# 1.5 Light absorption by solids

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 1.5 Light absorption by solids Bloch-Brilloin model L e allowed energy bands band gaps p x In a unidimensional approximation, electrons in a solid experience a periodic potential due to the positively charged atomic nuclei of the crystal lattice. In Kronig-Penny s model, this situation is further simplified by considering equidistant potential wells of constant depth. Solving the Schrödinger s equation in this case yields:! 2 n = n 2 8m * e L 2 with m e * n = ±1, ± 2,... is the electron effective mass, such as it satisfies (within an allowed band) de Broglie's relation : = p 2 2m =!2 k 2 * * e 2m e 47 Band theory 4N states 4N electron energy gap 4N states 0 electron 8N states 4N electrons C-C equilibrium distance (diamond) N carbon atoms cohesive energy 6N states (2p) 2N electrons 2N states (2s) 2N electrons r nergy bands can also be understood by considering mutual interactions of electronic wave functions of atoms constituting the solid. When a large number of atoms are brought together, energy levels split, yielding many new orbitals. The difference in energy between them becomes very small, so the levels may be considered as forming continuous bands of energy. Some intervals of energy contain no orbitals, no matter how many atoms are aggregated, forming band gaps. g conduction band lowest empty or partially filled energy band band gap band of forbidden energy valence band highest entirely occupied energy band 48

2 lectric conduction in solids g g insulator empty, large band gap conductor overlapping and conductor partially filled Insulators' conduction band is totally empty, while their valence band is entirely occupied. lectrons, then, may not contribute to the electrical conductivity of the material, because no energy level is available for them to acquire kinetic energy and to move. Conductors, or metals are characterized by a partially filled conduction band. lectrons, when subjected to an electric field, may acquire some kinetic energy. The specific electrical conductivity s is given by the product of the density n of charge carriers and their mobility µ: s = q n µ Ω 1 m 1 49 Semiconductors g < 3kBT g g semiconductor small band gap semiconductor donor impurities (n-doping) semiconductor acceptor impurities (p-doping) Semiconductors are insulators for which a conduction can however be obtained under some conditions. If g < 3 kbt, for instance, electrons can jump thermally across the band gap and be promoted from the valence band to the conduction band. Both conduction band electrons and valence band holes charge carriers contribute then to the conduction. Charge carriers can also be produced by chemical doping of the solid. Donor impurities yield n-doping (e carriers). Acceptor impurities produce holes in the valence band (h + carriers) and p-doping. In semiconductors, the density of charge carriers n is always rather small. 50

3 Intrinsic light absorption e hν g h + The promotion of an electron from the fully occupied valence band to the conduction band can also be achieved by intrinsic light absorption of photons of energy hν g. The photo-conduction of the semiconductor under band-gap irradiation is due to both e and h + charge carriers. xample: α Titanium dioxide TiO2 is a solid with a rather ionic character. It can be seen as being constituted of Ti 4+ and O 2 ions. Ti 3d 2 4s 2 Ti 4+ 3d 0 O 2p 4 O 2 2p 6 empty conduction band entirely occupied valence band. hν Photons of energy hν g = 3.2 ev (λ 380 nm) are absorbed, yielding a transition 2p(O) 3d(Ti). 51 Band structure Band structure in the reciprocal space is a compact and elegant way to represent all electronic states in a periodic system. In such a representation, bands appear ideally as a series of de Broglie's parabolas = ƒ(k): = p 2 2m =!2 k 2 * * e 2m e where k is the wave vector of a charge carrier and p its momentum: k = 2π p / h However, because m e * is not the same in all directions of the 3D space, a complex structure is observed rather than simple parabolas. Band structure of TiO2 rutile. Left: nergy vs. wave vector along symmetry lines in the Brillouin zone. Right: schematic of energy bands. 52

