Alternating Current Motors

Size: px
Start display at page:

Download "Alternating Current Motors"

Transcription

1 Alternating Current Motors

2 AC induction motor is the most widely used type of electric motor in the modern world. AC motors are primarily used as a source of constant-speed mechanical power but are increasingly being used in variable speed-control applications. Advantages: They are popular because they can provide rotary power with high efficiency, low maintenance, and exceptional reliability all at relatively low cost. These desirable qualities are the result of two factors: (1) AC motors can use the AC power right off the lines. DC motors require the added expense of a rectifier circuit; (2) most AC motors do not need brushes as DC motors do. In most cases, the AC power is connected only to the motor s stationary field windings. The rotor gets its power by electromagnetic induction, a process that does not require physical electrical contact. Maintenance is reduced because brushes do not have to be periodically replaced. Also, the motor tends to be more reliable and last longer because there are fewer parts to go wrong and there is no brush dust to contaminate the bearings or windings.

3 Disadvantages: there is a problem with using AC motors in control systems: These high-efficiency AC motors are by nature constant speed, and control systems usually require the motor speed to be controllable. the speed of a DC motor can be controlled by simply adjusting the applied voltage. For complete speed control of an AC motor, both voltage and frequency must be adjusted, which requires using special electronic speed-control circuitry, such as the volts-per-hertz (V/Hz) drive or the vector drive

4 INDUCTION MOTORS

5 Induction Motor Operation Rotor windings built into Iron Rotor Air Gap Stator windings in outer fixed Iron Core The Three phase ac voltage in the stator windings sets up a rotating magnetic field which crosses the air gap and induces current in the rotor winding. The resultant current acts with the field to produce a rotational force

6 Theory of Operation How 2-phase AC causes a rotating field:

7 Synchronous speed: The speed of the rotating field. For a line frequency of 60 Hz, the field would rotate at 3600 rpm (60 cycle/s) (60 s/min) =3600 rpm. For an induction motor, the rotor speed does not exactly match the synchronous speed, it s slightly lower.

8 V/F OPERATION U/f-Characteristic 2-pole motor: 4-pole motor: U -W S N -V V W -U -W U V -U W N S S N -V -V V W -U U -W U [V] U [V] 3000 n [rpm] 1500 n [rpm] U U t t Motor voltage (=output voltage of inverter)

9 Single-Phase Motors

10 Start Winding (Split Phase)

11 Three-Phase Motors The three-phase motor is simpler and smaller than its single-phase counterpart, but it can be used only where three-phase power is available. The natural timing sequence of the three individual phase voltages produces the rotating stator field that pulls the rotor around. The rotor is the squirrel cage type. The reason this motor is so simple (and hence reliable) is that it is self-starting just apply the power, and it starts. A three-phase motor, once started, will continue to run even when one of the phases is disconnected, because two-thirds of the rotating field is still working and the mechanical inertia of the spinning rotor will carry it over the dead spot caused by the missing wire. However, vibration and noise will increase, torque will decrease, and the motor may overheat due to greater current in the active field windings.

12 Torque - Speed Chart of Induction Motor 2.5 Maximum Torque 2.0 Nominal Torque Constant Flux Range Field Weakening Range

13 Practical meaning of this graph If overloaded too much, the motor will stall pull out but continue to draw high current. The motor will continue to run in overload, and may overheat At lower frequencies full torque is available At frequencies above normal, Maximum torque is greatly reduced

14 Output Voltage % Voltage and Frequency Requirements Because an induction motor works like a transformer, the voltage must be reduced if the frequency is reduced. A Linear Voltage to Frequency Curve is suitable for most Applications. A Quadratic curve can be used with pumps and fans to save energy by reduction of magnetising losses. Special curves can be programmed for special motors and applications. At higher frequencies higher voltage would be desirable, but is not usually possible Vector and Flux Current control systems control the flux levels independently. Output Frequency

15 Motor and Load Torque Characteristics M N Rated-load torque M M Motor torque M L Load torque M B Accelerating torque M A Locked-rotor torque M K Breakdown torque M S Pull-up torque n N Rated speed n S Synchronous speed

16 AC Servomotors A special case of the two-phase motor is the AC servomotor. This is a high-slip, high torque motor, designed specifically for control systems, and it has a relatively linear torque-speed curve). the lighter the load, the faster the motor runs. This is very similar to the way a DC motor behaves. The two windings are called the main winding and the control winding. The main winding is connected to an AC source, usually 120 Vac. The control winding is driven by an electronic circuit that (1) causes the phase to be either leading or lagging the main winding (thereby controlling the motor direction) and (2) sets the magnitude of the control-winding voltage, which determines the speed. Typically, the maximum control winding voltage is about 35 Vac. If the control winding has 0 V, the motor will coast to a stop, even though the main winding is still connected to the line voltage. This is different from a normal induction motor that will continue to run on a single phase.

17 SYNCHRONOUS MOTORS The synchronous motor is similar to the induction motor with one important difference: The rotor in the synchronous motor rotates at exactly the speed of the rotating field there is no slip. i.e, the speed of the synchronous motor is always an exact multiple of the line frequency. This feature is extremely desirable in industrial applications, for example, when several motors along a conveyer belt must all be going exactly the same speed. Although many synchronous motors are large, the concept is also used extensively in small clock or timing motors where an exact relationship must exist between frequency and speed.

18 Operation To make a synchronous motor work, the power to form a magnetic field in the rotor must come from another source. Traditionally, this is done by supplying DC power into the rotor via slip rings and brushes. Slip rings and brushes on the synchronous motor are similar to the commutator assembly used in DC motors, with one important difference; here the electrical contact from stator to rotor is made through a smooth ring, not the multiple contacts of the DC motor s commutator. The action is smoother, the components last far longer, and less electrical noise is generated.

