AN-5082 Power56 Wave-Soldering Board Assembly Considerations

Size: px
Start display at page:

Download "AN-5082 Power56 Wave-Soldering Board Assembly Considerations"

Transcription

1 AN-5082 Power56 Wave-Soldering Board Assembly Considerations Introduction PQFN packages are commonly mounted on board through reflow process. The board mounting guidelines through reflow process for Fairchild s Power56 package is provided in a separte note AN In the industry today, wave soldering is also becoming a common large-scale soldering process in mounting components on boards. This application note provides guidelines on mounting the Power56 package through wave soldering. Recommendations on the land pad and stencil designs for adhesive printing are also included. Wave Soldering Process A typical wave soldering process is illustrated below Figure 1. is applied on the board and the components are mounted. The assembly is then subjected to high temperature environment to cure the adhesive. The board is then flipped so that the components are at the bottom side of the board as it goes through the wave soldering system. The system consists typically of solder fluxing, preheating zones, solder wave and the cooling zone. As the board enters the conveyorized process, solder flux is either sprayed or foamed into the components. Then goes to the preheating zones, normally by convection, where the flux is activated. The assembly then goes to wave soldering. The assembly is slowly cooled down after. Temperature settings in the wave soldering system are dependent on the recommendation of the solder flux vendor, the type of solder alloy used and the sensitivity of the components used to elevated temperature. PC Board Printing / Dispensing Component Placement Curing Pre-heating stage (Solder Flux Activation) 2 nd Wave (Laminar 1 st Wave (Turbulent Flow) Flow) Flux Application (Spray or Foaming) Board turn Figure 1. Typical Wave Soldering Process Flow Rev /13/15

2 Assembly Consideration 3.91 In order to achieve a good wave soldering process for the Power56 package, the following factors must be taken into consideration: PCB Mask Configuration PCB Surface Finish PCB Land Pad Design and Layout Solder Flux Wave Soldering Recommendations for the above-mentioned factors are detailed below. Board Mask Configuration The pad configuration of the board can either be Solder Mask Defined (SMD) or Non-Solder Mask Defined (NSMD). For wave soldering, any of the PCB mask configurations can be used. SMD pad, however, showed to have an added advantage over NSMD pads; the mask on top of the land can serve as an added spacer between the board pad and component, allowing more room for flux to flow and easy filling the space between the component bottom terminations and board with solder. Board Surface Finish Hot Air Surface Leveling (HASL) and Organic Solderability Preservatives (OSP) are two common board surface finishes used in the industry today. Both types of surface finish were tested and showed to be compatible for wave soldering the Power56 using the recommended land pattern is shown in Figure 2. In various land pattern options evaluated, it is observed that the wetting mechanism using OSP surface finish differs from HASL. Easy solder filling is observed in HASL than in OSP. This may be explained by the coalescence of molten solder and the molten HASL metallization. However, it is not uncommon for HASL to have inconsistent solder coating thickness which affects the leveling in board mounting in this type of package. Conversely, the OSP may be inferior in wetting compared to HASL but it is known to consistently produce thin coatings. In order to achieve proper wetting for OSP metal, a good choice of solder flux is necessary and it should be applied to where the solder needs to flow. The recommended land pad designs had been tested to be compatible for both types of surface finishes using a no-clean flux. Board Land Pad Design Below is the recommended land pad design for wave soldering the Power Figure 2. Land Pattern Design for Power56 Wave Soldering (Dimensions are in millimeters) Conveyor direction during wave soldering Printed adhesives Land pad pattern Power56 Figure 3. Overlaid Power56 on the Board Land Pad and the Printed (Dimensions are in millimeters) In wave soldering, the land pad dimensions should be larger than the nominal package footprint dimensions. This is to allow the molten solder from the wave to have a path to flow through the land pad at the bottom of the package. Component orientation with respect to the direction of the equipment conveyor is critical for good soldering results. This is illustrated in Figure 3 above; the lead pads layout is aligned with the movement of the conveyor. This component orientation with respect to conveyor movement.61 Ø.50 Rev /13/15 2