4 Direct vs indirect transitions direct indirect Since photons do not carry any mechanical momentum, k should remain unchanged during an electronic transition if no vibration is coupled to it. A transition following the Frank-Condon principle (k constant) is called a direct transition. hν = g Δk = 0 An indirect transition implies a vibration of the solid lattice is coupled to the electronic movement. The change of the momentum is brought by absorption of a phonon of energy p (Δk > 0) or released during the emission of a phonon in the solid (Δk > 0). hν = g ± p Δk = ± k p 53 Gärtner's relations α α 2 hν direct transition: indirect transition: α hν g α ( hν g ) 2 α hν λ 1 / hν α indirect transition: absorption threshold hν = g p hν g p g g + p 54

5 xcitonic absorption An exciton is an electron-hole pair in which charge carriers are bound together by Coulombic interaction. The exciton is a neutral entity which can move easily in an insulator and carry excitation energy. g x hν = g x exciton absorption α 2 GaAs α xciton bond energy x [mev] free e absorption Si 14.7 CdS 29 KCl 400 Ge 4 CdSe 15 KBr 400 g GaAs 4.2 BaO 56 AgCl 30 GaP 3.5 InP 4 AgBr Size and bond energy of an exciton Bohr's planetary model (hydrogen atom) r H = n2! 2 ε 0 µ e 2 = n Å with r x =!2 ε ε 0 m * e 2 = ε m * e m r * H with 1 / µ = 1 / m e + 1 / m p! 1 / m e 1 / m * = 1 / m e * + 1 / m h * rx mh * + * me x = m * e 2 = m* 13.6 [ev ] 2m e ε 2 2 r H m e ε xciton radius r x and bond energy x [mev] for comparison: ε (H2O) = 87 g / ev m e */m e m h */m h ε / - r x / Å x / mev CdS ZnO TiO

6 Quantum size effect Absorbance Δ g =!2 8r 2 m e m * e2 ε r 2r = 20 Å λ / nm = 35 Å = 80 Å Confinement of electrons in particles whose size is comparable or smaller than that of the exciton in the bulk material leads to an increase of the excitation energy g. As a result, the bandgap increases and the absorption threshold shifts to the blue when particle size is decreased. This quantum size effect, which is a direct evidence of the "particle in a box" concept, allows to adjust the color of colloidal particles of wide bandgap semiconductors. Left: Absorption spectra of aqueous colloidal suspensions of CdS particles. Particle diameter is reduced from 80 Å to 20 Å, causing an important hypsochromic shift. 57 Quantum dots Q u a n t u m d o t s ( Q D s ) a r e semiconducting nanoparticles in which excitons are confined in all three spatial dimensions. Quantum confinement affects the absorption and emission of photons from the dot. Thus, the absorption edge of a material can be tuned by control of the particle size. Quantum dots are particularly significant for optical applications (bio-imaging, diode lasers, LDs, solar cells,...) due to their high extinction coefficients. Similar to a molecule, a quantum dot has both a quantized energy spectrum and a quantized density of electronic states near the edge of the band gap. particle diameter 20 Å 74 Å Solutions of monodisperse CdSe nanocrystals with increasing diameter (from left to right). Photoemission (fluorescence) wavelengths are indicative of the respective bandgap energies. 58

### Semiconductor Physics

10p PhD Course Semiconductor Physics 18 Lectures Nov-Dec 2011 and Jan Feb 2012 Literature Semiconductor Physics K. Seeger The Physics of Semiconductors Grundmann Basic Semiconductors Physics - Hamaguchi

### Lecture 2: Semiconductors: Introduction

Lecture 2: Semiconductors: Introduction Contents 1 Introduction 1 2 Band formation in semiconductors 2 3 Classification of semiconductors 5 4 Electron effective mass 10 1 Introduction Metals have electrical

### Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

### Doped Semiconductors. Dr. Katarzyna Skorupska

Doped Semiconductors Dr. Katarzyna Skorupska 1 Doped semiconductors Increasing the conductivity of semiconductors by incorporation of foreign atoms requires increase of the concentration of mobile charge

### Solid State Detectors = Semi-Conductor based Detectors

Solid State Detectors = Semi-Conductor based Detectors Materials and their properties Energy bands and electronic structure Charge transport and conductivity Boundaries: the p-n junction Charge collection

### Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.

Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van

### Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano 5 nm First H/W#1 is due Sept. 10 Course Info The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model)

### Energy band diagrams. Single atom. Crystal. Excited electrons cannot move. Excited electrons can move (free electrons)

Energy band diagrams In the atoms, the larger the radius, the higher the electron potential energy Hence, electron position can be described either by radius or by its potential energy In the semiconductor

### Lecture 8: Extrinsic semiconductors - mobility

Lecture 8: Extrinsic semiconductors - mobility Contents Carrier mobility. Lattice scattering......................... 2.2 Impurity scattering........................ 3.3 Conductivity in extrinsic semiconductors............

### Semiconductor Detectors Calorimetry and Tracking with High Precision

Semiconductor Detectors Calorimetry and Tracking with High Precision Applications 1. Photon spectroscopy with high energy resolution. Vertex detection with high spatial resolution 3. Energy measurement

### Physics 551: Solid State Physics F. J. Himpsel

Physics 551: Solid State Physics F. J. Himpsel Background Most of the objects around us are in the solid state. Today s technology relies heavily on new materials, electronics is predominantly solid state.

### Semiconductors, diodes, transistors

Semiconductors, diodes, transistors (Horst Wahl, QuarkNet presentation, June 2001) Electrical conductivity! Energy bands in solids! Band structure and conductivity Semiconductors! Intrinsic semiconductors!

### Semiconductor Laser Diode

Semiconductor Laser Diode Outline This student project deals with the exam question Semiconductor laser diode and covers the following questions: Describe how a semiconductor laser diode works What determines

### Chemical Synthesis. Overview. Chemical Synthesis of Nanocrystals. Self-Assembly of Nanocrystals. Example: Cu 146 Se 73 (PPh 3 ) 30

Chemical Synthesis Spontaneous organization of molecules into stable, structurally well-defined aggregates at the nanometer length scale. Overview The 1-100 nm nanoscale length is in between traditional

### Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010)

Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Solid-State Physics: The Theory of Semiconductors (Ch. 10.6-10.8) SteveSekula, 30 March 2010 (created 29 March 2010) Review

### Intrinsic and Extrinsic Semiconductors, Fermi-Dirac Distribution Function, the Fermi level and carrier concentrations

ENEE 33, Spr. 09 Supplement I Intrinsic and Extrinsic Semiconductors, Fermi-Dirac Distribution Function, the Fermi level and carrier concentrations Zeynep Dilli, Oct. 2008, rev. Mar 2009 This is a supplement

### The Physics of Energy sources Renewable sources of energy. Solar Energy

The Physics of Energy sources Renewable sources of energy Solar Energy B. Maffei Bruno.maffei@manchester.ac.uk Renewable sources 1 Solar power! There are basically two ways of using directly the radiative

### Free Electron Fermi Gas (Kittel Ch. 6)

Free Electron Fermi Gas (Kittel Ch. 6) Role of Electrons in Solids Electrons are responsible for binding of crystals -- they are the glue that hold the nuclei together Types of binding (see next slide)

### SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel)

SEMICONDUCTOR I: Doping, semiconductor statistics (REF: Sze, McKelvey, and Kittel) Introduction Based on known band structures of Si, Ge, and GaAs, we will begin to focus on specific properties of semiconductors,

### FYS3410 - Vår 2015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html

FYS3410 - Vår 015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v15/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9 and 17, 18, 0,

### Unit 12 Practice Test

Name: Class: Date: ID: A Unit 12 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) A solid has a very high melting point, great hardness, and

### Lecture 2 Semiconductor Physics (I)

Lecture 2 Semiconductor Physics (I) Outline Intrinsic bond model : electrons and holes Generation and recombination Intrinsic semiconductor Doping: Extrinsic semiconductor Charge Neutrality Reading Assignment:

### Chapter 8 Molecules. Some molecular bonds involve sharing of electrons between atoms. These are covalent bonds.

Chapter 8 Molecules (We have only three days for chapter 8!) 8.1 The Molecular Bond A molecule is an electrically neutral group of atoms held together strongly enough to behave as a single particle. A

