Solutions Math 3 HW # Solutios 5. 4. (a) Estimate the area uder the graph of f(x) = x from x = to x = 4 usig four approximatig rectagles ad right edpoits. Sketch the graph ad the rectagles. Is your estimate a uderestimate

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

4.3. The Integral and Comparison Tests

4.3. The Integral and Comparison Tests 4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Convexity, Inequalities, and Norms

Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Chapter 5: Inner Product Spaces

Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the. Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

Lecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k.

Lecture 3. denote the orthogonal complement of S k. Then. 1 x S k. n. 2 x T Ax = ( ) λ x. with x = 1, we have. i = λ k x 2 = λ k. 18.409 A Algorithmist s Toolkit September 17, 009 Lecture 3 Lecturer: Joatha Keler Scribe: Adre Wibisoo 1 Outlie Today s lecture covers three mai parts: Courat-Fischer formula ad Rayleigh quotiets The

More information

http://www.webassign.net/v4cgijeff.downs@wnc/control.pl

http://www.webassign.net/v4cgijeff.downs@wnc/control.pl Assigmet Previewer http://www.webassig.et/vcgijeff.dows@wc/cotrol.pl of // : PM Practice Eam () Questio Descriptio Eam over chapter.. Questio DetailsLarCalc... [] Fid the geeral solutio of the differetial

More information

Maximum Likelihood Estimators.

Maximum Likelihood Estimators. Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

1. C. The formula for the confidence interval for a population mean is: x t, which was

1. C. The formula for the confidence interval for a population mean is: x t, which was s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

More information

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients 652 (12-26) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

AP Calculus BC 2003 Scoring Guidelines Form B

AP Calculus BC 2003 Scoring Guidelines Form B AP Calculus BC Scorig Guidelies Form B The materials icluded i these files are iteded for use by AP teachers for course ad exam preparatio; permissio for ay other use must be sought from the Advaced Placemet

More information

Lesson 15 ANOVA (analysis of variance)

Lesson 15 ANOVA (analysis of variance) Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi

More information

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means) CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

More information

5: Introduction to Estimation

5: Introduction to Estimation 5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios

More information

5.3. Generalized Permutations and Combinations

5.3. Generalized Permutations and Combinations 53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible

More information

AP Calculus AB 2006 Scoring Guidelines Form B

AP Calculus AB 2006 Scoring Guidelines Form B AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number. GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea - add up all

More information

Math C067 Sampling Distributions

Math C067 Sampling Distributions Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters

More information

5 Boolean Decision Trees (February 11)

5 Boolean Decision Trees (February 11) 5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected

More information

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean 1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.

More information

Descriptive Statistics

Descriptive Statistics Descriptive Statistics We leared to describe data sets graphically. We ca also describe a data set umerically. Measures of Locatio Defiitio The sample mea is the arithmetic average of values. We deote

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

COMPUTER LABORATORY IMPLEMENTATION ISSUES AT A SMALL LIBERAL ARTS COLLEGE. Richard A. Weida Lycoming College Williamsport, PA 17701 weida@lycoming.

COMPUTER LABORATORY IMPLEMENTATION ISSUES AT A SMALL LIBERAL ARTS COLLEGE. Richard A. Weida Lycoming College Williamsport, PA 17701 weida@lycoming. COMPUTER LABORATORY IMPLEMENTATION ISSUES AT A SMALL LIBERAL ARTS COLLEGE Richard A. Weida Lycomig College Williamsport, PA 17701 weida@lycomig.edu Abstract: Lycomig College is a small, private, liberal

More information

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu>

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu> (March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1

More information

Determining the sample size

Determining the sample size Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

More information

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows: Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network

More information

INFINITE SERIES KEITH CONRAD

INFINITE SERIES KEITH CONRAD INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

Lecture 5: Span, linear independence, bases, and dimension

Lecture 5: Span, linear independence, bases, and dimension Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009) 18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

More information

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

More information

Confidence Intervals

Confidence Intervals Cofidece Itervals Cofidece Itervals are a extesio of the cocept of Margi of Error which we met earlier i this course. Remember we saw: The sample proportio will differ from the populatio proportio by more

More information

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria

More information

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Cosider a legth- sequece x[ with a -poit DFT X[ where Represet the idices ad as +, +, Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Usig these

More information

Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2

Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2 74 (4 ) Chapter 4 Sequeces ad Series 4. SEQUENCES I this sectio Defiitio Fidig a Formula for the th Term The word sequece is a familiar word. We may speak of a sequece of evets or say that somethig is