3 prevents formation of solder bridging, solder skipping or shadowing. In wave soldering Power56, the adhesive must be chosen appropriately to ensure that this will hold the component in place through the entire wave soldering process flow. It must be tacky enough and have sufficient volume after print that the component won t move or fall off during transport from component placement to cure. It must have good adhesion strength after cure to prevent it from falling off during the wave soldering process, from flux spray, to preheating and up to wave-soldering. The wet adhesive must also maintain its consistency in continuous printing or dispensing process. print for Power56 is shown in Figure 3. Printing the adhesive instead of dispensing is recommended to achieve better planarity and consistent volume. The amount of printed adhesive should be applied sufficiently. Too little adhesive may not be able to hold the component during placement and wave soldering. On the other hand, too much adhesive may spread up to the land pads during placement; this can cause solder non-wetting to the component leads and board pads. must be cured according to the curing conditions recommended by the supplier and it must be fully cured before wave soldering. The recommended stencil thickness for adhesive printing is 6mils. Solder Flux Flux selection is important in wave soldering. Solder flux with low solid content is preferred; because of its low viscosity, it can easily wick up solderable pads under the component, flowing under the narrow space in between the component and the board by capillary action, and facilitating solder wetting during wave soldering. This flux can either be applied by spray or foaming. On the other hand, flux with high solid content has its own advantage; it is more flexible to different wave soldering conditions because of its ability to hold the active components of the flux longer which facilitates solder wetting. No clean type solder flux is recommended. With the absence of standoff of the PQFN package and narrow spaces in between the component and the board, it is difficult to remove the trap solder residues in these areas in board cleaning, thus flux materials with low corrosive content is preferred. Wave Soldering A standard wave soldering machine usually consists of the fluxing zone, preheating zone, soldering zone and cleaning zone (cleaning would depend on the type of flux used). Preheat temperatures and the preheating time should be set according to the flux specification. Too high temperature and too long preheat time may break down the flux activation systems which causes shorts/icicles. On the other hand, too low preheat temperature may cause skips or unwanted residues left on the PCB. Dual wave soldering is becoming common in the industry. A typical dual wave soldering profile is shown in Figure 4. The 1 st wave which has turbulent wave crest ensures wetting of all the land pads allowing the molten solder to find its way to all joints on the PCB. The 2 nd wave, which has a laminar flow, drains the excess solder from the board after the 1 st wave thus removing the solder bridges. Solder bath temperature must consider the maximum temperature specified for the package (260 C). Wave soldering profile (preheat ramp rate, speed, peak temperature) would depend on the wave soldering equipment and the materials used. Figure 4. Typical Dual Wave Solder Profile Inspection of Wave Soldered Power56 Inspection of the mounted component should be done with the use of 10-20x magnification scope and transmission or laminograph x-ray. A well-reflowed solder joint shows evidence of wetting and adherence wherein the solder merges to the soldered surface forming a contact angle of 90. The solder joints should normally have a smooth appearance. On certain occasion, a matte, dull or grainy solder joints may appear, this can be due to the solder alloy used, the component termination or board pad surface finish, or the soldering process used. IPC- A-610 provides the inspection methodology and acceptance criteria for this package. For wave soldering process, the assembly is prone to solder bridging, skips, icicles and other solder joint defects. It is proper to set controls in inspecting the solder joints especially that the leads and drain are not exposed for PQFNs. Controls can be done visually and through x-ray inspection. Figure 5 shows the top and pin side view of the Power56 that has already been wave soldered on board. The solder coverage at the drain and flat pin areas of a soldered unit can t be inspected visually since it s not exposed. The appropriate control for this is through x-ray inspection of the solder coverage between the land pad and the solderable surfaces at the bottom of the component. Figure 6 is a typical x-ray image of the wave soldered Power56. X-ray inspection is also reliable to detect solder bridging and solder skips. Rev /13/15 3

4 (a) (b) Figure 5. Wave Soldered Power56 (a) View from Top and (b) View from the Side Showing the Gate and Source Leads Figure 6. X-ray Image of a Wave Soldered Power56 Destructive inspection such as cross-sectioning may be performed for sample monitoring during development stage. With this, it can be verified whether there s a significant tilt of the mounted package due to adhesive print or wave soldering process. Solder Joint Power56 PCB Solder Joint Figure 7. Cross-Section of the Wave Soldered Power56 Rev /13/15 4

5 References [1] FSC-QAR-0024, Guideline on the Methodology of Board Level Characterization [2] IPC2221, IPC standard, Generic Standard on Printed Board Design [3] Board-Level Evaluation of Power Qual Flat No-Lead (PQFN) Packages, Fairchild Semiconductor Power Seminar white paper [4] IPC-TM-650, IPC Test Methods Manual, Solderability, Wave Solder Method [5] IPC/EIA J-STD-001, and EIA Joint Standard, Requirements for Soldered Electrical and Electronic Assemblies [6] IPC-A-610, IPC standard, Acceptability of Electronic Assemblies [7] IPC7351, IPC standard, Generic Requirements for Surface Mount Design and Land Pattern Standard [8] IPC9701, IPC standard, Performance Test Methods and Qualification Requirements for Surface Mount Solder Attachments [9] IPC/JEDEC J-STD-033, IPC and JEDEC Joint Standard, Handling, Packing, Shipping and Use of Moisture/Reflow Sensitive Surface Mount Devices [10] AN-9036, Fairchild Application Notes, Guidelines for Using Fairchild s Power56 DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Rev /13/15 5

RoHS-Compliant Through-Hole VI Chip Soldering Recommendations

RoHS-Compliant Through-Hole VI Chip Soldering Recommendations APPLICATION NOTE AN:017 RoHS-Compliant Through-Hole VI Chip Soldering Recommendations Ankur Patel Associate Product Line Engineer Contents Page Introduction 1 Wave Soldering 1 Hand Soldering 4 Pin/Lead

More information

AND8464/D. Board Level Application Note for 0402, 0502 and 0603 DSN2 Packages APPLICATION NOTE

AND8464/D. Board Level Application Note for 0402, 0502 and 0603 DSN2 Packages APPLICATION NOTE Board Level Application Note for 0402, 0502 and 0603 DSN2 Packages Prepared by: Denise Thienpont, Steve St. Germain ON Semiconductor APPLICATION NOTE Introduction ON Semiconductor has introduced an expanded

More information

Edition 2012-032 Published by Infineon Technologies AG 81726 Munich, Germany 2013 Infineon Technologies AG All Rights Reserved.

Edition 2012-032 Published by Infineon Technologies AG 81726 Munich, Germany 2013 Infineon Technologies AG All Rights Reserved. Recommendations for Printed Circuit Board Assembly of Infineon Laminate Packages Additional Information DS1 2012-03 Edition 2012-032 Published by Infineon Technologies AG 81726 Munich, Germany 2013 Infineon

More information

PCB Quality Inspection. Student Manual

PCB Quality Inspection. Student Manual PCB Quality Inspection Student Manual Unit 2: Inspection Overview Section 2.1: Purpose of Inspection What Is The Purpose of Inspection? There are 2 reasons why Inspection is performed: o To verify the

More information

Solder Reflow Guide for Surface Mount Devices

Solder Reflow Guide for Surface Mount Devices June 2015 Introduction Technical Note TN1076 This technical note provides general guidelines for a solder reflow and rework process for Lattice surface mount products. The data used in this document is

More information

Customer Service Note Lead Frame Package User Guidelines

Customer Service Note Lead Frame Package User Guidelines Customer Service Note Lead Frame Package User Guidelines CSN30: Lead Frame Package User Guidelines Introduction Introduction When size constraints allow, the larger-pitched lead-frame-based package design

More information

Molded. By July. A chip scale. and Omega. Guidelines. layer on the silicon chip. of mold. aluminum or. Bottom view. Rev. 1.