### Applied Physics of solar energy conversion

Applied Physics of solar energy conversion Conventional solar cells, and how lazy thinking can slow you down Some new ideas *************************************************************** Our work on semiconductor

### Excitons Types, Energy Transfer

Excitons Types, Energy Transfer Wannier exciton Charge-transfer exciton Frenkel exciton Exciton Diffusion Exciton Energy Transfer (Förster, Dexter) Handout (for Recitation Discusssion): J.-S. Yang and

### phys4.17 Page 1 - under normal conditions (pressure, temperature) graphite is the stable phase of crystalline carbon

Covalent Crystals - covalent bonding by shared electrons in common orbitals (as in molecules) - covalent bonds lead to the strongest bound crystals, e.g. diamond in the tetrahedral structure determined

### University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory

University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 8: Optical Absorption Spring 2002 Yan Zhang and Ali Shakouri, 05/22/2002 (Based

### Introduction to Quantum Dot Nanocrystals and Nanocrystal Solids. Nuri Yazdani, 10.03.15

Introduction to Quantum Dot Nanocrystals and Nanocrystal Solids Nuri Yazdani, 10.03.15 What is a QD Nanocrystal Time: ~15m What is a QD nanocrystal? Bulk Crystal Periodic lattice of atoms which extends

### INSTITUTE FOR APPLIED PHYSICS Physical Practice for Learners of Engineering sciences Hamburg University, Jungiusstraße 11

INSTITUTE FOR APPIED PHYSICS Physical Practice for earners of Engineering sciences Hamburg University, Jungiusstraße 11 Hall effect 1 Goal Characteristic data of a test semiconductor (Germanium) should

### Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

Chapter 5 5.6 Doped GaAs Consider the GaAs crystal at 300 K. a. Calculate the intrinsic conductivity and resistivity. Second Edition ( 2001 McGraw-Hill) b. In a sample containing only 10 15 cm -3 ionized

### Types of Epitaxy. Homoepitaxy. Heteroepitaxy

Epitaxy Epitaxial Growth Epitaxy means the growth of a single crystal film on top of a crystalline substrate. For most thin film applications (hard and soft coatings, optical coatings, protective coatings)

### 3.003 Lab 4 Simulation of Solar Cells

Mar. 9, 2010 Due Mar. 29, 2010 3.003 Lab 4 Simulation of Solar Cells Objective: To design a silicon solar cell by simulation. The design parameters to be varied in this lab are doping levels of the substrate

### Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set

Electrons in Atoms & Periodic Table Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Electrons in Atoms & Periodic Table 2 Study Guide: Things You

### Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

### Supplementary Course Topic 3:

Supplementary Course Topic 3: Quantum Theory of Bonding Molecular Orbital Theory of H 2 Bonding in H 2 and some other simple diatomics Multiple Bonds and Bond Order Bond polarity in diatomic and polyatomic

### 5.111 Principles of Chemical Science

MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.111 Lecture Summary

### EXPERIMENT 4. This lab will meet on Monday October 22 nd and Tuesday October 23 rd in Science Center 210.

EXPERIMENT 4 Synthesis and Analysis of CdSe Quantum Dot Nanocrystals This lab will meet on Monday October 22 nd and Tuesday October 23 rd in Science Center 210. Before You Come to Lab: Read the entire

### What is Laser Ablation? Mass removal by coupling laser energy to a target material

Laser Ablation Fundamentals & Applications Samuel S. Mao Department of Mechanical Engineering University of California at Berkeley Advanced Energy Technology Department March 1, 25 Laser Ablation What

### Goals What parameters can we examine? Sintering? Material? What methods can we use to characterize the differences?

Background Photoelectrochemical solar cells are devices consisting of a photoelectrode, a redox electrolyte, and a counter electrode. i Semiconducting materials such as single-crystal and polycrystal n-

### Lecture 2 - Semiconductor Physics (I) September 13, 2005

6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 2-1 Lecture 2 - Semiconductor Physics (I) September 13, 2005 Contents: 1. Silicon bond model: electrons and holes 2. Generation and recombination