19 UNIVERSAL MOTORS The universal motor is so named because it can be powered with either AC or DC. Basically, it is a series-wound DC motor that has been specifically designed to operate on AC. Like its DC counterpart, it is reversible by changing the polarity of either the field or the rotor windings, but not both. Physically, the universal motor is similar to a DC motor except that more attention is paid to using laminations (thin sheets of lacquered metal) for the metal parts (to reduce the AC eddy currents) and the inductance of the windings is minimized as much as possible. The operating characteristics of the universal motor are similar to those of the DC motor. For a fixed voltage, the speed is inversely proportional to the load torque as the load increases, the speed decreases. For a constant load, as the applied voltage increases, the speed will increase. Typically, universal motors are designed to operate at high speeds from 3600 to 20,000 rpm but, because they use a commutator and brushes (which wear out), they have a limited lifetime. Being a series-wound motor, they have high starting torque, and for this reason are widely used for handheld power tools (for example, a hand drill motor).

20 Start Stop Control AC MOTOR CONTROL

21 Reduced-Voltage Starting

22 Variable-Speed Control of AC Motors In order to fully control the speed of an AC motor, you must be able to change the frequency. This can be done with off-the-shelf power-conversion units that are capable of converting the line voltage at 60 Hz into a wide range of voltages and frequencies. A motor-control unit (or the control unit plus the motor) is called a drive. There are four choices of AC-motor variable-speed drives: 1- the older variable-frequency drive (also known as a V/Hz drive) and 2-4 the newer vector drives (sensorless, flux vector, and field oriented control

23 Variable-Frequency (V/Hz) Drives

24 In this circuit, 60-Hz AC line power is converted to DC with a silicon-controlled rectifier (SCR) network. SCRs are used so the magnitude of the DC voltage can be controlled. The next job of this circuit is to create a sort of artificial three phase AC power at any desired frequency. This is accomplished with the six transistors on the right side of the circuit. Each transistor is turned on and off in sequence by a controller circuit (not shown) in such a way as to cause three pseudo-sine waves. For phase A, during time period 1, both transistors (Q1 and Q2) are off, so the output, which is taken from between the transistors, is neither positive or negative. Then during time period 2, transistor Q1 is on, connecting the phase A output to the plus DC voltage. During time period 3, both transistors are again off; finally, during time period 4, transistor Q2 is on, connecting the phase A output to the minus side of the power supply. This same shape waveform is generated by transistor pair Q3-Q4 and again by Q5-Q6, with each phase lagging the one ahead of it by 120. Clearly, the apparent frequency of the output is determined by how fast transistors Q1-Q6 are sequenced, (which is typically in the range of Hz). To help visualize the three-phase action, compare the phases A, B, and C in Figure (a) with phases A, B, and C in the traditional three-phase diagram [Figure (c)]. A better pseudo-ac waveform can be created by using PWM (pulse width modulation) as shown in Figure (b).

25

26 For the motor to work well at various speeds, the voltage to the motor must be modified each time the frequency is changed. Specifically, the voltage and frequency should be held proportional that is, when the frequency is increased, the voltage should be increased, and vice versa. The reason for this requirement is that the current in the stator windings must be maintained at a certain design value for the magnetic induction process (to the rotor) to work. Most motors are designed to operate at 60 Hz and 120 V (or 240 V), so the stator is wound to create the proper magnetic field with those conditions. If the frequency drops below 60 Hz, the inductive impedance of the windings also drops, which would allow in more current. Consequently, the voltage must be lowered as the frequency is lowered in order to maintain the proper stator current. Figure (a) shows how the voltage should increase linearly with frequency in the range 0 60 Hz and explains why this type of drive is called a volts-per-hertz or V/Hz type. The voltage is usually not allowed to increase beyond the motor s rated voltage (for its own health). in practice, there are really two distinct operating ranges. The first range (5-60 Hz) is called the constant-torque region because the motor produces a constant torque in this speed range, as shown in Figure (b). This is the same torque that the motor has at normal (60 Hz) operating speed. The region above 60 Hz is known as the constant-power region because, even though the torque is falling off, the speed is increasing, so the actual mechanical power stays the same (power is the product of speed times torque). Commercial motor-control

27 CONVERTER PRINCIPLE Principle of a Converter Converter Rectifier Inverter Motor M Mains connection: e.g. 3 AC, 400V DC link: Capacitors with rectified mains voltage Approx x 400V = 540V Variable frequency and voltage

28 CONVERTER PRINCIPLE Pulse Width Modulation - Drives DC link voltage: Output voltage: Mean output voltage: Output current: V DC V A V A I A 1. Both transistors are switched on. The full DC link voltage is applied to 2 phases of the motor. The current increases. V DC Motor M 2. One of the two transistors is switched off. The inductance of the motor causes the current to find a path via the recovery diode. The current drops slightly. V DC Motor M

29 CONVERTER PRINCIPLE Pulse Width Modulation - Output Current Motor V DC M A sinusoidal mean voltage value can be produced by constantly changing the pulse width modulation: Phase U Time shown in diagram t Phase V t = Voltage Phase W = Current t

30 V/F OPERATION Characteristic on Mains and on Inverter Operation on mains: Operation on inverter M M M Pullout 1 M Kipp 2 n Mn Typical working point Mn 1 M n n nn n nn n n (slip) Constant flow range Field weakening range

31 Vector Drives Vector drives are based on the principle that the current driving an AC induction motor can be divided into two components: the current that produces the magnetic field flux in the stator and the current that creates the torque that causes rotation. The actual motor current is the vector sum of these two currents, and if they can be independently controlled, it is possible to drive the motor at full torque at any speed, right down to 0 Hz. There are three types of vector drives: sensorless vector, flux vector, and field-oriented control drives.