Molded. By July. A chip scale. and Omega. Guidelines. layer on the silicon chip. of mold. aluminum or. Bottom view.  Rev. 1. Application Note PAC-006 By J. Lu, Y. Ding, S. Liu, J. Gong, C. Yue July 2012 Molded Chip Scale Package Assembly Guidelines Introduction to Molded Chip Scale Package A chip scale package (CSP) has direct

More information

Application Note. Soldering Methods and Procedures for 1st and 2nd Generation Power Modules. Overview. Analysis of a Good Solder Joint

Application Note. Soldering Methods and Procedures for 1st and 2nd Generation Power Modules. Overview. Analysis of a Good Solder Joint Soldering Methods and Procedures for 1st and 2nd Generation Power Modules Overview This document is intended to provide guidance in utilizing soldering practices to make high quality connections of Vicor

More information

Suggested PCB Land Pattern Designs for Leaded and Leadless Packages, and Surface Mount Guidelines for Leadless Packages

Suggested PCB Land Pattern Designs for Leaded and Leadless Packages, and Surface Mount Guidelines for Leadless Packages APPLICATION NOTE Suggested PCB Land Pattern Designs for Leaded and Leadless Packages, and Surface Mount Guidelines for Leadless Packages Introduction This Application Note provides sample PCB land pattern

More information

PCB Assembly Guidelines for Intersil Wafer Level Chip Scale Package Devices

PCB Assembly Guidelines for Intersil Wafer Level Chip Scale Package Devices Assembly Guidelines for Intersil Wafer Level Chip Scale Package Devices Introduction There is an industry-wide trend towards using the smallest package possible for a given pin count. This is driven primarily

More information

Assembly of LPCC Packages AN-0001

Assembly of LPCC Packages AN-0001 Assembly of LPCC Packages AN-0001 Surface Mount Assembly and Handling of ANADIGICS LPCC Packages 1.0 Overview ANADIGICS power amplifiers are typically packaged in a Leadless Plastic Chip Carrier (LPCC)

More information

Lead-free Wave Soldering Some Insight on How to Develop a Process that Works

Lead-free Wave Soldering Some Insight on How to Develop a Process that Works Lead-free Wave Soldering Some Insight on How to Develop a Process that Works Author: Peter Biocca, Senior Market Development Engineer, Kester, Des Plaines, Illinois. Telephone: 972.390.1197; email pbiocca@kester.com

More information

PIN IN PASTE APPLICATION NOTE. www.littelfuse.com

PIN IN PASTE APPLICATION NOTE. www.littelfuse.com PIN IN PASTE APPLICATION NOTE 042106 technical expertise and application leadership, we proudly introduce the INTRODUCTION The Pin in Paste method, also called through-hole reflow technology, has become

More information

Technical Note Recommended Soldering Parameters

Technical Note Recommended Soldering Parameters Technical Note Recommended Soldering Parameters Introduction Introduction The semiconductor industry is moving toward the elimination of Pb from packages in accordance with new international regulations.

More information

Wave Soldering Problems

Wave Soldering Problems Wave Soldering Problems What is a good joint? The main function of the solder is to make electrical interconnection, but there is a mechanical aspect: even where parts have been clinched or glued in position,

More information

How do you create a RoHS Compliancy-Lead-free Roadmap?

How do you create a RoHS Compliancy-Lead-free Roadmap? How do you create a RoHS Compliancy-Lead-free Roadmap? When a company begins the transition to lead-free it impacts the whole organization. The cost of transition will vary and depends on the number of

More information

Application Note AN-1136. Discrete Power Quad Flat No-Lead (PQFN) Board Mounting Application Note

Application Note AN-1136. Discrete Power Quad Flat No-Lead (PQFN) Board Mounting Application Note Application Note AN-1136 Discrete Power Quad Flat No-Lead (PQFN) Board Mounting Application Note Table of Contents Page Introduction...2 Device construction...2 Design considerations...3 Assembly considerations...4

More information

BGA - Ball Grid Array Inspection Workshop. Bob Willis leadfreesoldering.com

BGA - Ball Grid Array Inspection Workshop. Bob Willis leadfreesoldering.com BGA - Ball Grid Array Inspection Workshop Bob Willis leadfreesoldering.com Mixed Technology Assembly Processes Adhesive Dispensing Component Placement Adhesive Curing Turn Boar Over Conventional Insertion

More information

Flip Chip Package Qualification of RF-IC Packages

Flip Chip Package Qualification of RF-IC Packages Flip Chip Package Qualification of RF-IC Packages Mumtaz Y. Bora Peregrine Semiconductor San Diego, Ca. 92121 mbora@psemi.com Abstract Quad Flat Pack No Leads (QFNs) are thermally enhanced plastic packages

More information

SURFACE MOUNT LED LAMP STANDARD BRIGHT 0606

SURFACE MOUNT LED LAMP STANDARD BRIGHT 0606 PACKAGE DIMENSIONS 0.075 (1.9) 0.063 (1.6) 0.035 (0.9) TOP 0.047 (1.2) 0.012 (0.3) 0.032 [0.8] SIDE 0.043 [1.1] 1 3 0.020 [0.5] 2 4 BOTTOM CATHODE MASK 1 2 3 4 HER / AlGaAs Red / Yellow (for-34) Green

More information

Selective Soldering Defects and How to Prevent Them

Selective Soldering Defects and How to Prevent Them Selective Soldering Defects and How to Prevent Them Gerjan Diepstraten Vitronics Soltec BV Introduction Two major issues affecting the soldering process today are the conversion to lead-free soldering

