Topics Introduction to Microprocessors

Size: px
Start display at page:

Download "Topics Introduction to Microprocessors"

Transcription

1 Topics Introduction to Microprocessors Chapter 1 Intro to 80x86 Introduction Goals Brief History of Microprocessors Microprocessor Systems Overview Microprocessor Data Types Intro to 80x86 Suree Pumrin,, Ph.D Introduction to Microprocessors 2 Topics (cont.) Inside the computer Inside the 8086 Physical address calculation examples Segments in the 8086 Goals Goals Understanding what make microprocessors work Assembly programming Design, implementation, and integration experience on microprocessor board and microcomputer Basic Input/output interfacing microprocessors with memory system, serial and parallel ports Debugging HW/SW Interrupt and DMA Introduction to Microprocessors Introduction to Microprocessors 4

2 Brief History of Microprocessors The mechanical age The electrical age The microprocessor age The modern microprocessor The Mechanical Age (I) 500 B.C. Chinese : Abacus a wooden rack holding two horizontal wires with bead stung on them 1642 Blaise Pascal: Calculator mechanical adder and subtracter using of gears and wheels Introduction to Microprocessors Introduction to Microprocessors 6 The Mechanical Age (II) 1823 Charles Babbage: Difference engine mechanize the calculation of polynomial functions Analytical engine perform any mathematical operation automatically The Electrical Age (I) 1889 Hollerith: : The punched card counted, sorted, and collated information Introduction to Microprocessors Introduction to Microprocessors 8

3 The Electrical Age (II) 1943 Turing: The first special purpose computer (Colossus) a fixed program computer system The Electrical Age (III) 1946 The University of Pennsylvania: the first general purpose computer ENIAC (Electronics Numerical Integrator and Calculator) Introduction to Microprocessors Introduction to Microprocessors 10 The Microprocessor Age 1945 von Neumann: von Neumann machines revolutionizes the way people think about computer design 1950s Transistor and magnetic core memory 1960s Digital integrated circuits, VLSI Introduction to Microprocessors 11 The Modern Microprocessor (I) 1970s 71: Intel bit microprocessor (the first microprocessor) 72: Intel 8008 the first 8-bit 8 microprocessor 74: Motorola MC bit microprocessor 76: Zilog Z-80 8-bit microprocessor 78: Intel bit microprocessor 79: Motorola MC bit microprocessor Introduction to Microprocessors 12

4 The Modern Microprocessor (II) 1980s 85: Intel 386 -bit microprocessor 86: Acron RISC -bit processor 87: Zilog Z bit machine 1990s 91: MIPS Computer Systems 64-bit R4000 RISC machine 92: Digital s s Alpha bit at 300 MHz 95: Intel Pentium at 133 MHz 97: Intel Pentium II 99: Intel Pentium III at 500 MHz The Modern Microprocessor (III) 2000s 00: Intel 1 GHz 01: Intel Pentium 4 at 1.7 and 2 GHz 02: Intel Mobile Processor at 1 GHz (low power) 05: The Intel Itanium Introduction to Microprocessors Introduction to Microprocessors 14 The Future of Microprocessors Moore s s Law No one can accurately predict! Multicore processor multiple processor cores on a single piece of silicon?? The new challenge is functionality Balancing in clock frequency, design complexity, and power consumption Introduction to Microprocessors Introduction to Microprocessors 16

5 The Intel Microprocessors Evolution of Intel s s x86 Year of introduction Transistors Product Pentium Pentium Pro ,250 2,500 5,000 Year Technology Clock rate (MHz) 1978 NMOS NMOS CMOS CMOS BICMOS 60, BICMOS processor 486 DX processor Pentium processor Pentium II processor , , ,000 1,180,000 3,100,000 7,500,000 # pins # trans. Phys. Mem Vir. Mem In. data bus Ex. Data bus 40 29,000 1 M None , M 1 G ,000 4 G 64 T million 4 G 64 T million 4 G 64 T million 64 G 64 T 64 Pentium III processor Pentium 4 processor ,000,000 42,000,000 Add. Bus Data type (bits) 20 8, , 16 8, 16, 8, 16, 8, 16, 36 8, 16, Introduction to Microprocessors Introduction to Microprocessors 18 Microprocessor Systems Overview Instruction set Complex instruction set computers (CISC) Reduced instruction set computers (RISC) Architecture von Neumann architecture (a.k.a. Princeton architecture) Harvard architecture Basic computer system Central processing unit (CPU) Registers, Arithmetic Logic Unit (ALU), control unit Memory program & data Input and Output (I/O) system Peripherals Analog to digital converter, timer unit, serial communications interface, etc. Data path address bus, data bus, control bus What s s the difference in microprocessors, microcontrollers, and microcomputers? CISC vs RISC Complex instruction set computer (CISC), e.g., x86, 680x0 Typical PC architecture Many operations, some of them very complex Reduced instruction set computer (RISC), e.g., PIC, ARM, SPARC Simpler instructions can be executed at higher speed RISC is common used in workstations for higher performance Pentium is a combination of CISC and RISC. Modern CISCs implemented as RISCs internally Only the total system performance matters Introduction to Microprocessors Introduction to Microprocessors 20

6 von Neumann Architecture (I) von Neumann Architecture (II) Memory stores programs and data Central processing unit (CPU) fetches and execute Input/output unit interface with input and output devices, e.g., printer, disk, CRT, keyboard Introduction to Microprocessors Introduction to Microprocessors 22 Harvard Architecture von Neumann (Princeton) vs Harvard Data and instructions mixed in the same memory: Princeton architecture Data and instructions in separate memory: Harvard architecture Princeton architecture simpler to implement Most DSPs use Harvard architecture for streaming data Introduction to Microprocessors Introduction to Microprocessors 24