32 Field-oriented control drive

33 Current sensors on the motor leads feed a current resolver, which identifies the flux-producing and torque-producing currents in the motor. A position sensor mounted on the shaft provides position and speed information. The drive electronics uses all this information to maintain two independent control loops: a speed/torque loop for control of the motor speed and torque, and a flux loop to provide a constant magnetizing stator current throughout the motor s speed range. By maintaining a constant stator flux, the motor is capable of providing a constant torque from its base frequency (60 Hz) all the way down to 0 Hz. The speed/torque loop is able to determine what the moment-to-moment slip is (some slip is necessary for any induction motor) and then compensate by adjusting the rotational speed of the field very precisely within the windings so as to make up for the slip. This process can keep the motor running at exactly its set-point speed, regardless of the torque demand. The outputs of both the flux- and the speed/torque-control loops are combined in the vector rotator to produce a single set of three-phase voltage waveforms. These waveforms are converted into PWM and fed to the transistors in the variable-frequency generator.

34 The sensorless drive predates the field-oriented control drive and cannot provide such precise control. As the name suggests, it does not require a position sensor but instead makes guesses based on current feedback and what it knows about the motor. This system is adequate for many applications. The flux vector drive does require a position sensor and maintains better control than the sensorless drive can (but not as good control as the field-oriented drive). This system estimates the flux-producing and torque-producing current vectors in the motor and uses this information to control the motor. Flux vector drives can function effectively down to 2-3 Hz

35 Vector Representation Cartesian coordinate system Polar coordinate system (=vector representation) V V t I I t

36 Vector Control of Induction Motors with Encoder Design calculation in polar coordinate system i i i w Magnetizing current = Field current Values in Cartesian coordinate system i R i S i T t t t Speed controller Current controller Active current n set - n act Field controller I set, active - I act, active Current controller Field current Coordinate transformation P C Power section Motor M Encoder E Field I set, field - I act, field Actual value calculation Coordinate transformation Motor model P C Encoder evaluation Speed Simplified diagram

37 Vector Control of Induction Motors without Encoder Design calculation in polar coordinate system i i i w Magnetizing current = Field current Values in Cartesian coordinate system i R i S i T t t t Speed controller Current controller Active current n set - n act Field controller I set, active - I act, active Current controller Field current Coordinate transformation P C Power section Motor M Field I set, field - I act,field Actual value calculation Coordinate transformation P Motor model C Speed Simplified diagram

38 Block Diagram of Vector Control Field requirement Field precontrol Compensation with feedforward control ' R * 1 R Field controller n* _ Speed requirement _ Speed controller + _ i sp * i sq * + Current controller + v* sp v* sq VT + v * s v* s C v * s * s P VT: Vector transformation v* To inverter trigger equipment i sp i sq VT - is is 3 2 i s1 i s2 i s3 'R 1 R j ' s e Magnetic field calculator v s v s 3 2 v s1 v s2 v s3 Actual values Field-oriented reference frame Fixed stator reference frame n

39

Principles of Adjustable Frequency Drives

Principles of Adjustable Frequency Drives What is an Adjustable Frequency Drive? An adjustable frequency drive is a system for controlling the speed of an AC motor by controlling the frequency of the power supplied to the motor. A basic adjustable

More information

FREQUENCY CONTROLLED AC MOTOR DRIVE

FREQUENCY CONTROLLED AC MOTOR DRIVE FREQUENCY CONTROLLED AC MOTOR DRIVE 1.0 Features of Standard AC Motors The squirrel cage induction motor is the electrical motor motor type most widely used in industry. This leading position results mainly

More information

Motor Fundamentals. DC Motor

Motor Fundamentals. DC Motor Motor Fundamentals Before we can examine the function of a drive, we must understand the basic operation of the motor. It is used to convert the electrical energy, supplied by the controller, to mechanical

More information

8 Speed control of Induction Machines

8 Speed control of Induction Machines 8 Speed control of Induction Machines We have seen the speed torque characteristic of the machine. In the stable region of operation in the motoring mode, the curve is rather steep and goes from zero torque

More information

AC Induction Motor Slip What It Is And How To Minimize It

AC Induction Motor Slip What It Is And How To Minimize It AC Induction Motor Slip What It Is And How To Minimize It Mauri Peltola, ABB Oy, Helsinki, Finland The alternating current (AC) induction motor is often referred to as the workhorse of the industry because

More information

Speed Control Methods of Various Types of Speed Control Motors. Kazuya SHIRAHATA

Speed Control Methods of Various Types of Speed Control Motors. Kazuya SHIRAHATA Speed Control Methods of Various Types of Speed Control Motors Kazuya SHIRAHATA Oriental Motor Co., Ltd. offers a wide variety of speed control motors. Our speed control motor packages include the motor,

More information

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated?

2. A conductor of length 2m moves at 4m/s at 30 to a uniform magnetic field of 0.1T. Which one of the following gives the e.m.f. generated? Extra Questions - 2 1. A straight length of wire moves through a uniform magnetic field. The e.m.f. produced across the ends of the wire will be maximum if it moves: a) along the lines of magnetic flux

More information

SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS

SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS SECTION 4 ELECTRIC MOTORS UNIT 17: TYPES OF ELECTRIC MOTORS UNIT OBJECTIVES After studying this unit, the reader should be able to Describe the different types of open single-phase motors used to drive

More information

Synchronous motor. Type. Non-excited motors

Synchronous motor. Type. Non-excited motors Synchronous motor A synchronous electric motor is an AC motor in which the rotation rate of the shaft is synchronized with the frequency of the AC supply current; the rotation period is exactly equal to

More information

Pulse Width Modulated (PWM)

Pulse Width Modulated (PWM) Control Technologies Manual PWM AC Drives Revision 1.0 Pulse Width Modulated (PWM) Figure 1.8 shows a block diagram of the power conversion unit in a PWM drive. In this type of drive, a diode bridge rectifier

More information

DIRECT CURRENT GENERATORS

DIRECT CURRENT GENERATORS DIRECT CURRENT GENERATORS Revision 12:50 14 Nov 05 INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. This principle

More information

Pulse Width Modulated (PWM) Drives. AC Drives Using PWM Techniques

Pulse Width Modulated (PWM) Drives. AC Drives Using PWM Techniques Drives AC Drives Using PWM Techniques Power Conversion Unit The block diagram below shows the power conversion unit in Pulse Width Modulated (PWM) drives. In this type of drive, a diode bridge rectifier

More information

EET272 Worksheet Week 9

EET272 Worksheet Week 9 EET272 Worksheet Week 9 answer questions 1-5 in preparation for discussion for the quiz on Monday. Finish the rest of the questions for discussion in class on Wednesday. Question 1 Questions AC s are becoming

More information

Unit 33 Three-Phase Motors

Unit 33 Three-Phase Motors Unit 33 Three-Phase Motors Objectives: Discuss the operation of wound rotor motors. Discuss the operation of selsyn motors. Discuss the operation of synchronous motors. Determine the direction of rotation

More information

How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc.