More information

Auditing Contract Manufacturing Processes

Auditing Contract Manufacturing Processes Auditing Contract Manufacturing Processes Greg Caswell and Cheryl Tulkoff Introduction DfR has investigated multiple situations where an OEM is experiencing quality issues. In some cases, the problem occurs

More information

SURFACE FINISHING FOR PRINTED CIRCUIT BOARDS

SURFACE FINISHING FOR PRINTED CIRCUIT BOARDS SURFACE FINISHING FOR PRINTED CIRCUIT BOARDS In a world of ever-increasing electronic component complexity and pin count requirements for component packaging, focus is once again on the age-old question

More information

Application Note AN-1170. Audio Power Quad Flat No-Lead (PQFN) Board Mounting Application Note

Application Note AN-1170. Audio Power Quad Flat No-Lead (PQFN) Board Mounting Application Note Application Note AN-1170 Audio Power Quad Flat No-Lead (PQFN) Board Mounting Application Note Table of Contents Page Device construction...2 Design considerations...3 Assembly considerations...4 Mechanical

More information

Antenna Part Number: FR05-S1-R-0-105

Antenna Part Number: FR05-S1-R-0-105 Fractus EZConnect Zigbee, RFID, ISM868/9 Chip Antenna Antenna Part Number: FR5-S1-R--15 This product is protected by at least the following patents PAT. US 7,148,85, US 7,22,822 and other domestic and

More information

Mounting Instructions for SP4 Power Modules

Mounting Instructions for SP4 Power Modules Mounting Instructions for SP4 Power Modules Pierre-Laurent Doumergue R&D Engineer Microsemi Power Module Products 26 rue de Campilleau 33 520 Bruges, France Introduction: This application note gives the

More information

Soldering Methods and Procedures for Vicor Power Modules

Soldering Methods and Procedures for Vicor Power Modules APPLICATION NOTE Soldering Methods and Procedures for Vicor Power Modules LEAD-FREE PINS (ROHS); TIN / LEAD PINS see page 6 OVERVIEW The following pages contain soldering information for the following

More information

IPC DRM-SMT-F. Area Array Components Chip Components J-Lead Components Gull Wing Components Class 1 Class 2 Class 3 Photos

IPC DRM-SMT-F. Area Array Components Chip Components J-Lead Components Gull Wing Components Class 1 Class 2 Class 3 Photos 1 IPC 2015 3000 Lakeside Drive, Suite 309-S Bannockburn, IL 60015-1219 +1 847.615.7100 (tel.) +1 847.615.7105 (fax) www.ipc.org email: orderipc@ipc.org Association Connecting Electronics Industries All

More information

How to Build a Printed Circuit Board. Advanced Circuits Inc 2004

How to Build a Printed Circuit Board. Advanced Circuits Inc 2004 How to Build a Printed Circuit Board 1 This presentation is a work in progress. As methods and processes change it will be updated accordingly. It is intended only as an introduction to the production

More information

Good Boards = Results

Good Boards = Results Section 2: Printed Circuit Board Fabrication & Solderability Good Boards = Results Board fabrication is one aspect of the electronics production industry that SMT assembly engineers often know little about.

More information

Handling, soldering & mounting instructions

Handling, soldering & mounting instructions Tri-axial acceleration sensor SMB380 SMB380 Order code 0 273 141 006 Package type QFN Release version 1.0 Release date 2007-07-23 Notes Rev. 1.0 Specifications are Page subject 1 to change without notice

More information

8-bit Atmel Microcontrollers. Application Note. Atmel AVR211: Wafer Level Chip Scale Packages

8-bit Atmel Microcontrollers. Application Note. Atmel AVR211: Wafer Level Chip Scale Packages Atmel AVR211: Wafer Level Chip Scale Packages Features Allows integration using the smallest possible form factor Packaged devices are practically the same size as the die Small footprint and package height

More information

Fractus Compact Reach Xtend

Fractus Compact Reach Xtend Fractus Compact Reach Xtend Bluetooth, Zigbee, 82.11 b/g/n WLAN Chip Antenna Antenna Part Number: FR5-S1-N--12 This product is protected by at least the following patents PAT. US 7,148,85, US 7,22,822

More information

Lead-free Defects in Reflow Soldering

Lead-free Defects in Reflow Soldering Lead-free Defects in Reflow Soldering Author: Peter Biocca, Senior Development Engineer, Kester, Des Plaines, Illinois. Telephone 972.390.1197; email pbiocca@kester.com February 15 th, 2005 Lead-free Defects

More information

Through-Hole Solder Joint Evaluation

Through-Hole Solder Joint Evaluation Demo Only Version This is a promotional sample of the IPC Training and Reference Guide DRM-PTH-E. Please do not use this SAMPLE for training or reference purposes. IPC is a not-for-profit association for

More information

Edition 2012-05 Published by Infineon Technologies AG 81726 Munich, Germany 2012 Infineon Technologies AG All Rights Reserved.

Edition 2012-05 Published by Infineon Technologies AG 81726 Munich, Germany 2012 Infineon Technologies AG All Rights Reserved. Recommendations for Printed Circuit Board Assembly of Infineon QFN Packages Additional Information DS7, 2012-05 Edition 2012-05 Published by Infineon Technologies AG 81726 Munich, Germany 2012 Infineon

More information

Bob Willis leadfreesoldering.com

Bob Willis leadfreesoldering.com Assembly of Flexible Circuits with Lead-Free Solder Alloy Bob Willis leadfreesoldering.com Introduction to Lead-Free Assembly Video Clips Component www.bobwillis.co.uk/lead/videos/components.rm Printed

More information

Electronic Board Assembly

Electronic Board Assembly Electronic Board Assembly ERNI Systems Technology Systems Solutions - a one stop shop - www.erni.com Contents ERNI Systems Technology Soldering Technologies SMT soldering THR soldering THT soldering -

More information

Application Note AN-1080. DirectFET Technology Inspection Application Note

Application Note AN-1080. DirectFET Technology Inspection Application Note Application Note AN-1080 DirectFET Technology Inspection Application Note Table of Contents Page Inspection techniques... 3 Examples of good assembly... 3 Summary of rejection criteria... 4 Types of faults...