7 Microprocessors Typically external program memory Range from devices with few thousand transistors to million transistors To implement complete computer must still include input/output subsystems, memory, etc. The components connected via system bus Intel: x86 family, 8088, 80286,,, Pentium Zilog: : Z80 Motorola: 680x0 family Microcontrollers Includes microprocessor, I/O subsystems Typically include peripherals, e.g., timers, serial communications channels, Analog to digital conversion, digital to analog conversion, direct memory access (DMA) Memory subsystem may or may not be included Microcontroller = Microprocessor + Memory + I/O = Embedded microprocessor MCS-51 family (Intel, Dallas, 80, 89C52, 8051, ), 68HC11 family (Motorola) Introduction to Microprocessors Introduction to Microprocessors 26 Microcomputers Similar to microcontroller but used as part of a larger embedded system Complete computer Implemented using microprocessor Typically constructed utilizing numerous integrated circuits Complexity varies: simple microcomputer can be implemented on single chip with limited onboard memory, simple I/O system Microprocessor Data Types (I) Signed and unsigned binary integers Binary coded decimal (BCD) American Standard Code for Information Interchange (ASCII) Floating-point numbers Introduction to Microprocessors Introduction to Microprocessors 28

8 Microprocessor Data Types (II) Unsigned binary integers 8-bit unsigned binary integer : FF 255) Signed binary integers Two s s complement form FF 16 (0 8-bit signed number: FF 16 = bit signed number: bit 15 represents the sign BCD 4 bits: (0 9) (0 - Microprocessor Data Types (III) ASCII 7-bit code represents alphanumeric (alpha characters and numbers) and special symbols Floating-point Three components: sign, exponent, and mantissa Example: -4.5x10-2 Sign = 1 (negative), Exponent = -2, and Significant (mantissa) = 4.5 Normalize: 1.XXXX x 2 n : 10 = sign = 0 (positive), normalize binary number = 1.010x Introduction to Microprocessors Introduction to Microprocessors 30 The 8086 Internal Architecture Execution Unit (EU) General Registers Operands ALU Flags Bus Interface Unit (BIU) Segment Registers Instruction Pointer Address generation and Bus control Instruction Queue Multiplexed Bus Introduction to Microprocessors 31 AH BH CH DH 16 bits IP CS DS SS ES SP BP SI DI FR AL BL CL DL 8086 Registers AX BX CX DX Instruction Segment General Pointer Index IP: Instruction Pointer CS: Code Segment DS: Data Segment SS: Stack Segment ES: Extra Segment AX (AH:AL): Accumulator BX (BH:BL): Base CX (CH:CL): Count DX (DH:DL): Data SP: Stack BP: Base SI: Source DI: Destination Status FR: Flag Introduction to Microprocessors

9 Software Model Program Segment AH BH CH DH 16 bits IP CS DS SS ES SP BP SI DI FR AL BL CL DL AX BX CX DX FFFFF 16 Memory Code segment (64 KB) Data segment (64 KB) Stack segment (64 KB) Extra segment (64 KB) FFFF 16 Memory address space = 1 MB Input / output address space I/O address space = 64 kb Code segment CS:IP Contain assembly language instructions Data segment DS:BX, SI, DI Store information (data) Stack segment SS:SP, BP Store information temporarily Extra segment ES:BX, SI, DI Extra data segment Use for string operations Introduction to Microprocessors Introduction to Microprocessors 34 Memory Addressing 1 segment = 64 kb Logical address segment : offset Physical address segment 0 : offset Segment 16 bit Offset 16 bit Physical address Some Important Terminology bit 0 nibble 0000 byte word kilobyte 2 = 1024 bytes megabyte 2 = 1,048,576 bytes gigabyte 2 > 1 billion bytes terabyte 2 > 1 trillion bytes 20 bit Introduction to Microprocessors Introduction to Microprocessors 36

10 CPU Read/write Internal Organization of Computers (I) Memory (RAM, ROM) Address bus Data bus Control bus I/O (monitor, printer, etc.) Internal Organization of Computers (II) CPU (central processing unit): Registers, Arithmetic Logic Unit (ALU), control unit Execute (process) information stored in memory Memory Store program and data I/O devices Provide means of communicating with CPU Data path (bus): address bus, data bus, control bus Carry information from place to place Introduction to Microprocessors 37 For a device (memory or I/O) to be recognized by the CPU, it must be assigned an address Introduction to Microprocessors 38 Pipelining Bus Pipelining: the CPU fetches and executes at the same time non-pipelined fetch 1 exec 1 fetch 2 exec 2 pipelined fetch 1 exec 1 fetch 2 exec 2 fetch 3 exec 3 Data bus: a pathway between the CPU and its external devices Bidirectional: CPU uses data bus either to receive or to send data. Address bus: identify the devices and memory connected to the CPU Unidirectional: CPU uses the address bus only to send out addresses. For x address lines, the number of locations, which CPU can communicate, = 2 x Introduction to Microprocessors Introduction to Microprocessors 40

11 Memory Map Generating a Memory Address FFFFF C0000 BFFFF A0000 9FFFF ROM (256k) Video RAM (128 k) User RAM (640 k) BIOS (Basic Input Output System) (64k) Segment Offset ADDER bit Physical address Introduction to Microprocessors Introduction to Microprocessors 42 Boundaries of segment Physical Address Calculation (I) CS IP Byte addressable CPU 8086 Memory DS:FFFFH Highest addressed byte Logical Address = : F 3 BX DS:BX Start with CS DS Data segment Shift left CS DS:0000H Lowest addressed byte Add IP. Physical address = 9 5 F 3 2 E 5 F Introduction to Microprocessors Introduction to Microprocessors 44