How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc. 1 How to Turn an AC Induction Motor Into a DC Motor (A Matter of Perspective) Steve Bowling Application Segments Engineer Microchip Technology, Inc. The territory of high-performance motor control has

More information

Understanding the Alternator

Understanding the Alternator http://www.autoshop101.com THIS AUTOMOTIVE SERIES ON ALTERNATORS HAS BEEN DEVELOPED BY KEVIN R. SULLIVAN PROFESSOR OF AUTOMOTIVE TECHNOLOGY AT SKYLINE COLLEGE SAN BRUNO, CALIFORNIA ALL RIGHTS RESERVED

More information

Lab 8: DC generators: shunt, series, and compounded.

Lab 8: DC generators: shunt, series, and compounded. Lab 8: DC generators: shunt, series, and compounded. Objective: to study the properties of DC generators under no-load and full-load conditions; to learn how to connect these generators; to obtain their

More information

Equipment: Power Supply, DAI, Wound rotor induction motor (8231), Electrodynamometer (8960), timing belt.

Equipment: Power Supply, DAI, Wound rotor induction motor (8231), Electrodynamometer (8960), timing belt. Lab 13: Wound rotor induction motor. Objective: to examine the construction of a 3-phase wound rotor induction motor; to understand exciting current, synchronous speed and slip in this motor; to determine

More information

Equipment: Power Supply, DAI, Synchronous motor (8241), Electrodynamometer (8960), Tachometer, Timing belt.

Equipment: Power Supply, DAI, Synchronous motor (8241), Electrodynamometer (8960), Tachometer, Timing belt. Lab 9: Synchronous motor. Objective: to examine the design of a 3-phase synchronous motor; to learn how to connect it; to obtain its starting characteristic; to determine the full-load characteristic of

More information

WIND TURBINE TECHNOLOGY

WIND TURBINE TECHNOLOGY Module 2.2-2 WIND TURBINE TECHNOLOGY Electrical System Gerhard J. Gerdes Workshop on Renewable Energies November 14-25, 2005 Nadi, Republic of the Fiji Islands Contents Module 2.2 Types of generator systems

More information

WHITE PAPER. DC Motors Explained. DC Motors Explained: White Paper, Title Page

WHITE PAPER. DC Motors Explained. DC Motors Explained: White Paper, Title Page DC Motors Explained: White Paper, Title Page DC Motors Explained By Joe Kimbrell, Product Manager, Drives, Motors & Motion, AutomationDirect DC Motors Explained: White Paper, pg. 2 How many types of DC

More information

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

AC generator theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research): AC generator theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

SYNCHRONOUS MACHINES

SYNCHRONOUS MACHINES SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical

More information

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR 1 DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Constructional details Types of rotors EE2302 - ELECTRICAL MACHINES II UNIT-I SYNCHRONOUS GENERATOR PART A 1.

More information

Rotating Machinery Diagnostics & Instrumentation Solutions for Maintenance That Matters www.mbesi.com

Rotating Machinery Diagnostics & Instrumentation Solutions for Maintenance That Matters www.mbesi.com 13 Aberdeen Way Elgin, SC 29045 Cell (803) 427-0791 VFD Fundamentals & Troubleshooting 19-Feb-2010 By: Timothy S. Irwin, P.E. Sr. Engineer tsi@mbesi.com Rotating Machinery Diagnostics & Instrumentation

More information

Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor

Modelling, Simulation and Performance Analysis of A Variable Frequency Drive in Speed Control Of Induction Motor International Journal of Engineering Inventions e-issn: 78-7461, p-issn: 319-6491 Volume 3, Issue 5 (December 013) PP: 36-41 Modelling, Simulation and Performance Analysis of A Variable Frequency Drive

More information

AC Motor Speed. n s = synchronous speed (in RPM), f = frequency (in Hz), and p = the number of poles

AC Motor Speed. n s = synchronous speed (in RPM), f = frequency (in Hz), and p = the number of poles AC Induction Motors Simplest and most rugged electric motor Consists of wound stator and rotor assembly AC in the primary member (stator) induces current in the secondary member (rotor) Combined electromagnetic

More information

AND8008/D. Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE

AND8008/D. Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE Solid State Control Solutions for Three Phase 1 HP Motor APPLICATION NOTE INTRODUCTION In all kinds of manufacturing, it is very common to have equipment that has three phase motors for doing different

More information

IV. Three-Phase Induction Machines. Induction Machines

IV. Three-Phase Induction Machines. Induction Machines IV. Three-Phase Induction Machines Induction Machines 1 2 3 4 5 6 7 8 9 10 11 12 13 Example 1: A 480V, 60 Hz, 6-pole, three-phase, delta-connected induction motor has the following parameters: R 1 =0.461

More information

Inductance. Motors. Generators

Inductance. Motors. Generators Inductance Motors Generators Self-inductance Self-inductance occurs when the changing flux through a circuit arises from the circuit itself. As the current increases, the magnetic flux through a loop due

More information

Introduction. Upon completion of Basics of AC Motors you should be able to:

Introduction. Upon completion of Basics of AC Motors you should be able to: Table of Contents Introduction...2 AC Motors...4 Force and Motion...6 AC Motor Construction... 12 Magnetism... 17 Electromagnetism... 19 Developing a Rotating Magnetic Field...24 Rotor Rotation...29 Motor