More information

JEDEC SOLID STATE TECHNOLOGY ASSOCIATION

JEDEC SOLID STATE TECHNOLOGY ASSOCIATION JEDEC STANDARD Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing JESD22-A113F (Revision of JESD22A113E, March 2006) OCTOBER 2008 JEDEC SOLID STATE TECHNOLOGY ASSOCIATION

More information

CHAPTER 4 SOLDERING GUIDELINES AND SMD FOOTPRINT DESIGN. page. Introduction 4-2. Axial and radial leaded devices 4-2. Surface-mount devices 4-3

CHAPTER 4 SOLDERING GUIDELINES AND SMD FOOTPRINT DESIGN. page. Introduction 4-2. Axial and radial leaded devices 4-2. Surface-mount devices 4-3 CHAPTER 4 SOLDERING GUIDELINES AND SMD FOOTPRINT DESIGN page Introduction 4-2 Axial and radial leaded devices 4-2 Surface-mount devices 4-3 INTRODUCTION There are two basic forms of electronic component

More information

TN0991 Technical note

TN0991 Technical note Technical note Description of WLCSP for STMicroelectronics EEPROMs and recommendations for use Introduction This document describes the 5 and 8-bump WLCSPs (wafer level chip size package) used for STMicroelectronics

More information

PCB Land Pattern Design and Surface Mount Guidelines for QFN Packages

PCB Land Pattern Design and Surface Mount Guidelines for QFN Packages PCB Land Pattern Design and Surface Mount Guidelines for QFN Packages Technical Brief 389 Authors: Mark Kwoka and Jim Benson Introduction Intersil's Quad Flat No Lead (QFN) package family offering is a

More information

IP4234CZ6. 1. Product profile. Single USB 2.0 ESD protection to IEC 61000-4-2 level 4. 1.1 General description. 1.2 Features. 1.

IP4234CZ6. 1. Product profile. Single USB 2.0 ESD protection to IEC 61000-4-2 level 4. 1.1 General description. 1.2 Features. 1. Rev. 01 16 April 2009 Product data sheet 1. Product profile 1.1 General description The is designed to protect Input/Output (I/O) USB 2.0 ports, that are sensitive to capacitive loads, from being damaged

More information

Quad Flat Package (QFP)

Quad Flat Package (QFP) Freescale Semiconductor Application Note AN4388 Rev. 2.0, 2/2014 Quad Flat Package (QFP) 1 Introduction This document provides guidelines for handling and assembly of Freescale QFP packages during Printed

More information

noclean Characterization of No-Clean Solder Paste Residues: The Relationship to In-Circuit Testing

noclean Characterization of No-Clean Solder Paste Residues: The Relationship to In-Circuit Testing Characterization of No-Clean Solder Paste Residues: The Relationship to In-Circuit Testing Many manufacturers have now completed the conversion to no clean solder paste. Many factors governed this initial

More information

PCB inspection is more important today than ever before!

PCB inspection is more important today than ever before! PCB inspection is more important today than ever before! Industry experts continue to stress the need to inspect hidden solder joints! Figure 1. The BGA package has not been placed into the paste deposit.

More information

Soldering of EconoPACK TM, EconoPIM TM, EconoBRIDGE TM, EconoPACK +, EconoDUAL, EasyPACK and EasyPIM TM - Modules

Soldering of EconoPACK TM, EconoPIM TM, EconoBRIDGE TM, EconoPACK +, EconoDUAL, EasyPACK and EasyPIM TM - Modules Seite 1 Soldering of EconoPACK TM, EconoPIM TM, EconoBRIDGE TM, EconoPACK +, EconoDUAL, EasyPACK and EasyPIM TM - Modules Soldering with alloys containing lead (SnPb) is the standard connection technology

More information

How To Fit A 2Mm Exposed Pad To A Dfn Package

How To Fit A 2Mm Exposed Pad To A Dfn Package EVERSPIN s New 2mm Exposed Pad DFN Package Meets Both SOIC-8 and DFN8 PCB Layouts This Application Note is to inform Everspin customers that a new, DFN8 package with a 2mm bottom exposed pad has been added

More information

Designing with High-Density BGA Packages for Altera Devices

Designing with High-Density BGA Packages for Altera Devices 2014.12.15 Designing with High-Density BGA Packages for Altera Devices AN-114 Subscribe As programmable logic devices (PLDs) increase in density and I/O pins, the demand for small packages and diverse

More information

Training & Reference Guide

Training & Reference Guide Version This is a promotional sample of the IPC Training and Reference Guide DRM-PTH-D. Please do not use this SAMPLE for training or reference purposes. IPC is a not-for-profit association for the electronics

More information

JOHANSON DIELECTRICS INC. 15191 Bledsoe Street, Sylmar, Ca. 91342 Phone (818) 364-9800 Fax (818) 364-6100

JOHANSON DIELECTRICS INC. 15191 Bledsoe Street, Sylmar, Ca. 91342 Phone (818) 364-9800 Fax (818) 364-6100 Arc Season and Board Design Observations John Maxwell, Director of Product Development, Johanson Dielectrics Inc. Enrique Lemus, Quality Engineer, Johanson Dielectrics Inc. This years arcing season is

More information

How to avoid Layout and Assembly got chas with advanced packages

How to avoid Layout and Assembly got chas with advanced packages How to avoid Layout and Assembly got chas with advanced packages Parts and pitch get smaller. Pin counts get larger. Design cycles get shorter. BGA, MicroBGA, QFN, DQFN, CSP packages are taking the design

More information

Handling and Processing Details for Ceramic LEDs Application Note

Handling and Processing Details for Ceramic LEDs Application Note Handling and Processing Details for Ceramic LEDs Application Note Abstract This application note provides information about the recommended handling and processing of ceramic LEDs from OSRAM Opto Semiconductors.