12 Physical Address Calculation (II) Stack segment of Memory If DS = 7FA2H and the offset is 438EH, The logical address: 7FA2:438E The physical address: 7FA E = 83DAE The upper range of the data segment: 7FA20 + FFFF = 8FA1F The lower range of the data segment: 7FA = 7FA SP SS Memory (word-wide) SS:FFFEH SS:SP Stack segment SS:0000H Bottom of stack Top of stack End of stack Introduction to Microprocessors Introduction to Microprocessors 46 Logical address SS:SP SP = 1236 AX = 24B6 Pushing onto stack : PUSH AX SP = 1234 AX = 24B6 Popping the stack : POP CX SP = 1236 CX = 24B6 Stack Segment SS:1236 SS:1234 SS:12 SS: Bytes TOP B6 24 Status Register (Flag) 15 C = Carry P = Even parity A = Auxiliary carry Z = Zero S = Sign O = Overflow D = Direction I = Interrupt T = Trap O D I T S Z A P C Condition Flags (after execution) Control Flags (before execution) Introduction to Microprocessors Introduction to Microprocessors 48

13 Machine vs Assembly Addressing Modes Machine code Assembler Disassembler Assembly program B059 MOV AL, 59 B685 MOV DH, 85 B421 MOV AH, 21 B270 MOV DL, 70 01D0 ADD AX,DX 05371F ADD AX,1F37 1. Register 2. Immediate 3. Direct 4. Register indirect 5. Based relative 6. Indexed relative 7. Based indexed relative MOV AX, BX ADD AL, 10H MOV CX, [1200H] MOV AL, [BX] SI,DI MOV CX, [BX+10H] BP MOV AX, [SI+15H] DI MOV AH, [BX+DI+5H] BP SI Introduction to Microprocessors Introduction to Microprocessors 50 Little Endian Convention MOV AX, 35F3H ; AL = F3, AH = 35 MOV [1500], AX ; DS: 1500 F3 DS: All Intel microprocessors and many minicomputers use the little endian convention (high byte goes to high address). Motorola microprocessors and mainframes use big endian (high byte goes to low address) Introduction to Microprocessors 51

MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS

MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS 1) Which is the microprocessor comprises: a. Register section b. One or more ALU c. Control unit 2) What is the store by register? a. data b. operands

More information

MICROPROCESSOR AND MICROCOMPUTER BASICS

MICROPROCESSOR AND MICROCOMPUTER BASICS Introduction MICROPROCESSOR AND MICROCOMPUTER BASICS At present there are many types and sizes of computers available. These computers are designed and constructed based on digital and Integrated Circuit

More information

Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit.

Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit. Objectives The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Identify the components of the central processing unit and how they work together and interact with memory Describe how

More information

Faculty of Engineering Student Number:

Faculty of Engineering Student Number: Philadelphia University Student Name: Faculty of Engineering Student Number: Dept. of Computer Engineering Final Exam, First Semester: 2012/2013 Course Title: Microprocessors Date: 17/01//2013 Course No:

More information

Chapter 2 Logic Gates and Introduction to Computer Architecture

Chapter 2 Logic Gates and Introduction to Computer Architecture Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are

More information

The Central Processing Unit:

The Central Processing Unit: The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Objectives Identify the components of the central processing unit and how they work together and interact with memory Describe how

More information

MICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1

MICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1 MICROPROCESSOR A microprocessor incorporates the functions of a computer s central processing unit (CPU) on a single Integrated (IC), or at most a few integrated circuit. It is a multipurpose, programmable

More information

Computer Systems Design and Architecture by V. Heuring and H. Jordan

Computer Systems Design and Architecture by V. Heuring and H. Jordan 1-1 Chapter 1 - The General Purpose Machine Computer Systems Design and Architecture Vincent P. Heuring and Harry F. Jordan Department of Electrical and Computer Engineering University of Colorado - Boulder

More information

Management Challenge. Managing Hardware Assets. Central Processing Unit. What is a Computer System?

Management Challenge. Managing Hardware Assets. Central Processing Unit. What is a Computer System? Management Challenge Managing Hardware Assets What computer processing and storage capability does our organization need to handle its information and business transactions? What arrangement of computers

More information

The x86 PC: Assembly Language, Design, and Interfacing 5 th Edition

The x86 PC: Assembly Language, Design, and Interfacing 5 th Edition Online Instructor s Manual to accompany The x86 PC: Assembly Language, Design, and Interfacing 5 th Edition Muhammad Ali Mazidi Janice Gillispie Mazidi Danny Causey Prentice Hall Boston Columbus Indianapolis

More information

Microprocessor or Microcontroller?