More information

*ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS

*ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS *ADVANCED ELECTRIC GENERATOR & CONTROL FOR HIGH SPEED MICRO/MINI TURBINE BASED POWER SYSTEMS Jay Vaidya, President Electrodynamics Associates, Inc. 409 Eastbridge Drive, Oviedo, FL 32765 and Earl Gregory,

More information

Technical Guide No. 100. High Performance Drives -- speed and torque regulation

Technical Guide No. 100. High Performance Drives -- speed and torque regulation Technical Guide No. 100 High Performance Drives -- speed and torque regulation Process Regulator Speed Regulator Torque Regulator Process Technical Guide: The illustrations, charts and examples given in

More information

Application Information

Application Information Moog Components Group manufactures a comprehensive line of brush-type and brushless motors, as well as brushless controllers. The purpose of this document is to provide a guide for the selection and application

More information

Single-Phase AC Synchronous Generator

Single-Phase AC Synchronous Generator ST Series Single-Phase AC Synchronous Generator Instructions for Operation and Maintenance English to English translation by R.G. Keen, May 2004. ST Series of Single-Phase AC Synchronous Generators Description

More information

Lab 14: 3-phase alternator.

Lab 14: 3-phase alternator. Lab 14: 3-phase alternator. Objective: to obtain the no-load saturation curve of the alternator; to determine the voltage regulation characteristic of the alternator with resistive, capacitive, and inductive

More information

ABB drives. Technical guide No. 4 Guide to variable speed drives

ABB drives. Technical guide No. 4 Guide to variable speed drives ABB drives Technical guide No. 4 Guide to variable speed drives 2 Guide to variable speed drives Technical guide No. 4 Technical guide No. 4 Guide to variable speed drives Copyright 2011 ABB. All rights

More information

Simulation and Analysis of PWM Inverter Fed Induction Motor Drive

Simulation and Analysis of PWM Inverter Fed Induction Motor Drive Simulation and Analysis of PWM Inverter Fed Induction Motor Drive C.S.Sharma, Tali Nagwani Abstract Sinusoidal Pulse Width Modulation variable speed drives are increasingly applied in many new industrial

More information

USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SUPPLY TO A THREE-PHASE AC FOR CONTROLLING THE SPEED OF A THREE-PHASE INDUCTION MOTOR BY USING A THREE-PHASE TO THREE-PHASE CYCLOCONVERTER

USE OF ARNO CONVERTER AND MOTOR-GENERATOR SET TO CONVERT A SINGLE-PHASE AC SUPPLY TO A THREE-PHASE AC FOR CONTROLLING THE SPEED OF A THREE-PHASE INDUCTION MOTOR BY USING A THREE-PHASE TO THREE-PHASE CYCLOCONVERTER International Journal of Electrical Engineering & Technology (IJEET) Volume 7, Issue 2, March-April, 2016, pp.19-28, Article ID: IJEET_07_02_003 Available online at http:// http://www.iaeme.com/ijeet/issues.asp?jtype=ijeet&vtype=7&itype=2

More information

Introduction. Three-phase induction motors are the most common and frequently encountered machines in industry

Introduction. Three-phase induction motors are the most common and frequently encountered machines in industry Induction Motors Introduction Three-phase induction motors are the most common and frequently encountered machines in industry - simple design, rugged, low-price, easy maintenance - wide range of power

More information

AMZ-FX Guitar effects. (2007) Mosfet Body Diodes. http://www.muzique.com/news/mosfet-body-diodes/. Accessed 22/12/09.

AMZ-FX Guitar effects. (2007) Mosfet Body Diodes. http://www.muzique.com/news/mosfet-body-diodes/. Accessed 22/12/09. Pulse width modulation Pulse width modulation is a pulsed DC square wave, commonly used to control the on-off switching of a silicon controlled rectifier via the gate. There are many types of SCR s, most

More information

Motors and Generators

Motors and Generators Motors and Generators Electro-mechanical devices: convert electrical energy to mechanical motion/work and vice versa Operate on the coupling between currentcarrying conductors and magnetic fields Governed

More information

SPEED CONTROL OF INDUCTION MACHINE WITH REDUCTION IN TORQUE RIPPLE USING ROBUST SPACE-VECTOR MODULATION DTC SCHEME

SPEED CONTROL OF INDUCTION MACHINE WITH REDUCTION IN TORQUE RIPPLE USING ROBUST SPACE-VECTOR MODULATION DTC SCHEME International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 7, Issue 2, March-April 2016, pp. 78 90, Article ID: IJARET_07_02_008 Available online at http://www.iaeme.com/ijaret/issues.asp?jtype=ijaret&vtype=7&itype=2

More information

Understanding Variable Speed Drives

Understanding Variable Speed Drives Understanding Variable Speed Drives April 1, 1997 Solomon S. Turkel, Solomon S. When applied properly, the variable frequency drive (VFD) is the most effective motor controller in the industry today. Modern

More information

Drive circuit basics + V. τ e. Industrial Circuits Application Note. Winding resistance and inductance

Drive circuit basics + V. τ e. Industrial Circuits Application Note. Winding resistance and inductance ndustrial Circuits Application Note Drive circuit basics For a given size of a stepper motor, a limited space is available for the windings. n the process of optimizing a stepper motor drive system, an

More information

Principles and Working of DC and AC machines

Principles and Working of DC and AC machines BITS Pilani Dubai Campus Principles and Working of DC and AC machines Dr Jagadish Nayak Constructional features BITS Pilani Dubai Campus DC Generator A generator consists of a stationary portion called

More information

DC Motor control Reversing

DC Motor control Reversing January 2013 DC Motor control Reversing and a "Rotor" which is the rotating part. Basically there are three types of DC Motor available: - Brushed Motor - Brushless Motor - Stepper Motor DC motors Electrical