More information

1mm Flexible Printed Circuit (FPC) Connectors

1mm Flexible Printed Circuit (FPC) Connectors ApplicationType 114-1072 Specification PRE: YM Lee 29 Oct 10 Rev F APP: SF Leong DCR No. D20101029031638_635573 1mm Flexible Printed Circuit (FPC) Connectors NOTE All numerical values are in metric units

More information

Acceptability of Printed Circuit Board Assemblies

Acceptability of Printed Circuit Board Assemblies Section No.: 12I.2.3, Sheet 1 of 9 Rev Level: 16 Additional Distribution: PCB Assembly Subcontractors 1.0 Purpose 2.0 Scope Acceptability of Printed Circuit Board Assemblies 1.1 The purpose of this standard

More information

AN114. Scope. Safety. Materials H AND SOLDERING TUTORIAL FOR FINE PITCH QFP DEVICES. Optional. Required. 5. Solder flux - liquid type in dispenser

AN114. Scope. Safety. Materials H AND SOLDERING TUTORIAL FOR FINE PITCH QFP DEVICES. Optional. Required. 5. Solder flux - liquid type in dispenser H AND SOLDERING TUTORIAL FOR FINE PITCH QFP DEVICES Scope This document is intended to help designers create their initial prototype systems using Silicon Lab's TQFP and LQFP devices where surface mount

More information

Soldering of SMD Film Capacitors in Practical Lead Free Processes

Soldering of SMD Film Capacitors in Practical Lead Free Processes Soldering of SMD Film Capacitors in Practical Lead Free Processes Matti Niskala Product Manager, SMD products Evox Rifa Group Oyj, a Kemet Company Lars Sonckin kaari 16, 02600 Espoo, Finland Tel: + 358

More information

Soldering And Staking OEpic TOSA/ROSA Flex Circuits To PWBs.

Soldering And Staking OEpic TOSA/ROSA Flex Circuits To PWBs. APP-000010 Rev 03 This application note is intended to give a person involved in the manufacturing engineering of a typical XFP module an overview of the procedures and requirements for soldering an OEpic

More information

Figure 1 (end) Application Specification 114 13088 provides application requirements for MICTOR Right Angle Connectors for SMT PC Board Applications

Figure 1 (end) Application Specification 114 13088 provides application requirements for MICTOR Right Angle Connectors for SMT PC Board Applications This specification covers requirements for application of MICTOR Vertical Board to Board Plugs and Receptacles designed for pc boards. The connectors have an in row contact spacing on 0.64 [.025] centerlines.

More information

Surface mount reflow soldering

Surface mount reflow soldering Surface mount reflow soldering Rev. 6 30 July 2012 Application note Document information Info Keywords Abstract Content surface mount, reflow soldering, component handling This application note provides

More information

Application Specification Dual In- Line Memory Module 114-13087 (DIMM) Sockets- DDR2 Solder Tail 05 APR 11 Rev D

Application Specification Dual In- Line Memory Module 114-13087 (DIMM) Sockets- DDR2 Solder Tail 05 APR 11 Rev D Application Specification Dual In- Line Memory Module 114-13087 (DIMM) Sockets- DDR2 Solder Tail 05 APR 11 Rev D NOTE i All numerical values are in metric units [with U.S. customary units in brackets].

More information

INTEGRATED CIRCUITS. For a complete data sheet, please also download:

INTEGRATED CIRCUITS. For a complete data sheet, please also download: INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications The IC06 74HC/HCT/HCU/HCMOS Logic Package Information The IC06 74HC/HCT/HCU/HCMOS

More information

Specification for Electroless Nickel/ Electroless Palladium/ Immersion Gold (ENEPIG) Plating for Printed Circuit Boards

Specification for Electroless Nickel/ Electroless Palladium/ Immersion Gold (ENEPIG) Plating for Printed Circuit Boards Specification for Electroless Nickel/ Electroless Palladium/ Immersion Gold (ENEPIG) Plating for Printed Circuit Boards Developed by the Plating Processes Subcommittee (4-14) of the Fabrication Processes

More information

APPLICATION NOTE PCB Design and SMT Assembly/Rework Guidelines for MCM-L Packages

APPLICATION NOTE PCB Design and SMT Assembly/Rework Guidelines for MCM-L Packages APPLICATION NOTE PCB Design and SMT Assembly/Rework Guidelines for MCM-L Packages REVISION HISTORY Revision Level Date Description A August 2001 Initial Release B January 17, 2002 C July 18, 2002 D July

More information

Polyimide labels for Printed Circuit Boards

Polyimide labels for Printed Circuit Boards Polyimide labels for Printed Circuit Boards The right match for any PCB labelling application Labels on Printed Circuit Boards Matching product performance with application needs Printed Circuit Boards

More information

WCAP-CSGP Ceramic Capacitors

WCAP-CSGP Ceramic Capacitors A Dimensions: [mm] B Recommended land pattern: [mm] D1 Electrical Properties: Properties Test conditions Value Unit Tol. Capacitance 1±0.2 Vrms, 1 khz ±10% C 15000 pf ± 10% Rated voltage Dissipation factor

More information

Be the best. PCBA Design Guidelines and DFM Requirements. Glenn Miner Engineering Manager March 6, 2014 DFM DFT. DFx DFC DFQ

Be the best. PCBA Design Guidelines and DFM Requirements. Glenn Miner Engineering Manager March 6, 2014 DFM DFT. DFx DFC DFQ and DFM Requirements DFM DFQ DFx DFT DFC Glenn Miner Engineering Manager Electronics, Inc. Not to be reproduced or used in any means without written permission by Benchmark. Guidelines and Requirements