Microprocessor or Microcontroller? Microprocessor or Microcontroller? A little History What is a computer? [Merriam-Webster Dictionary] one that computes; specifically : programmable electronic device that can store, retrieve, and process

More information

8051 hardware summary

8051 hardware summary 8051 hardware summary 8051 block diagram 8051 pinouts + 5V ports port 0 port 1 port 2 port 3 : dual-purpose (general-purpose, external memory address and data) : dedicated (interfacing to external devices)

More information

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV UNIT I THE 8086 MICROPROCESSOR 1. What is the purpose of segment registers

More information

Chapter 6. Inside the System Unit. What You Will Learn... Computers Are Your Future. What You Will Learn... Describing Hardware Performance

Chapter 6. Inside the System Unit. What You Will Learn... Computers Are Your Future. What You Will Learn... Describing Hardware Performance What You Will Learn... Computers Are Your Future Chapter 6 Understand how computers represent data Understand the measurements used to describe data transfer rates and data storage capacity List the components

More information

Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2

Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2 Lecture Handout Computer Architecture Lecture No. 2 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3 Computer Systems Design and Architecture 2.1, 2.2, 3.2 Summary 1) A taxonomy of

More information

CHAPTER 4 MARIE: An Introduction to a Simple Computer

CHAPTER 4 MARIE: An Introduction to a Simple Computer CHAPTER 4 MARIE: An Introduction to a Simple Computer 4.1 Introduction 195 4.2 CPU Basics and Organization 195 4.2.1 The Registers 196 4.2.2 The ALU 197 4.2.3 The Control Unit 197 4.3 The Bus 197 4.4 Clocks

More information

PART B QUESTIONS AND ANSWERS UNIT I

PART B QUESTIONS AND ANSWERS UNIT I PART B QUESTIONS AND ANSWERS UNIT I 1. Explain the architecture of 8085 microprocessor? Logic pin out of 8085 microprocessor Address bus: unidirectional bus, used as high order bus Data bus: bi-directional

More information

Microcontroller Basics A microcontroller is a small, low-cost computer-on-a-chip which usually includes:

Microcontroller Basics A microcontroller is a small, low-cost computer-on-a-chip which usually includes: Microcontroller Basics A microcontroller is a small, low-cost computer-on-a-chip which usually includes: An 8 or 16 bit microprocessor (CPU). A small amount of RAM. Programmable ROM and/or flash memory.

More information

CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX

CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX Multiple Choice: 1. Processing information involves: A. accepting information from the outside world. B. communication with another computer. C. performing arithmetic

More information

Microprocessor and Microcontroller Architecture

Microprocessor and Microcontroller Architecture Microprocessor and Microcontroller Architecture 1 Von Neumann Architecture Stored-Program Digital Computer Digital computation in ALU Programmable via set of standard instructions input memory output Internal

More information

CHAPTER 6: Computer System Organisation 1. The Computer System's Primary Functions

CHAPTER 6: Computer System Organisation 1. The Computer System's Primary Functions CHAPTER 6: Computer System Organisation 1. The Computer System's Primary Functions All computers, from the first room-sized mainframes, to today's powerful desktop, laptop and even hand-held PCs, perform

More information

A+ Guide to Managing and Maintaining Your PC, 7e. Chapter 1 Introducing Hardware

A+ Guide to Managing and Maintaining Your PC, 7e. Chapter 1 Introducing Hardware A+ Guide to Managing and Maintaining Your PC, 7e Chapter 1 Introducing Hardware Objectives Learn that a computer requires both hardware and software to work Learn about the many different hardware components

More information

Outline. Lecture 3. Basics. Logical vs. physical memory. 8086 physical memory. x86 byte ordering

Outline. Lecture 3. Basics. Logical vs. physical memory. 8086 physical memory. x86 byte ordering Outline Lecture 3 bout Memory ddressing memory Data types MOV instruction ddressing modes Instruction format Dr. Dimitrios S. Nikolopoulos SL/UIU Basics Logical vs. physical memory Memory in the x processors

More information

150127-Microprocessor & Assembly Language

150127-Microprocessor & Assembly Language Chapter 3 Z80 Microprocessor Architecture The Z 80 is one of the most talented 8 bit microprocessors, and many microprocessor-based systems are designed around the Z80. The Z80 microprocessor needs an

More information

CSCA0102 IT & Business Applications. Foundation in Business Information Technology School of Engineering & Computing Sciences FTMS College Global

CSCA0102 IT & Business Applications. Foundation in Business Information Technology School of Engineering & Computing Sciences FTMS College Global CSCA0102 IT & Business Applications Foundation in Business Information Technology School of Engineering & Computing Sciences FTMS College Global Chapter 2 Data Storage Concepts System Unit The system unit

More information

BCD (ASCII) Arithmetic. Where and Why is BCD used? Packed BCD, ASCII, Unpacked BCD. BCD Adjustment Instructions AAA. Example

BCD (ASCII) Arithmetic. Where and Why is BCD used? Packed BCD, ASCII, Unpacked BCD. BCD Adjustment Instructions AAA. Example BCD (ASCII) Arithmetic We will first look at unpacked BCD which means strings that look like '4567'. Bytes then look like 34h 35h 36h 37h OR: 04h 05h 06h 07h x86 processors also have instructions for packed

More information

Computer Performance. Topic 3. Contents. Prerequisite knowledge Before studying this topic you should be able to:

Computer Performance. Topic 3. Contents. Prerequisite knowledge Before studying this topic you should be able to: 55 Topic 3 Computer Performance Contents 3.1 Introduction...................................... 56 3.2 Measuring performance............................... 56 3.2.1 Clock Speed.................................