More information

Chen. Vibration Motor. Application note

Chen. Vibration Motor. Application note Vibration Motor Application note Yangyi Chen April 4 th, 2013 1 Table of Contents Pages Executive Summary ---------------------------------------------------------------------------------------- 1 1. Table

More information

Application Information Fully Integrated Hall Effect Motor Driver for Brushless DC Vibration Motor Applications

Application Information Fully Integrated Hall Effect Motor Driver for Brushless DC Vibration Motor Applications Application Information Fully Integrated Hall Effect Motor Driver for Brushless DC Vibration Motor Applications By Shaun Milano Vibration motors are used in a variety of applications including mobile phone

More information

Outline. Turbine Generators. Generator History 3/25/2014

Outline. Turbine Generators. Generator History 3/25/2014 Turbine Generators Andrew Kusiak 2139 Seamans Center Iowa City, Iowa 52242-1527 andrew-kusiak@uiowa.edu Tel: 319-335-5934 Fax: 319-335-5669 http://www.icaen.uiowa.edu/~ankusiak Outline Generators Synchronous

More information

Equipment: Power Supply, DAI, Universal motor (8254), Electrodynamometer (8960), timing belt.

Equipment: Power Supply, DAI, Universal motor (8254), Electrodynamometer (8960), timing belt. Lab 12: The universal motor. Objective: to examine the construction of the universal motor; to determine its no-load and full-load characteristics while operating on AC; to determine its no-load and full-load

More information

Line Reactors and AC Drives

Line Reactors and AC Drives Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences

More information

10 tips for servos and steppers a simple guide

10 tips for servos and steppers a simple guide 10 tips for servos and steppers a simple guide What are the basic application differences between servos and steppers? Where would you choose one over the other? This short 10 point guide, offers a simple

More information

Speed Control Motors. Speed Control Motors. Brushless Motor's Structure and Principle of Operation H-40. Structure of Brushless Motor

Speed Control Motors. Speed Control Motors. Brushless Motor's Structure and Principle of Operation H-40. Structure of Brushless Motor Speed Control Speed Control Brushless Motor's Structure and Principle of Operation Structure of Brushless Motor Ball Bearing Shaft Brushless motors have built-in magnetic component or optical encoder for

More information

Drives Low Voltage. Adjustable Frequency. Adjustable Frequency Drives Low Voltage 32.0-1. Contents

Drives Low Voltage. Adjustable Frequency. Adjustable Frequency Drives Low Voltage 32.0-1. Contents June 2006 Sheet 17.0-1 Adjustable Frequency Drives Low Voltage Contents Application Guide Basic Motor and Adjustable Frequency Drive Theory..................0-2 AC Motors...................................................0-2

More information

SYNCHRONOUS MACHINE TESTING WITH MOTOR CIRCUIT ANALYSIS INSTRUMENTATION

SYNCHRONOUS MACHINE TESTING WITH MOTOR CIRCUIT ANALYSIS INSTRUMENTATION SYNCHRONOUS MACHINE TESTING WITH MOTOR CIRCUIT ANALYSIS INSTRUMENTATION Introduction Howard W. Penrose, Ph.D., CMRP Vice President, Engineering and Reliability Services Dreisilker Electric Motors, Inc.

More information

Induction Motor Theory

Induction Motor Theory PDHonline Course E176 (3 PDH) Induction Motor Theory Instructor: Jerry R. Bednarczyk, P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org

More information

THIS paper reports some results of a research, which aims to investigate the

THIS paper reports some results of a research, which aims to investigate the FACTA UNIVERSITATIS (NIŠ) SER.: ELEC. ENERG. vol. 22, no. 2, August 2009, 227-234 Determination of Rotor Slot Number of an Induction Motor Using an External Search Coil Ozan Keysan and H. Bülent Ertan

More information

PHASE CONVERSION TECHNOLOGY OVERVIEW

PHASE CONVERSION TECHNOLOGY OVERVIEW Dr. Larry Meiners, Ph.D. PHASE CONVERSION TECHNOLOGY OVERVIEW Introduction A wide variety of commercial and industrial electrical equipment requires three-phase power. Electric utilities do not install

More information

ELECTRODYNAMICS 05 AUGUST 2014

ELECTRODYNAMICS 05 AUGUST 2014 ELECTRODYNAMICS 05 AUGUST 2014 In this lesson we: Lesson Description Discuss the motor effect Discuss how generators and motors work. Summary The Motor Effect In order to realise the motor effect, the

More information

Discover the power of e-learning! The Quick Guide to AC Variable Frequency

Discover the power of e-learning! The Quick Guide to AC Variable Frequency The Quick Guide to AC Variable Frequency This ebook is meant as an easy guide to any electrical or electronic engineer or technician, who would like to know how modern ac variable frequency drives work.

More information

Basics of Electricity

Basics of Electricity Basics of Electricity Generator Theory PJM State & Member Training Dept. PJM 2014 8/6/2013 Objectives The student will be able to: Describe the process of electromagnetic induction Identify the major components

More information

The DC Motor/Generator Commutation Mystery. Commutation and Brushes. DC Machine Basics

The DC Motor/Generator Commutation Mystery. Commutation and Brushes. DC Machine Basics The DC Motor/Generator Commutation Mystery One small, yet vital piece of the DC electric motor puzzle is the carbon brush. Using the correct carbon brush is a key component for outstanding motor life,

More information

INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2

INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2 INDUCTION MOTOR PERFORMANCE TESTING WITH AN INVERTER POWER SUPPLY, PART 2 By: R.C. Zowarka T.J. Hotz J.R. Uglum H.E. Jordan 13th Electromagnetic Launch Technology Symposium, Potsdam (Berlin), Germany,

More information

BALDOR ELECTRIC COMPANY SERVO CONTROL FACTS A HANDBOOK EXPLAINING THE BASICS OF MOTION

BALDOR ELECTRIC COMPANY SERVO CONTROL FACTS A HANDBOOK EXPLAINING THE BASICS OF MOTION BALDOR ELECTRIC COMPANY SERVO CONTROL FACTS A HANDBOOK EXPLAINING THE BASICS OF MOTION MN1205 TABLE OF CONTENTS TYPES OF MOTORS.............. 3 OPEN LOOP/CLOSED LOOP..... 9 WHAT IS A SERVO..............