More information

IPC-SM-840C. Qualification and Performance of Permanent Solder Mask IPC-SM-840C. The Institute for. Interconnecting. and Packaging Electronic Circuits

IPC-SM-840C. Qualification and Performance of Permanent Solder Mask IPC-SM-840C. The Institute for. Interconnecting. and Packaging Electronic Circuits The Institute for Interconnecting and Packaging Electronic Circuits Qualification and Performance of Permanent Solder Mask January 1996 A standard developed by the Institute for Interconnecting and Packaging

More information

Processing of SMD LEDs Application note

Processing of SMD LEDs Application note Processing of SMD LEDs Application note Abstract This application note provides a basic overview of the essential aspects and influencing factors regarding the processing of SMD LEDs. Introduction In general,

More information

Preface xiii Introduction xv 1 Planning for surface mount design General electronic products 3 Dedicated service electronic products 3 High-reliability electronic products 4 Defining the environmental

More information

Collin's Lab: Soldering

Collin's Lab: Soldering Collin's Lab: Soldering Created by Collin Cunningham Last updated on 2015-11-30 11:50:08 AM EST Guide Contents Guide Contents Video Transcript Learn More Definition & Origin Other Soldering Methods Desoldering

More information

Cleanliness of Electronic PCB Assemblies Leads to Medical Device Reliability

Cleanliness of Electronic PCB Assemblies Leads to Medical Device Reliability Cleanliness of Electronic PCB Assemblies Leads to Medical Device Reliability by Mo Ohady and David Estes, Digicom Electronics, Oakland, CA Overcoming the Potential for Failures Component manufacturers

More information

Printed Circuits. Danilo Manstretta. microlab.unipv.it/ danilo.manstretta@unipv.it. AA 2012/2013 Lezioni di Tecnologie e Materiali per l Elettronica

Printed Circuits. Danilo Manstretta. microlab.unipv.it/ danilo.manstretta@unipv.it. AA 2012/2013 Lezioni di Tecnologie e Materiali per l Elettronica Lezioni di Tecnologie e Materiali per l Elettronica Printed Circuits Danilo Manstretta microlab.unipv.it/ danilo.manstretta@unipv.it Printed Circuits Printed Circuits Materials Technological steps Production

More information

Electronics and Soldering Notes

Electronics and Soldering Notes Electronics and Soldering Notes The Tools You ll Need While there are literally one hundred tools for soldering, testing, and fixing electronic circuits, you only need a few to make robot. These tools

More information

Introduction to the Plastic Ball Grid Array (PBGA)

Introduction to the Plastic Ball Grid Array (PBGA) Introduction to the Plastic Ball Grid Array (PBGA) Q1, 2008 Terry Burnette Dec. 15, 2005 Presentation Outline PBGA Introduction and Package Description PC Board Design for PBGA PBGA Assembly PBGA Solder

More information

SMD Power Elements Design Guide. 50 A SMD Technology Small Size High Current

SMD Power Elements Design Guide. 50 A SMD Technology Small Size High Current SMD Power Elements Design Guide 50 A SMD Technology Small Size High Current Contents Surface Mount Technology & Assembly Surface Pad Geometry & Stencil Technical Data Qualification Reliability Test 2 www.we-online.com

More information

Surface Mount LEDs - Applications Application Note

Surface Mount LEDs - Applications Application Note Surface Mount LEDs - Applications Application Note Introduction SMT Replaces Through Hole Technology The use of SMT-TOPLED varies greatly from the use of traditional through hole LEDs. Historically through

More information

DVD-PTH-E Through-Hole Solder Joint Workmanship Standards

DVD-PTH-E Through-Hole Solder Joint Workmanship Standards DVD-PTH-E Through-Hole Solder Joint Workmanship Standards Below is a copy of the narration for the DVD-PTH-E video presentation. The contents for this script were developed by a review group of industry

More information

DVD-111C Advanced Hand Soldering Techniques

DVD-111C Advanced Hand Soldering Techniques DVD-111C Advanced Hand Soldering Techniques Below is a copy of the narration for DVD-111C. The contents for this script were developed by a review group of industry experts and were based on the best available

More information

What is surface mount?

What is surface mount? A way of attaching electronic components to a printed circuit board The solder joint forms the mechanical and electrical connection What is surface mount? Bonding of the solder joint is to the surface

More information

Wafer Level Chip Scale Package (WLCSP)

Wafer Level Chip Scale Package (WLCSP) Freescale Semiconductor Application Note AN3846 Rev. 3.0, 05/2012 Wafer Level Chip Scale Package (WLCSP) 1 Purpose This document provides guidelines to use the Wafer Level Chip Scale Package (WLCSP) to

More information

Rework stations: Meeting the challenges of lead-free solders

Rework stations: Meeting the challenges of lead-free solders Rework stations: Meeting the challenges of lead-free solders Market forces, particularly legislation against the use of lead in electronics, have driven electronics manufacturers towards lead-free solders

More information

Application Note AN-0994 Maximizing the Effectiveness of your SMD Assemblies

Application Note AN-0994 Maximizing the Effectiveness of your SMD Assemblies Application Note AN-0994 Maximizing the Effectiveness of your SMD Assemblies Table of Contents Page Method...2 Thermal characteristics of SMDs...2 Adhesives...4 Solder pastes...4 Reflow profiles...4 Rework...6

More information

JEDEC SOLID STATE TECHNOLOGY ASSOCIATION

JEDEC SOLID STATE TECHNOLOGY ASSOCIATION JEDEC STANDARD Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing JESD22-A113D (Revision of JESD22-A113C) AUGUST 2003 JEDEC SOLID STATE TECHNOLOGY ASSOCIATION NOTICE JEDEC

More information

Medium power Schottky barrier single diode

Medium power Schottky barrier single diode Rev. 03 17 October 2008 Product data sheet 1. Product profile 1.1 General description Planar medium power Schottky barrier single diode with an integrated guard ring for stress protection, encapsulated

More information

Ball Grid Array (BGA) Technology

Ball Grid Array (BGA) Technology Chapter E: BGA Ball Grid Array (BGA) Technology The information presented in this chapter has been collected from a number of sources describing BGA activities, both nationally at IVF and reported elsewhere

More information

First Published in the ECWC 10 Conference at IPC Printed Circuits Expo, Apex and Designer Summit 2005, Anaheim, Calif., Feb.