More information

8086 Microprocessor (cont..)

8086 Microprocessor (cont..) 8086 Microprocessor (cont..) It is a 16 bit µp. 8086 has a 20 bit address bus can access upto 2 20 memory locations ( 1 MB). It can support upto 64K I/O ports. It provides 14, 16-bit registers. It has

More information

Chapter 5, The Instruction Set Architecture Level

Chapter 5, The Instruction Set Architecture Level Chapter 5, The Instruction Set Architecture Level 5.1 Overview Of The ISA Level 5.2 Data Types 5.3 Instruction Formats 5.4 Addressing 5.5 Instruction Types 5.6 Flow Of Control 5.7 A Detailed Example: The

More information

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the

More information

Hardware: Input, Processing, and Output Devices. A PC in Every Home. Assembling a Computer System

Hardware: Input, Processing, and Output Devices. A PC in Every Home. Assembling a Computer System C H A P T E R 3 Hardware: Input, Processing, and Output Devices A PC in Every Home February 3, 2000 Ford will make available to all 330,000 employees hourly and salaried an HP Pavilion PC, an HP DeskJet

More information

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-17: Memory organisation, and types of memory

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-17: Memory organisation, and types of memory ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-17: Memory organisation, and types of memory 1 1. Memory Organisation 2 Random access model A memory-, a data byte, or a word, or a double

More information

Lecture 7: Machine-Level Programming I: Basics Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com

Lecture 7: Machine-Level Programming I: Basics Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com CSCI-UA.0201-003 Computer Systems Organization Lecture 7: Machine-Level Programming I: Basics Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Some slides adapted (and slightly modified)

More information

Chapter 3: Computer Hardware Components: CPU, Memory, and I/O

Chapter 3: Computer Hardware Components: CPU, Memory, and I/O Chapter 3: Computer Hardware Components: CPU, Memory, and I/O What is the typical configuration of a computer sold today? The Computer Continuum 1-1 Computer Hardware Components In this chapter: How did

More information

İSTANBUL AYDIN UNIVERSITY

İSTANBUL AYDIN UNIVERSITY İSTANBUL AYDIN UNIVERSITY FACULTY OF ENGİNEERİNG SOFTWARE ENGINEERING THE PROJECT OF THE INSTRUCTION SET COMPUTER ORGANIZATION GÖZDE ARAS B1205.090015 Instructor: Prof. Dr. HASAN HÜSEYİN BALIK DECEMBER

More information

OVERVIEW OF MICROPROCESSORS

OVERVIEW OF MICROPROCESSORS C HAPTER 1 OVERVIEW OF MICROPROCESSORS 1.1 GENERAL A microprocessor is one of the most exciting technological innovations in electronics since the appearance of the transistor in 1948. This wonder device

More information

Computer System: User s View. Computer System Components: High Level View. Input. Output. Computer. Computer System: Motherboard Level

Computer System: User s View. Computer System Components: High Level View. Input. Output. Computer. Computer System: Motherboard Level System: User s View System Components: High Level View Input Output 1 System: Motherboard Level 2 Components: Interconnection I/O MEMORY 3 4 Organization Registers ALU CU 5 6 1 Input/Output I/O MEMORY

More information

Computer Organization and Architecture

Computer Organization and Architecture Computer Organization and Architecture Chapter 11 Instruction Sets: Addressing Modes and Formats Instruction Set Design One goal of instruction set design is to minimize instruction length Another goal

More information

Chapter 1 Computer System Overview

Chapter 1 Computer System Overview Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Eighth Edition By William Stallings Operating System Exploits the hardware resources of one or more processors Provides

More information

Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer

Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer Computers CMPT 125: Lecture 1: Understanding the Computer Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 3, 2009 A computer performs 2 basic functions: 1.

More information

Central Processing Unit (CPU)

Central Processing Unit (CPU) Central Processing Unit (CPU) CPU is the heart and brain It interprets and executes machine level instructions Controls data transfer from/to Main Memory (MM) and CPU Detects any errors In the following

More information

The Hexadecimal Number System and Memory Addressing

The Hexadecimal Number System and Memory Addressing APPENDIX C The Hexadecimal Number System and Memory Addressing U nderstanding the number system and the coding system that computers use to store data and communicate with each other is fundamental to

More information

ASSEMBLY PROGRAMMING ON A VIRTUAL COMPUTER

ASSEMBLY PROGRAMMING ON A VIRTUAL COMPUTER ASSEMBLY PROGRAMMING ON A VIRTUAL COMPUTER Pierre A. von Kaenel Mathematics and Computer Science Department Skidmore College Saratoga Springs, NY 12866 (518) 580-5292 pvonk@skidmore.edu ABSTRACT This paper

More information

Chapter 5 Instructor's Manual

Chapter 5 Instructor's Manual The Essentials of Computer Organization and Architecture Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003 Chapter 5 Instructor's Manual Chapter Objectives Chapter 5, A Closer Look at Instruction

More information

LSN 2 Computer Processors

LSN 2 Computer Processors LSN 2 Computer Processors Department of Engineering Technology LSN 2 Computer Processors Microprocessors Design Instruction set Processor organization Processor performance Bandwidth Clock speed LSN 2

More information

a storage location directly on the CPU, used for temporary storage of small amounts of data during processing.

a storage location directly on the CPU, used for temporary storage of small amounts of data during processing. CS143 Handout 18 Summer 2008 30 July, 2008 Processor Architectures Handout written by Maggie Johnson and revised by Julie Zelenski. Architecture Vocabulary Let s review a few relevant hardware definitions:

More information

Computer Architectures

Computer Architectures Computer Architectures 2. Instruction Set Architectures 2015. február 12. Budapest Gábor Horváth associate professor BUTE Dept. of Networked Systems and Services ghorvath@hit.bme.hu 2 Instruction set architectures

More information

A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc

A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc Other architectures Example. Accumulator-based machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc

More information

lesson 1 An Overview of the Computer System

lesson 1 An Overview of the Computer System essential concepts lesson 1 An Overview of the Computer System This lesson includes the following sections: The Computer System Defined Hardware: The Nuts and Bolts of the Machine Software: Bringing the

More information

SECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks

SECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks UNIVERSITY OF KERALA First Degree Programme in Computer Applications Model Question Paper Semester I Course Code- CP 1121 Introduction to Computer Science TIME : 3 hrs Maximum Mark: 80 SECTION A [Very

More information

COMPUTER ORGANIZATION AND ARCHITECTURE. Slides Courtesy of Carl Hamacher, Computer Organization, Fifth edition,mcgrawhill

COMPUTER ORGANIZATION AND ARCHITECTURE. Slides Courtesy of Carl Hamacher, Computer Organization, Fifth edition,mcgrawhill COMPUTER ORGANIZATION AND ARCHITECTURE Slides Courtesy of Carl Hamacher, Computer Organization, Fifth edition,mcgrawhill COMPUTER ORGANISATION AND ARCHITECTURE The components from which computers are built,

More information

Introduction to Computer Architecture Concepts

Introduction to Computer Architecture Concepts to Computer Architecture Concepts 1. We will start at the very beginning, first with the fundamental concepts behind the modern digital computer, and then some details of their implementation. Many people,

More information

Central Processing Unit

Central Processing Unit Chapter 4 Central Processing Unit 1. CPU organization and operation flowchart 1.1. General concepts The primary function of the Central Processing Unit is to execute sequences of instructions representing

More information

Discovering Computers 2011. Living in a Digital World

Discovering Computers 2011. Living in a Digital World Discovering Computers 2011 Living in a Digital World Objectives Overview Differentiate among various styles of system units on desktop computers, notebook computers, and mobile devices Identify chips,

More information

Chapter 4 System Unit Components. Discovering Computers 2012. Your Interactive Guide to the Digital World

Chapter 4 System Unit Components. Discovering Computers 2012. Your Interactive Guide to the Digital World Chapter 4 System Unit Components Discovering Computers 2012 Your Interactive Guide to the Digital World Objectives Overview Differentiate among various styles of system units on desktop computers, notebook

More information

MACHINE ARCHITECTURE & LANGUAGE

MACHINE ARCHITECTURE & LANGUAGE in the name of God the compassionate, the merciful notes on MACHINE ARCHITECTURE & LANGUAGE compiled by Jumong Chap. 9 Microprocessor Fundamentals A system designer should consider a microprocessor-based

More information

Intel 8086 architecture

Intel 8086 architecture Intel 8086 architecture Today we ll take a look at Intel s 8086, which is one of the oldest and yet most prevalent processor architectures around. We ll make many comparisons between the MIPS and 8086

More information

Z80 Instruction Set. Z80 Assembly Language

Z80 Instruction Set. Z80 Assembly Language 75 Z80 Assembly Language The assembly language allows the user to write a program without concern for memory addresses or machine instruction formats. It uses symbolic addresses to identify memory locations

More information

Unpacked BCD Arithmetic. BCD (ASCII) Arithmetic. Where and Why is BCD used? From the SQL Server Manual. Packed BCD, ASCII, Unpacked BCD

Unpacked BCD Arithmetic. BCD (ASCII) Arithmetic. Where and Why is BCD used? From the SQL Server Manual. Packed BCD, ASCII, Unpacked BCD BCD (ASCII) Arithmetic The Intel Instruction set can handle both packed (two digits per byte) and unpacked BCD (one decimal digit per byte) We will first look at unpacked BCD Unpacked BCD can be either

More information

CISC, RISC, and DSP Microprocessors

CISC, RISC, and DSP Microprocessors CISC, RISC, and DSP Microprocessors Douglas L. Jones ECE 497 Spring 2000 4/6/00 CISC, RISC, and DSP D.L. Jones 1 Outline Microprocessors circa 1984 RISC vs. CISC Microprocessors circa 1999 Perspective:

More information

Administrative Issues

Administrative Issues CSC 3210 Computer Organization and Programming Introduction and Overview Dr. Anu Bourgeois (modified by Yuan Long) Administrative Issues Required Prerequisites CSc 2010 Intro to CSc CSc 2310 Java Programming

More information

Basic Concepts of Information Technology (IT)

Basic Concepts of Information Technology (IT) Basic Concepts of Information Technology (IT) Objectives Define Computer and Identify the Four Basic Computing Functions Identify the Different Types of Computers Describe Hardware Devices and Their Uses

More information

MULTIPLE CHOICE FREE RESPONSE QUESTIONS

MULTIPLE CHOICE FREE RESPONSE QUESTIONS MULTIPLE CHOICE FREE RESPONSE QUESTIONS World ORT Union I n p u t d e v i c e s Where would you find the letters QUERTY? A. Mouse B. Keyboard C.Numeric Keypad How did the computer mouse get its name? A.

More information

CPU Organisation and Operation

CPU Organisation and Operation CPU Organisation and Operation The Fetch-Execute Cycle The operation of the CPU 1 is usually described in terms of the Fetch-Execute cycle. 2 Fetch-Execute Cycle Fetch the Instruction Increment the Program

More information

THREE YEAR DEGREE (HONS.) COURSE BACHELOR OF COMPUTER APPLICATION (BCA) First Year Paper I Computer Fundamentals

THREE YEAR DEGREE (HONS.) COURSE BACHELOR OF COMPUTER APPLICATION (BCA) First Year Paper I Computer Fundamentals THREE YEAR DEGREE (HONS.) COURSE BACHELOR OF COMPUTER APPLICATION (BCA) First Year Paper I Computer Fundamentals Full Marks 100 (Theory 75, Practical 25) Introduction to Computers :- What is Computer?