More information

AC Generators and Motors

AC Generators and Motors AC Generators and Motors Course No: E03-008 Credit: 3 PDH A. Bhatia Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 322-5800 F: (877) 322-4774 info@cedengineering.com

More information

Tamura Closed Loop Hall Effect Current Sensors

Tamura Closed Loop Hall Effect Current Sensors Tamura Closed Loop Hall Effect Current Sensors AC, DC, & Complex Currents Galvanic Isolation Fast Response Wide Frequency Bandwidth Quality & Reliability RoHs Compliance Closed Loop Hall Effect Sensors

More information

13 ELECTRIC MOTORS. 13.1 Basic Relations

13 ELECTRIC MOTORS. 13.1 Basic Relations 13 ELECTRIC MOTORS Modern underwater vehicles and surface vessels are making increased use of electrical actuators, for all range of tasks including weaponry, control surfaces, and main propulsion. This

More information

Phase-Control Alternatives for Single-Phase AC Motors Offer Smart, Low-Cost, Solutions Abstract INTRODUCTION

Phase-Control Alternatives for Single-Phase AC Motors Offer Smart, Low-Cost, Solutions Abstract INTRODUCTION Phase-Control Alternatives for Single-Phase AC Motors Offer Smart, Low-Cost, Solutions by Howard Abramowitz, Ph.D EE, President, AirCare Automation Inc. Abstract - Single Phase AC motors continue to be

More information

C Standard AC Motors

C Standard AC Motors C Standard AC Standard AC C-1 Overview, Product Series... C-2 Constant... C-9 C-21 C-113 Reversible C-147 Overview, Product Series Constant Reversible Electromagnetic Brake C-155 Electromagnetic Brake

More information

DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor.

DC GENERATOR THEORY. LIST the three conditions necessary to induce a voltage into a conductor. DC Generators DC generators are widely used to produce a DC voltage. The amount of voltage produced depends on a variety of factors. EO 1.5 LIST the three conditions necessary to induce a voltage into

More information

The VOLTECH HANDBOOK of PWM MOTOR DRIVES. Andrew Tedd

The VOLTECH HANDBOOK of PWM MOTOR DRIVES. Andrew Tedd The VOLTECH HANDBOOK of PWM MOTOR DRIVES Andrew Tedd Product: App-Note 108 Issue 1.0 VPN: 86-646 Contents 1. Introduction... 3 2. Principles of PWM motor drives... 7 3. Characteristics of PWM motor drive...

More information

What Is Regeneration?

What Is Regeneration? What Is Regeneration? Braking / Regeneration Manual Regeneration Overview Revision 1.0 When the rotor of an induction motor turns slower than the speed set by the applied frequency, the motor is transforming

More information

Preview of Period 16: Motors and Generators

Preview of Period 16: Motors and Generators Preview of Period 16: Motors and Generators 16.1 DC Electric Motors What causes the rotor of a motor to spin? 16.2 Simple DC Motors What causes a changing magnetic field in the simple coil motor? 16.3

More information

Product Data Bulletin

Product Data Bulletin Product Data Bulletin Power System Harmonics Causes and Effects of Variable Frequency Drives Relative to the IEEE 519-1992 Standard Raleigh, NC, U.S.A. INTRODUCTION This document describes power system

More information

chapter6 Electrical machines and motors Unit 1 outcome 6

chapter6 Electrical machines and motors Unit 1 outcome 6 Electrical machines and motors chapter6 Unit 1 outcome 6 The principles of magnetism are central to many of the tasks you will carry out as an electrician. Magnetism, like gravity, is a fundamental force.

More information

Variable Frequency Drives - a Comparison of VSI versus LCI Systems

Variable Frequency Drives - a Comparison of VSI versus LCI Systems Variable Frequency Drives - a Comparison of VSI versus LCI Systems Introduction TMEIC is a leader in the innovative design and manufacture of large ac variable f requency drive systems. TMEIC has been

More information

Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager

Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager Introduction There is a growing trend in the UPS industry to create a highly efficient, more lightweight and smaller UPS

More information

Prof. Krishna Vasudevan, Prof. G. Sridhara Rao, Prof. P. Sasidhara Rao

Prof. Krishna Vasudevan, Prof. G. Sridhara Rao, Prof. P. Sasidhara Rao 6 Synchronous motor 6.1 Principle of operation In order to understand the principle of operation of a synchronous motor, let us examine what happens if we connect the armature winding (laid out in the

More information

Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module

Power Supplies. 1.0 Power Supply Basics. www.learnabout-electronics.org. Module Module 1 www.learnabout-electronics.org Power Supplies 1.0 Power Supply Basics What you ll learn in Module 1 Section 1.0 Power Supply Basics. Basic functions of a power supply. Safety aspects of working

More information

Fundamentals of Inverter Fed Motors

Fundamentals of Inverter Fed Motors Fundamentals of Inverter Fed Motors Technical Manual 10/02 MN780 Contents Page The Growing Use Of Inverters.................................................................. 1 How Inverters Affect Motors....................................................................