First Published in the ECWC 10 Conference at IPC Printed Circuits Expo, Apex and Designer Summit 2005, Anaheim, Calif., Feb. First Published in the ECWC 10 Conference at IPC Printed Circuits Expo, Apex and Designer Summit 2005, Anaheim, Calif., Feb. 22-24, 2005 Test and Inspection as part of the lead-free manufacturing process

More information

BSP52T1 MEDIUM POWER NPN SILICON SURFACE MOUNT DARLINGTON TRANSISTOR

BSP52T1 MEDIUM POWER NPN SILICON SURFACE MOUNT DARLINGTON TRANSISTOR Preferred Device This NPN small signal darlington transistor is designed for use in switching applications, such as print hammer, relay, solenoid and lamp drivers. The device is housed in the SOT-223 package,

More information

uclamp0541z Ultra Small μclamp 1-Line ESD Protection

uclamp0541z Ultra Small μclamp 1-Line ESD Protection - Z-Pak TM Description μclamp TVS diodes are designed to protect sensitive electronics from damage or latch-up due to ESD. It is designed to replace 2 size multilayer varistors (MLVs) in portable applications

More information

17 IMPLEMENTATION OF LEAD-FREE SOLDERING TECHNOLOGY. Eva Kotrčová České Vysoké Učení Technické Fakulta Elektrotechnická Katedra Elektrotechnologie

17 IMPLEMENTATION OF LEAD-FREE SOLDERING TECHNOLOGY. Eva Kotrčová České Vysoké Učení Technické Fakulta Elektrotechnická Katedra Elektrotechnologie 17 IMPLEMENTATION OF LEAD-FREE SOLDERING TECHNOLOGY Eva Kotrčová České Vysoké Učení Technické Fakulta Elektrotechnická Katedra Elektrotechnologie 1. Introduction Lead is the toxic heavy metal which is

More information

Investigation of Components Attachment onto Low Temperature Flex Circuit

Investigation of Components Attachment onto Low Temperature Flex Circuit Investigation of Components Attachment onto Low Temperature Flex Circuit July 2013 Q. Chu, N. Ghalib, H. Ly Agenda Introduction to MIRA Initiative MIRA Manufacturing Platforms Areas of Development Multiphase

More information

Component Candidacy of Second Side Reflow with Lead-Free Solder

Component Candidacy of Second Side Reflow with Lead-Free Solder Materials Transactions, Vol. 47, No. 6 (006) pp. 577 to 583 #006 The Japan Institute of Metals Component Candidacy of Second Side Reflow with Lead-Free Solder Yueli Liu ; *, David A. Geiger and Dongkai

More information

Work Instruction SUPPLIER PRINTED CIRCUIT BOARD REQUIREMENTS

Work Instruction SUPPLIER PRINTED CIRCUIT BOARD REQUIREMENTS Summary of Change Revision Date 05/05/11 Sections 3.3.6 was added, 3.4.1 and 3.4.8 have changed dimensional formats, and 3.6.4-3.6.8 were removed 02/23/11 Changed panel to lot section 3.3.3 02/15/11 Formal

More information

Q&A. Contract Manufacturing Q&A. Q&A for those involved in Contract Manufacturing using Nelco Electronic Materials

Q&A. Contract Manufacturing Q&A. Q&A for those involved in Contract Manufacturing using Nelco Electronic Materials Q&A Q&A for those involved in Contract Manufacturing using Nelco Electronic Materials 1. Do Nelco laminates have any discoloration effects or staining issues after multiple high temperature exposures?

More information

Lead-free Hand-soldering Ending the Nightmares

Lead-free Hand-soldering Ending the Nightmares Lead-free Hand-soldering Ending the Nightmares Most issues during the transition seem to be with Hand-soldering As companies transition over to lead-free assembly a certain amount of hand-soldering will

More information

INTEGRATED CIRCUITS DATA SHEET. SAA1064 4-digit LED-driver with I 2 C-Bus interface. Product specification File under Integrated Circuits, IC01

INTEGRATED CIRCUITS DATA SHEET. SAA1064 4-digit LED-driver with I 2 C-Bus interface. Product specification File under Integrated Circuits, IC01 INTEGRATED CIRCUITS DATA SHEET 4-digit LED-driver with I 2 C-Bus interface File under Integrated Circuits, IC01 February 1991 GENERAL DESCRIPTION The LED-driver is a bipolar integrated circuit made in

More information

Solutions without Boundaries. PCB Surface Finishes. Todd Henninger, C.I.D. Sr. Field Applications Engineer Midwest Region

Solutions without Boundaries. PCB Surface Finishes. Todd Henninger, C.I.D. Sr. Field Applications Engineer Midwest Region Solutions without Boundaries PCB Surface Finishes Todd Henninger, C.I.D. Sr. Field Applications Engineer Midwest Region 1 Notice Notification of Proprietary Information: This document contains proprietary

More information

Lead Free Wave Soldering

Lead Free Wave Soldering China - Korea - Singapore- Malaysia - USA - Netherlands - Germany WAVE SELECTIVE REFLOW SOLDERING SOLDERING SOLDERING Lead Free Wave Soldering Ursula Marquez October 18, 23 Wave Soldering Roadmap Parameter

More information