More information

Chapter 14 Nonparametric Statistics

Chapter 14 Nonparametric Statistics Chapter 14 Noparametric Statistics A.K.A. distributio-free statistics! Does ot deped o the populatio fittig ay particular type of distributio (e.g, ormal). Sice these methods make fewer assumptios, they

More information

One-sample test of proportions

One-sample test of proportions Oe-sample test of proportios The Settig: Idividuals i some populatio ca be classified ito oe of two categories. You wat to make iferece about the proportio i each category, so you draw a sample. Examples:

More information

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required. S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

More information

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS

More information

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments

Project Deliverables. CS 361, Lecture 28. Outline. Project Deliverables. Administrative. Project Comments Project Deliverables CS 361, Lecture 28 Jared Saia Uiversity of New Mexico Each Group should tur i oe group project cosistig of: About 6-12 pages of text (ca be loger with appedix) 6-12 figures (please

More information

THE ABRACADABRA PROBLEM

THE ABRACADABRA PROBLEM THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

Elementary Theory of Russian Roulette

Elementary Theory of Russian Roulette Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some

More information

a 4 = 4 2 4 = 12. 2. Which of the following sequences converge to zero? n 2 (a) n 2 (b) 2 n x 2 x 2 + 1 = lim x n 2 + 1 = lim x

a 4 = 4 2 4 = 12. 2. Which of the following sequences converge to zero? n 2 (a) n 2 (b) 2 n x 2 x 2 + 1 = lim x n 2 + 1 = lim x 0 INFINITE SERIES 0. Sequeces Preiary Questios. What is a 4 for the sequece a? solutio Substitutig 4 i the expressio for a gives a 4 4 4.. Which of the followig sequeces coverge to zero? a b + solutio

More information

2-3 The Remainder and Factor Theorems

2-3 The Remainder and Factor Theorems - The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

More information

How To Solve The Homewor Problem Beautifully

How To Solve The Homewor Problem Beautifully Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

More information

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

ON THE EDGE-BANDWIDTH OF GRAPH PRODUCTS

ON THE EDGE-BANDWIDTH OF GRAPH PRODUCTS ON THE EDGE-BANDWIDTH OF GRAPH PRODUCTS JÓZSEF BALOGH, DHRUV MUBAYI, AND ANDRÁS PLUHÁR Abstract The edge-badwidth of a graph G is the badwidth of the lie graph of G We show asymptotically tight bouds o

More information

3 Basic Definitions of Probability Theory

3 Basic Definitions of Probability Theory 3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

How To Solve An Old Japanese Geometry Problem

How To Solve An Old Japanese Geometry Problem 116 Taget circles i the ratio 2 : 1 Hiroshi Okumura ad Masayuki Wataabe I this article we cosider the followig old Japaese geometry problem (see Figure 1), whose statemet i [1, p. 39] is missig the coditio

More information

A Note on Sums of Greatest (Least) Prime Factors

A Note on Sums of Greatest (Least) Prime Factors It. J. Cotemp. Math. Scieces, Vol. 8, 203, o. 9, 423-432 HIKARI Ltd, www.m-hikari.com A Note o Sums of Greatest (Least Prime Factors Rafael Jakimczuk Divisio Matemática, Uiversidad Nacioal de Luá Bueos

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

SOME GEOMETRY IN HIGH-DIMENSIONAL SPACES

SOME GEOMETRY IN HIGH-DIMENSIONAL SPACES SOME GEOMETRY IN HIGH-DIMENSIONAL SPACES MATH 57A. Itroductio Our geometric ituitio is derived from three-dimesioal space. Three coordiates suffice. May objects of iterest i aalysis, however, require far

More information

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

Hypergeometric Distributions

Hypergeometric Distributions 7.4 Hypergeometric Distributios Whe choosig the startig lie-up for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you

More information

Lecture 4: Cheeger s Inequality

Lecture 4: Cheeger s Inequality Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular

More information

Hypothesis testing. Null and alternative hypotheses

Hypothesis testing. Null and alternative hypotheses Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

CHAPTER 11 Financial mathematics

CHAPTER 11 Financial mathematics CHAPTER 11 Fiacial mathematics I this chapter you will: Calculate iterest usig the simple iterest formula ( ) Use the simple iterest formula to calculate the pricipal (P) Use the simple iterest formula

More information

Notes on exponential generating functions and structures.

Notes on exponential generating functions and structures. Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a -elemet set, (2) to fid for each the

More information

Metric, Normed, and Topological Spaces

Metric, Normed, and Topological Spaces Chapter 13 Metric, Normed, ad Topological Spaces A metric space is a set X that has a otio of the distace d(x, y) betwee every pair of poits x, y X. A fudametal example is R with the absolute-value metric

More information