### The nearly-free electron model

Handout 3 The nearly-free electron model 3.1 Introduction Having derived Bloch s theorem we are now at a stage where we can start introducing the concept of bandstructure. When someone refers to the bandstructure

### Chapter 7. Electron Structure of the Atom. Chapter 7 Topics

Chapter 7 Electron Structure of the Atom Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 7 Topics 1. Electromagnetic radiation 2. The Bohr model of

### Chemistry 102 Summary June 24 th. Properties of Light

Chemistry 102 Summary June 24 th Properties of Light - Energy travels through space in the form of electromagnetic radiation (EMR). - Examples of types of EMR: radio waves, x-rays, microwaves, visible

### Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

### FUNDAMENTAL PROPERTIES OF SOLAR CELLS

FUNDAMENTAL PROPERTIES OF SOLAR CELLS January 31, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals of

### Electronic Structure and the Periodic Table Learning Outcomes

Electronic Structure and the Periodic Table Learning Outcomes (a) Electronic structure (i) Electromagnetic spectrum and associated calculations Electromagnetic radiation may be described in terms of waves.

### TiO 2. : A New Kind of Water Treatment. Registered charity number 207890

TiO 2 : A New Kind of Water Treatment www.rsc.org/learn-chemistry Registered charity number 207890 3: A new kind of water treatment What is solar disinfection with titanium dioxide and how does it work?

### AP Chemistry A. Allan Chapter 7 Notes - Atomic Structure and Periodicity

AP Chemistry A. Allan Chapter 7 Notes - Atomic Structure and Periodicity 7.1 Electromagnetic Radiation A. Types of EM Radiation (wavelengths in meters) 10-1 10-10 10-8 4 to 7x10-7 10-4 10-1 10 10 4 gamma

### Chapter 1. Semiconductors

THE ELECTRON IN ELECTRIC FIELDS Semiconductors If we were to take two parallel plates and connect a voltage source across them as shown in Figure 1, an electric field would be set up between the plates.

### Hard Condensed Matter WZI

Hard Condensed Matter WZI Tom Gregorkiewicz University of Amsterdam VU-LaserLab Dec 10, 2015 Hard Condensed Matter Cluster Quantum Matter Optoelectronic Materials Quantum Matter Amsterdam Mark Golden Anne

### - particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

Tunnel Effect: - particle with kinetic energy E strikes a barrier with height U 0 > E and width L - classically the particle cannot overcome the barrier - quantum mechanically the particle can penetrated

### AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE

AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE You should be familiar with the wavelike properties of light: frequency ( ), wavelength ( ), and energy (E) as well as

### Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting

Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting 3G Solar Technologies Multidisciplinary Workshop MRS Spring Meeting San Francisco, CA, 5 April 2010 Michael P.

### Ch 3 Atomic Structure and the Periodic Table. Figure 3.1 size relationship is not to scale, ratio of average diameters atom/nucleus = 10 5

1 Ch 3 Atomic Structure and the Periodic Table Figure 3.1 size relationship is not to scale, ratio of average diameters atom/nucleus = 10 5 2 Atoms are very small and spherical. Radii Range 0.9 x 10-10

### Size effects. Lecture 6 OUTLINE

Size effects 1 MTX9100 Nanomaterials Lecture 6 OUTLINE -Why does size influence the material s properties? -How does size influence the material s performance? -Why are properties of nanoscale objects

### Chapter 7: The Quantum-Mechanical Model of the Atom

C h e m i s t r y 1 A : C h a p t e r 7 P a g e 1 Chapter 7: The Quantum-Mechanical Model of the Atom Homework: Read Chapter 7. Work out sample/practice exercises Suggested Chapter 7 Problems: 37, 39,

### Sample Exercise 12.1 Calculating Packing Efficiency

Sample Exercise 12.1 Calculating Packing Efficiency It is not possible to pack spheres together without leaving some void spaces between the spheres. Packing efficiency is the fraction of space in a crystal

### HIGH TRANSMISSION SILICON (HiTran TM ) FOR INFRARED OPTICAL APPLICATIONS

APPLICATION NOTE HIGH TRANSMISSION SILICON (HiTran TM ) FOR INFRARED OPTICAL APPLICATIONS Infrared optical systems require materials that have very good transmission characteristics for infrared wavelengths