More information

Power Analysis of PWM Motor Drives

Power Analysis of PWM Motor Drives Power Analysis of PWM Motor Drives Application Note 1. Introduction Three-phase ac motors have been the workhorse of industry since the earliest days of electrical engineering. They are reliable, efficient,

More information

Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor

Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor Simple Analysis for Brushless DC Motors Case Study: Razor Scooter Wheel Motor At first glance, a brushless direct-current (BLDC) motor might seem more complicated than a permanent magnet brushed DC motor,

More information

Analysis of Space Vector Pulse Width Modulation VSI Induction Motor on various conditions

Analysis of Space Vector Pulse Width Modulation VSI Induction Motor on various conditions Analysis of Space Vector Pulse Width Modulation VSI Induction Motor on various conditions Padma Chaturvedi 1, Amarish Dubey 2 1 Department of Electrical Engineering, Maharana Pratap Engineering College,

More information

VARIABLE FREQUENCY DRIVES THEORY, APPLICATION, AND TROUBLESHOOTING

VARIABLE FREQUENCY DRIVES THEORY, APPLICATION, AND TROUBLESHOOTING VARIABLE FREQUENCY DRIVES THEORY, APPLICATION, AND TROUBLESHOOTING BY HOWARD W. PENROSE UNIVERSITY OF ILLINOIS AT CHICAGO ENERGY RESOURCES CENTER 851 SOUTH MORGAN STREET ROOM 1213, SEO, MC156 CHICAGO,

More information

Motors. 13/16 Siemens PM 21 2013

Motors. 13/16 Siemens PM 21 2013 Motors Motor selection The is selected on the basis of the required torque, which is defined by the application, e.g. traveling drives, hoisting drives, test stands, centrifuges, paper and rolling mill

More information

ELECTRIC MOTORS. Energy Efficiency Reference Guide STATOR POLE COMMUTATOR LINE

ELECTRIC MOTORS. Energy Efficiency Reference Guide STATOR POLE COMMUTATOR LINE ELECTRIC MOTORS Energy Efficiency Reference Guide STATOR POLE N BRUSH COMMUTATOR S LINE DISCLAIMER: Neither CEA Technologies Inc. (CEATI), the authors, nor any of the organizations providing funding support

More information

New Pulse Width Modulation Technique for Three Phase Induction Motor Drive Umesha K L, Sri Harsha J, Capt. L. Sanjeev Kumar

New Pulse Width Modulation Technique for Three Phase Induction Motor Drive Umesha K L, Sri Harsha J, Capt. L. Sanjeev Kumar New Pulse Width Modulation Technique for Three Phase Induction Motor Drive Umesha K L, Sri Harsha J, Capt. L. Sanjeev Kumar Abstract In this paper, various types of speed control methods for the three

More information

NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR

NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR INDEX NO. : M-142 TECHNICAL MANUAL FOR NO LOAD & BLOCK ROTOR TEST ON THREE PHASE INDUCTION MOTOR Manufactured by : PREMIER TRADING CORPORATION (An ISO 9001:2000 Certified Company) 212/1, Mansarover Civil

More information

UNIT 3 AUTOMOBILE ELECTRICAL SYSTEMS

UNIT 3 AUTOMOBILE ELECTRICAL SYSTEMS UNIT 3 AUTOMOBILE ELECTRICAL SYSTEMS Automobile Electrical Structure 3.1 Introduction Objectives 3.2 Ignition System 3.3 Requirement of an Ignition System 3.4 Types of Ignition 3.4.1 Battery or Coil Ignition

More information

Siemens Standard Drives. Application Handbook

Siemens Standard Drives. Application Handbook Siemens Standard Drives Application Handbook Martin Brown Siemens Standard Drives Congleton December 1997 1. Introduction....4 1.1 What is a Variable Speed Drive?...4 1.2 The Variable Frequency Inverter...7

More information

Power Quality Paper #3

Power Quality Paper #3 The Effect of Voltage Dips On Induction Motors by: M D McCulloch 1. INTRODUCTION Voltage depressions caused by faults on the system affect the performance of induction motors, in terms of the production

More information

The Charging System. Section 5. Charging System. Charging System. The charging system has two essential functions:

The Charging System. Section 5. Charging System. Charging System. The charging system has two essential functions: The Charging System Charging System The charging system has two essential functions: Generate electrical power to run the vehicle s electrical systems Generate current to recharge the vehicle s battery

More information

AUTOMATED, FULL LOAD MOTOR TESTING AT PRODUCTION SPEEDS

AUTOMATED, FULL LOAD MOTOR TESTING AT PRODUCTION SPEEDS AUTOMATED, FULL LOAD MOTOR TESTING AT PRODUCTION SPEEDS Abstract: Revolutionary test method coupled with innovative automation yields superior motor performance measurement data without sacrifice of production

More information

Control of a Three Phase Induction Motor using Single Phase Supply

Control of a Three Phase Induction Motor using Single Phase Supply Control of a Three Phase Induction Motor using Single Phase Supply G. R. Sreehitha #1, A. Krishna Teja *2, Kondenti. P. Prasad Rao #3 Department of Electrical & Electronics Engineering, K L University,

More information

Data Sheet. AC Industrial Electric Motors

Data Sheet. AC Industrial Electric Motors Data Pack B Issued ovember 2005 1502325812 Data Sheet AC Industrial Electric Motors Standards organisations The RS-ABB range of ac induction motors is produced to common European standards, these being

More information

Introduction to Power Supplies

Introduction to Power Supplies Introduction to Power Supplies INTRODUCTION Virtually every piece of electronic equipment e g computers and their peripherals calculators TV and hi-fi equipment and instruments is powered from a DC power

More information

NEW ADVANCES IN PULSE WIDTH MODULATED SLIP POWER RECOVERY DRIVES FOR PUMPS

NEW ADVANCES IN PULSE WIDTH MODULATED SLIP POWER RECOVERY DRIVES FOR PUMPS NEW ADVANCES IN PULSE WIDTH MODULATED SLIP POWER RECOVERY DRIVES FOR PUMPS Stephan Bondy Douglas Phares Manish Verma Bill Horvath Oil & Gas segment leader Market leader, Global Drives Sales Application

More information

Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

More information

Rotary Phase Converters

Rotary Phase Converters FACTS from Ronk Electrical Industries, Inc. Bulletin 11981 Rotary Phase Converters ROTOVERTER Pat. No. 3,670,238 ROTO-CON Pat. No. 4,158,225 What are the ROTO-CON and ROTOVERTER power converters? The ROTO-CON

More information