More information

7a. System-on-chip design and prototyping platforms

7a. System-on-chip design and prototyping platforms 7a. System-on-chip design and prototyping platforms Labros Bisdounis, Ph.D. Department of Computer and Communication Engineering 1 What is System-on-Chip (SoC)? System-on-chip is an integrated circuit

More information

Chapter 2 Basic Structure of Computers. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Chapter 2 Basic Structure of Computers. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Chapter 2 Basic Structure of Computers Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Functional Units Basic Operational Concepts Bus Structures Software

More information

COMPUTER HARDWARE. Input- Output and Communication Memory Systems

COMPUTER HARDWARE. Input- Output and Communication Memory Systems COMPUTER HARDWARE Input- Output and Communication Memory Systems Computer I/O I/O devices commonly found in Computer systems Keyboards Displays Printers Magnetic Drives Compact disk read only memory (CD-ROM)

More information

CHAPTER 7: The CPU and Memory

CHAPTER 7: The CPU and Memory CHAPTER 7: The CPU and Memory The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint slides

More information

COMPUTERS ORGANIZATION 2ND YEAR COMPUTE SCIENCE MANAGEMENT ENGINEERING JOSÉ GARCÍA RODRÍGUEZ JOSÉ ANTONIO SERRA PÉREZ

COMPUTERS ORGANIZATION 2ND YEAR COMPUTE SCIENCE MANAGEMENT ENGINEERING JOSÉ GARCÍA RODRÍGUEZ JOSÉ ANTONIO SERRA PÉREZ COMPUTERS ORGANIZATION 2ND YEAR COMPUTE SCIENCE MANAGEMENT ENGINEERING UNIT 1 - INTRODUCTION JOSÉ GARCÍA RODRÍGUEZ JOSÉ ANTONIO SERRA PÉREZ Unit 1.MaNoTaS 1 Definitions (I) Description A computer is: A

More information

Learning Outcomes. Simple CPU Operation and Buses. Composition of a CPU. A simple CPU design

Learning Outcomes. Simple CPU Operation and Buses. Composition of a CPU. A simple CPU design Learning Outcomes Simple CPU Operation and Buses Dr Eddie Edwards eddie.edwards@imperial.ac.uk At the end of this lecture you will Understand how a CPU might be put together Be able to name the basic components

More information

The string of digits 101101 in the binary number system represents the quantity

The string of digits 101101 in the binary number system represents the quantity Data Representation Section 3.1 Data Types Registers contain either data or control information Control information is a bit or group of bits used to specify the sequence of command signals needed for

More information

(Refer Slide Time: 00:01:16 min)

(Refer Slide Time: 00:01:16 min) Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control

More information

Microcontrollers A Brief History of Microprocessors

Microcontrollers A Brief History of Microprocessors Microcontrollers A Brief History of Microprocessors The first microprocessor was developed by what was then a small company called Intel (short for Integrated Electronics) in the early 1970s. The client,

More information

Multiple Choice Questions(Computer)

Multiple Choice Questions(Computer) Multiple Choice Questions(Computer) 1. Which of the following is the product of data processing a. information b. data c. software program d. system 2. The process of putting data into a location is called

More information

Overview. CISC Developments. RISC Designs. CISC Designs. VAX: Addressing Modes. Digital VAX

Overview. CISC Developments. RISC Designs. CISC Designs. VAX: Addressing Modes. Digital VAX Overview CISC Developments Over Twenty Years Classic CISC design: Digital VAX VAXÕs RISC successor: PRISM/Alpha IntelÕs ubiquitous 80x86 architecture Ð 8086 through the Pentium Pro (P6) RJS 2/3/97 Philosophy

More information

Let s put together a Manual Processor

Let s put together a Manual Processor Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce

More information

CPU Organization and Assembly Language

CPU Organization and Assembly Language COS 140 Foundations of Computer Science School of Computing and Information Science University of Maine October 2, 2015 Outline 1 2 3 4 5 6 7 8 Homework and announcements Reading: Chapter 12 Homework:

More information

Building a computer. Electronic Numerical Integrator and Computer (ENIAC)

Building a computer. Electronic Numerical Integrator and Computer (ENIAC) Building a computer Electronic Numerical Integrator and Computer (ENIAC) CSCI 255: Introduc/on to Embedded Systems Keith Vertanen Copyright 2011 Layers of abstrac

More information

Instruction Set Design

Instruction Set Design Instruction Set Design Instruction Set Architecture: to what purpose? ISA provides the level of abstraction between the software and the hardware One of the most important abstraction in CS It s narrow,

More information

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM 1 The ARM architecture processors popular in Mobile phone systems 2 ARM Features ARM has 32-bit architecture but supports 16 bit

More information

Computer Basics: Chapters 1 & 2

Computer Basics: Chapters 1 & 2 Computer Basics: Chapters 1 & 2 Definition of a Computer What does IPOS stand for? Input Process Output Storage Other types of Computers Name some examples of other types of computers, other than a typical

More information

18-447 Computer Architecture Lecture 3: ISA Tradeoffs. Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 1/18/2013

18-447 Computer Architecture Lecture 3: ISA Tradeoffs. Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 1/18/2013 18-447 Computer Architecture Lecture 3: ISA Tradeoffs Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 1/18/2013 Reminder: Homeworks for Next Two Weeks Homework 0 Due next Wednesday (Jan 23), right

More information

1 Computer hardware. Peripheral Bus device "B" Peripheral device. controller. Memory. Central Processing Unit (CPU)

1 Computer hardware. Peripheral Bus device B Peripheral device. controller. Memory. Central Processing Unit (CPU) 1 1 Computer hardware Most computers are organized as shown in Figure 1.1. A computer contains several major subsystems --- such as the Central Processing Unit (CPU), memory, and peripheral device controllers.