### - thus, the total number of atoms per second that absorb a photon is

Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons

### CHAPTER 1: Semiconductor Materials & Physics

Chapter 1 1 CHAPTER 1: Semiconductor Materials & Physics In this chapter, the basic properties of semiconductors and microelectronic devices are discussed. 1.1 Semiconductor Materials Solid-state materials

### The Diode. Diode Operation

The Diode The diode is a two terminal semiconductor device that allows current to flow in only one direction. It is constructed of a P and an N junction connected together. Diode Operation No current flows

### Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

### Chapter 6 Electromagnetic Radiation and the Electronic Structure of the Atom

Chapter 6 In This Chapter Physical and chemical properties of compounds are influenced by the structure of the molecules that they consist of. Chemical structure depends, in turn, on how electrons are

### Light is a type of electromagnetic (EM) radiation, and light has energy. Many kinds of light exist. Ultraviolet (UV) light causes skin to tan or burn.

Light and radiation Light is a type of electromagnetic (EM) radiation, and light has energy. Many kinds of light exist. Ultraviolet (UV) light causes skin to tan or burn. Infrared (IR) light is used in

### Bohr s Model and Emission Spectra of Hydrogen and Helium

PHYS-01 LAB-03 Bohr s Model and Emission Spectra of Hydrogen and Helium 1. Objective The objective of this experiment is to study the emission spectrum of hydrogen and to understand its origin in terms

### The Bohr model for the electrons

The Bohr model for the electrons Electronic structure how the electrons are arranged inside the atom Applying the quantum principle of energy Two parameters: Energy Position Learning objectives Describe

### FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html

FYS3410 - Vår 2014 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v14/index.html Pensum: Solid State Physics by Philip Hofmann (Chapters 1-7 and 11) Andrej Kuznetsov delivery

### Introduction OLEDs OTFTs OPVC Summary. Organic Electronics. Felix Buth. Walter Schottky Institut, TU München. Joint Advanced Student School 2008

Felix Buth Joint Advanced Student School 2008 Outline 1 Introduction Difference organic/inorganic semiconductors From molecular orbitals to the molecular crystal 2 Organic Light Emitting Diodes Basic Principals

### Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds.

Problem 1 Explain the ionic bonds, covalent bonds and metallic bonds and give one example for each type of bonds. Ionic Bonds Two neutral atoms close to each can undergo an ionization process in order

### 2 Absorbing Solar Energy

2 Absorbing Solar Energy 2.1 Air Mass and the Solar Spectrum Now that we have introduced the solar cell, it is time to introduce the source of the energy the sun. The sun has many properties that could

### Nanoparticle Enhanced Thin Film Solar Cells

Nanoparticle Enhanced Thin Film Solar Cells Solar Cells Solar cells convert visible light to electricity. It is one of the clean sources of energy. In theory a 100 square mile area covered with solar panels

### Electrical Properties

Electrical Properties Outline of this Topic 1. Basic laws and electrical properties of metals 2. Band theory of solids: metals, semiconductors and insulators 3. Electrical properties of semiconductors

### The Phenomenon of Photoelectric Emission:

The Photoelectric Effect. The Wave particle duality of light Light, like any other E.M.R (electromagnetic radiation) has got a dual nature. That is there are experiments that prove that it is made up of

### Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which

### Periodic Table. inert gases. Columns: Similar Valence Structure. give up 1e - give up 2e - Oaccept 2e- accept 1e - give up 3e -

Periodic Table give up 1e - give up 2e - give up 3e - H Li Be Na Mg K Ca Columns: Similar Valence Structure Sc Oaccept 2e- accept 1e - inert gases S Se F Cl Br He Ne Ar Kr Adapted from Fig. 2.6, Callister

### Fundamentals of molecular absorption spectroscopy (UV/VIS)

10.2.1.3 Molecular spectroscopy 10.2.1.3.1 Introduction Molecular radiation results from the rotational, vibrational and electronic energy transitions of molecules. Band spectra are the combination of