More information

Flash Microcontroller. Memory Organization. Memory Organization

Flash Microcontroller. Memory Organization. Memory Organization The information presented in this chapter is collected from the Microcontroller Architectural Overview, AT89C51, AT89LV51, AT89C52, AT89LV52, AT89C2051, and AT89C1051 data sheets of this book. The material

More information

Chapter 01: Introduction. Lesson 02 Evolution of Computers Part 2 First generation Computers

Chapter 01: Introduction. Lesson 02 Evolution of Computers Part 2 First generation Computers Chapter 01: Introduction Lesson 02 Evolution of Computers Part 2 First generation Computers Objective Understand how electronic computers evolved during the first generation of computers First Generation

More information

Instruction Set Architecture. or How to talk to computers if you aren t in Star Trek

Instruction Set Architecture. or How to talk to computers if you aren t in Star Trek Instruction Set Architecture or How to talk to computers if you aren t in Star Trek The Instruction Set Architecture Application Compiler Instr. Set Proc. Operating System I/O system Instruction Set Architecture

More information

An Overview of Stack Architecture and the PSC 1000 Microprocessor

An Overview of Stack Architecture and the PSC 1000 Microprocessor An Overview of Stack Architecture and the PSC 1000 Microprocessor Introduction A stack is an important data handling structure used in computing. Specifically, a stack is a dynamic set of elements in which

More information

How It All Works. Other M68000 Updates. Basic Control Signals. Basic Control Signals

How It All Works. Other M68000 Updates. Basic Control Signals. Basic Control Signals CPU Architectures Motorola 68000 Several CPU architectures exist currently: Motorola Intel AMD (Advanced Micro Devices) PowerPC Pick one to study; others will be variations on this. Arbitrary pick: Motorola

More information

ELE 356 Computer Engineering II. Section 1 Foundations Class 6 Architecture

ELE 356 Computer Engineering II. Section 1 Foundations Class 6 Architecture ELE 356 Computer Engineering II Section 1 Foundations Class 6 Architecture History ENIAC Video 2 tj History Mechanical Devices Abacus 3 tj History Mechanical Devices The Antikythera Mechanism Oldest known

More information

Generations of the computer. processors.

Generations of the computer. processors. . Piotr Gwizdała 1 Contents 1 st Generation 2 nd Generation 3 rd Generation 4 th Generation 5 th Generation 6 th Generation 7 th Generation 8 th Generation Dual Core generation Improves and actualizations

More information

Appendix C: Keyboard Scan Codes

Appendix C: Keyboard Scan Codes Thi d t t d ith F M k 4 0 2 Appendix C: Keyboard Scan Codes Table 90: PC Keyboard Scan Codes (in hex) Key Down Up Key Down Up Key Down Up Key Down Up Esc 1 81 [ { 1A 9A, < 33 B3 center 4C CC 1! 2 82 ]

More information

Computer Organization

Computer Organization Computer Organization and Architecture Designing for Performance Ninth Edition William Stallings International Edition contributions by R. Mohan National Institute of Technology, Tiruchirappalli PEARSON

More information

1. Convert the following base 10 numbers into 8-bit 2 s complement notation 0, -1, -12

1. Convert the following base 10 numbers into 8-bit 2 s complement notation 0, -1, -12 C5 Solutions 1. Convert the following base 10 numbers into 8-bit 2 s complement notation 0, -1, -12 To Compute 0 0 = 00000000 To Compute 1 Step 1. Convert 1 to binary 00000001 Step 2. Flip the bits 11111110

More information

UMBC. ISA is the oldest of all these and today s computers still have a ISA bus interface. in form of an ISA slot (connection) on the main board.

UMBC. ISA is the oldest of all these and today s computers still have a ISA bus interface. in form of an ISA slot (connection) on the main board. Bus Interfaces Different types of buses: ISA (Industry Standard Architecture) EISA (Extended ISA) VESA (Video Electronics Standards Association, VL Bus) PCI (Periheral Component Interconnect) USB (Universal

More information

8051 MICROCONTROLLER COURSE

8051 MICROCONTROLLER COURSE 8051 MICROCONTROLLER COURSE Objective: 1. Familiarization with different types of Microcontroller 2. To know 8051 microcontroller in detail 3. Programming and Interfacing 8051 microcontroller Prerequisites:

More information

Chapter 13. PIC Family Microcontroller

Chapter 13. PIC Family Microcontroller Chapter 13 PIC Family Microcontroller Lesson 01 PIC Characteristics and Examples PIC microcontroller characteristics Power-on reset Brown out reset Simplified instruction set High speed execution Up to

More information

Using Debug 1 INTRODUCING DEBUG

Using Debug 1 INTRODUCING DEBUG Using Debug Copyright Prentice-Hall Publishing, 1999. All rights reserved B.1 Introducing Debug B.2 Debug Command Summary Command Parameters B.3 Individual Commands? (Help) A (Assemble) C (Compare) D (Dump)

More information

CS101 Lecture 26: Low Level Programming. John Magee 30 July 2013 Some material copyright Jones and Bartlett. Overview/Questions

CS101 Lecture 26: Low Level Programming. John Magee 30 July 2013 Some material copyright Jones and Bartlett. Overview/Questions CS101 Lecture 26: Low Level Programming John Magee 30 July 2013 Some material copyright Jones and Bartlett 1 Overview/Questions What did we do last time? How can we control the computer s circuits? How

More information

2011, The McGraw-Hill Companies, Inc. Chapter 3

2011, The McGraw-Hill Companies, Inc. Chapter 3 Chapter 3 3.1 Decimal System The radix or base of a number system determines the total number of different symbols or digits used by that system. The decimal system has a base of 10 with the digits 0 through

More information