### Electrical Conductivity

Advanced Materials Science - Lab Intermediate Physics University of Ulm Solid State Physics Department Electrical Conductivity Translated by Michael-Stefan Rill January 20, 2003 CONTENTS 1 Contents 1 Introduction

Activity 17 Electromagnetic Radiation Why? Electromagnetic radiation, which also is called light, is an amazing phenomenon. It carries energy and has characteristics of both particles and waves. We can

1. Radiative Transfer Virtually all the exchanges of energy between the earth-atmosphere system and the rest of the universe take place by radiative transfer. The earth and its atmosphere are constantly

WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):

### NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY PRINCIPLE AND APPLICATION IN STRUCTURE ELUCIDATION Professor S. SANKARARAMAN Department of Chemistry Indian Institute of Technology Madras Chennai 600 036 sanka@iitm.ac.in

### Lecture 15 - application of solid state materials solar cells and photovoltaics. Copying Nature... Anoxygenic photosynthesis in purple bacteria

Lecture 15 - application of solid state materials solar cells and photovoltaics. Copying Nature... Anoxygenic photosynthesis in purple bacteria Simple example, but still complicated... Photosynthesis is

### Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab

### Atoms Absorb & Emit Light

Atoms Absorb & Emit Light Spectra The wavelength of the light that an element emits or absorbs is its fingerprint. Atoms emit and absorb light First Test is Thurs, Feb 1 st About 30 multiple choice questions

### Level 3 Achievement Scale

Unit 1: Atoms Level 3 Achievement Scale Can state the key results of the experiments associated with Dalton, Rutherford, Thomson, Chadwick, and Bohr and what this lead each to conclude. Can explain that

### Covalent and Metallic Bonding

Covalent and Metallic Bonding Chemistry for Earth Scientists, DM Sherman University of Bristol Failures of Ionic Model: Ionic radius of S -2 NaCl structure CaS is highly ionic. Cell constant 5.70 Å Ca

### Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact

### Chapter 13 Mass Spectrometry and Infrared Spectroscopy

Chapter 13 Mass Spectrometry and Infrared Spectroscopy Copyright 2011 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Overview of Mass Spectrometry Mass spectrometry

### COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st

COURSE: PHYSICS DEGREE: COMPUTER ENGINEERING year: 1st SEMESTER: 1st WEEKLY PROGRAMMING WEE K SESSI ON DESCRIPTION GROUPS GROUPS Special room for LECTU PRAC session RES TICAL (computer classroom, audiovisual

### CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO)

CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO) Information that most likely will be on the front cover of your exam: h i Z 2 ΔE = @ 2.18 x 10 @ 18 f Z 2 f J j @ k n f 2 n i 2 1. Which of the

### Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

### Light. Light. Overview. In-class activity. What are waves? In this section: PSC 203. What is it? Your thoughts?

Light PSC 203 Overview In this section: What is light? What is the EM Spectrum? How is light created? What can we learn from light? In-class activity Discuss your answers in groups of 2 Think of as many

### Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory

PAM1014 Introduction to Radiation Physics Basic Atomic Theory Objectives Introduce and Molecules The periodic Table Electronic Energy Levels Atomic excitation & de-excitation Ionisation Molecules Constituents

### Emission Spectra of Elements

Fall 2003 Emission Spectra of Elements Purpose: To compare and contrast the emission spectra of various gases. Investigate quantitatively the emission spectrum of hydrogen and relate it to Bohr's theory

### Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

### The Early History of Quantum Mechanics

Chapter 2 The Early History of Quantum Mechanics In the early years of the twentieth century, Max Planck, Albert Einstein, Louis de Broglie, Neils Bohr, Werner Heisenberg, Erwin Schrödinger, Max Born,

### Quick and Dirty Introduction to Mott Insulators

Quick and Dirty Introduction to Mott Insulators Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. PHYS 64: Introduction to Solid State Physics http://www.physics.udel.edu/~bnikolic/teaching/phys64/phys64.html

### Name period AP chemistry Unit 2 worksheet Practice problems

Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct