Student Number: SOLUTION Page 1 of 14

Size: px
Start display at page:

Download "Student Number: SOLUTION Page 1 of 14"

Transcription

1 Student Number: SOLUTION Page 1 of 14 QUEEN S UNIVERSITY FACULTY OF ARTS AND SCIENCE DEPARTMENT OF MATHEMATICS AND STATISTICS MATH126 December Examination December 14th, 2009 Instructors: P. Li (A), A. Momeni (B) Instructions: This is a 3-hour exam. There are 5 sections worth a total of 100 marks as indicated in the box below. Answer all questions in the space provided. If you need more room, answer on the back of the previous page. Show all your work and explain how you arrived at your answers, unless explicitly told to do otherwise. Except where a decimal answer is asked for, it is preferable to leave answers in the form π, e 2, etc. However, do any obvious simplification. For example, = 25 6 or 17 (x + 1)2, and 6 x + 1 are permitted. = x+1. Only CASIO FX-991 or Gold/Bule Sticker calculators Please Note: Proctors are unable to respond to queries about the interpretation of exam questions. Do your best to answer exam questions as written. Question Possible Received Sections I 45 Section II 29 Section III 8 Section VI 10 Section V 8 Total 100

2 Student Number: SOLUTION Page 2 of 14 Section I: Short Answer Questions (15 questions, 3 marks each) Solve the following questions and write your answer in the box provided in each question. Full marks will be given for correct answer placed in the box. You do not need to simplify your answer. (1) Evaluate lim x 2 x 2 + x 6 x 2 Since x 2 + x 6 = (x 2)(x + 3) x 2 + x 6 lim x 2 x 2 = lim x 2 x + 3 = 5 5 (2) Evaluate lim x 1 x x 2 2x 2 7. Using L Hôpital s rule, we have 1 x x 2 lim x 2x 2 7 = lim x 1 2x 4x 2 = lim x 4 = (3) Find the derivative of y = arctan y = 1 ( ) 2 ( 1x ) x ( ) 1. x = 1 x x 2 + 1

3 Student Number: SOLUTION Page 3 of 14 Section I (continued) (4) Find the equation of the tangent line to the curve y = x ln x at the point (1, 1). Write your answer in slope-intercept form, i.e, y = mx + b. y = 3x 2 + 4/x. At x = 1, y = 7 Then the equation is y = 7x 6 y = 7(x 1) + 1, i.e., y = 7x 6. (5) Find the derivative of y = y = x cos x sin x x 2 sin x x e x2 2x ex2 x cos x sin x x 2 2xe x2 (6) Use implicit differentiate to find dy dx. y = x 2 ln y + 2e x Differentiating both sides, we have dy dx = 2x ln y + 1 x2 y dy dx + 2ex Solving dy, we obtain the answer. dx 2x ln y + 2e x 1 x2 y

4 Student Number: SOLUTION Page 4 of 14 Section I (continued) (7) If an investor has a choice of investing money of 6% compounded daily or 6.125% compounded monthly, which is a better choice? The effective rates are: At the rate 6%, r e1 = ( /365) = At the rate 6.125%, r e2 = ( /12) 12 1 = r e2 > r e % compounded monthly (8) At what nominal rate of interest, compounded yearly, will money double in 10 years? (1 + r) 10 = 2 r = = % (9) Use L Hôpital s rule to evaluate the following limit x + cos(2x) e x lim x 0 x x + cos(2x) e x lim x 0 x 1 2 sin(2x) e x = lim x 0 1 = 0 0

5 Student Number: SOLUTION Page 5 of 14 Section I (continued) (10) What is the present value of $1000 due after three years if the interest rate is 9% compounded monthly? 1000( /12) 36 = (11) For an interest rate of 4% compounded monthly, find an expression of the present value of an annuity of $150 at the end of each month for eight months and $175 thereafter at the end of each month for a further two years. the periodic rate = 0.04/12 = In the first 8 months, the periodic payment is 150, the number of periods is 8, so the 175a a present value is 150a In the next two years, the periodic payment is 175, the number of periods is 24, so the present value is 175a a Hence, the present value of the annuity is 150a a a (12) If a manufacturer s average cost is c = 0.01q q what is the marginal cost when 50 units are produced. The cost function is c = cq = 0.01q 2 + 5q The marginal cost is c = 0.02q + 5 at q = 50, c = 6 6

6 Student Number: SOLUTION Page 6 of 14 Section I (continued) (13) If a demand equation for a manufacturer s product is p = 1000 q + 5 find the marginal revenue when q = 45. The revenue is r = pq = 1000q/(q + 5) The marginal revenue is: r = 5000/(q + 5) 2 at q = 45, r = 2 2 (14) Determine the value(s) of x at which the function f = 1 3 x x2 2x + 1 attains a maximum value over the interval [ 1, 2]. f = x 2 + x 2 = (x + 2)(x 1) = 0 x = 1 critical values are x = 1 and x = 2 x = 2 is ignored because it is outside of the interval [ 1, 2] comparing values of the function: f( 1) = 19/6, f(1) = 1/6, f(2) = 5/3 The maximum is at x = 1 (15) Find all critical values of the function y = x 2 e x y = 2xe x + x 2 e x = xe x (2 + x) = 0 x = 0, x = 2 x = 0, x = 2

7 Student Number: SOLUTION Page 7 of 14 Section II: Graphical Problems (4 questions, 29 marks) 1. [5 marks] The graph of the function y = f(x) is given below. Find the following values and sketch the graph of the derivative of y = f(x) over the interval [ 2, 5]. f( 1) = 1 f( 1 + h) f( 1) lim h 0 h = 2 f(1 + h) f(1) lim h 0 h = f (1) = 0 f (4) = 0 f (4) = 0 y y = f(x) x y e e e x e

8 Student Number: SOLUTION Page 8 of 14 Section II: Graphical Problems (continued) 2. [6 marks] The following graph shows cost C(q) and revenue R(q). $ 400 C(q) Break-even v Break-even R(q) v q (thousands) (a) For what production level is the profit positive? Negative? Explain your answer. Mark the break-even point(s) on the graph. Solution: The profit is positive if 6 < q < 14 because the revenue is greater than the cost. The profit is negative if q < 6 or q > 14 because the revenue is smaller than the cost. The break-even points are at q = 6 and q = 14. (b) Find a construction on the above graph which maximize the profit. Estimate the production level at which the profit is maximized. Explain your answer. Solution: The profit attains maximum when q = 11 because MR = MC and P > 0. It can also be seen as follows: P = R C, so the profit is represented by the vertical distance between R and C. By the given graph, at q = 11, R > C and the vertical distance between R and C is maximum. Therefore P is maximum at q = 11.

9 Student Number: SOLUTION Page 9 of 14 Section II: Graphical Problems (continued) 3. [8 marks]the marginal revenue and marginal cost for a certain item are graphed below. (a) Analyze each of the following quantities and explain the economic significance of the quantities (in terms of profit, marginal revenue and marginal cost, etc.). (b) Find the quantity at which the profit attains maximum for the company? Explain your answer in detail. (c) Give a rough sketch of the profit graph P = P (q). Mark all significant points on your graph and explain the shape of your graph. You may continue on next page if you need more space. (A) q = q 1 (B) q = q 2 (C) q = q 3 $/unit MR MC q 1 q 2 q 3 q (units) Solution: (a) At q = q 1, MR = MC. The revenue of producing the next unit is equal to the cost of that unit. Since MR is increasing and MR > MC passing q 1, A is the point at which the company receives minimum profit. The profit will increase after q 1. At q = q 2, MR > MC and MR is peaked. Note that MC is constant. So the company expect maximum return from the next unit produced. After q 2, MR decreases, but still greater than M C. It implies a positive return from additional unit produced. so the profit keeps increasing. At q = q 3, MR = MC. Since MR deceases and MR < MC when q > q 3, the company is no longer making money from addition unit produced. The profit is maximized at q = q 3, and after q 3, the profit will decrease. (b) The profit is maximum at q 3. It can be seen as follows. The profit is P = R C. The critical points occur when P = 0, that is R C = MR MC = 0. According to the graph, the critical points are at q = q 1 and q = q 3. To determine which one is maximum, we use the second derivative test. Take P = MR MC. Note that MC = 0. It follows P = MR. By the graph, at q = q 1, P = MR > 0, so P attains a minimum at q = q 1. At q = q 3, P = MR < 0, so P attains a maximum at q = q 3.

10 Student Number: SOLUTION Page 10 of 14 Section II: Graphical Problems (continued) (c) As discussed in part (b), there are two critical points at q = q 1 and q = q 3. Since MR < MC when q < q 1 and q > q 3 and MR > MC if q 1 < q < q 3, we have the following chart q < q 1 q = q 1 q 1 < q < q 3 q = q 3 q > q 3 P = MR MC + y dec. relative min inc. relative max dec. The second derivative P = R C = MR MC = MR since MC = 0. Let P = 0 we have MR = 0. By the graph, MR = 0 if q = q 2. So q = q 2 is a possible inflection point. It is easy to know, from the graph, MR > 0 if q < q 2 and MR < 0 if q > q 2. Therefore the graph of P is concave up if q < q 2 and concave down if q > q 2. The point at q = q 2 is an inflection point. a sketch of the profit function is P r r r q 1 q 2 q 3 q

11 Student Number: SOLUTION Page 11 of 14 Section II: Graphical Problems (continued) 4. [10 marks] Sketch the graph of y = 2x 3 9x x. (a) Find all intercept points. Solution: x-intercepts: Let y = 0, that is, 2x 3 9x x = x(2x 2 9x + 12) = 0. It yields x = 0 and 2x 2 9x + 12 = 0. But the equation 2x 2 9x + 12 = 0 has no solution since the determinant b 2 4ac = ( 9) 2 4(2)(12) < 0. So The x-intercept is x = 0. y-intercept: Let x = 0. Then y = 0. (b) Find all critical values. Find all relative maxima and relative minima (if there are any). Find interval(s) on which the function is increasing or decreasing. Solution: Since y = 6x 2 18x + 12 = 6(x 2 3x + 2) = 6(x 1)(x 2), and critical values occur when y = 0. Hence x = 1 and x = 2 are critical values. Now we have the following table. x < 1 x = 1 1 < x < 2 x = 2 2 < x 6(x 1) + + x 2 + y + + y inc. relative max dec. relative min inc. There is one relative maximum at x = 1. There is one relative minimum at x = 2. The function increases over intervals (, 1) and (2, ). and decreases over the interval (1, 2). (c) Find interval(s) on which the function is concave up or concave down. Solution: y = 12x 18 = 12(x 3/2) = 0. We have x = 3/2. x < 3/2 x = 3/2 x > 3/2 y + y concave inflection concave down point up (d) Sketch the graph. y r r r x

12 Student Number: SOLUTION Page 12 of 14 Section III: Equilibrium (8 marks) Supply and demand equations for certain product are and 3q 200p = 0 3q + 100p 1800 = 0 respectively, where p represents the price per unit in dollars and q represents the number of units sold per time period. Find the equilibrium price when a tax of 27 cents per unit is imposed on the supplier. Solution: The supply equation is p = q + 9 and the demand equation is p = 3 q If $0.27 is applied to the supply, then the new supply equation is p = 3 q To find the equilibrium point, we solve the equation 3 3 q = q The solution is q = 194. Hence the equilibrium price is p =

13 Student Number: SOLUTION Page 13 of 14 Section VI: Related Rates (10 marks) The demand equation for tuna is pq 3/2 = where q is the number of pounds of tuna that can be sold in one month at the price of p dollars per pound. Currently the demand of tuna is 900 pounds per month and is increasing at a rate of 100 pounds per month each month. (a) How fast is the price changing? Solution: The values we know are the demand: q = 900 the rate of change of demand with respect to the time t: dq dt = 100 We want to find dp dt. Differentiating pq 3/2 = with respect to t, we have Solving for dp dt yields dp dt q3/2 + p 3 dq q1/2 2 dt = 0 dp dt = 1 3pq 1/2 dq q 3/2 2 dt = 3p 2q dq dt At q = 900, p = Then dp dt 0.31 So the price is dropping at the rate of 31 cents per pound each month. (b) At what rate is the revenue changing? Will the revenue increase or decrease? Solution: The revenue is r = pq. Differentiating both sides with respect to the time t and plugging into all values, we have dr dt = dp q + pdq dt dt The revenue is decreasing. 50 = =

14 Student Number: SOLUTION Page 14 of 14 Section V: Optimization Problem (8 marks) A manufacturer can produce at most 120 units of a certain product each year. The demand equation for the product is p = q 2 100q and the manufacturer s average cost function is c = 2 3 q2 40q q (a) Find the revenue function R and the cost function C. What is the profit function P? Solution: R = pq = q 3 100q q C = cq = 2 3 q3 40q P = R C = 1 3 q3 60q q for q 120. (b) Determine the production level at which the profit is a maximum. Solution: P = q 2 120q = (q 40)(q 80) = 0, we have q = 40 and q = 80. Since P (40) = , P (80) = and P (120) = 86000, the profit is maximum when q = 120.

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

MATH 121 FINAL EXAM FALL 2010-2011. December 6, 2010

MATH 121 FINAL EXAM FALL 2010-2011. December 6, 2010 MATH 11 FINAL EXAM FALL 010-011 December 6, 010 NAME: SECTION: Instructions: Show all work and mark your answers clearly to receive full credit. This is a closed notes, closed book exam. No electronic

More information

5.1 Derivatives and Graphs

5.1 Derivatives and Graphs 5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has

More information

Week 1: Functions and Equations

Week 1: Functions and Equations Week 1: Functions and Equations Goals: Review functions Introduce modeling using linear and quadratic functions Solving equations and systems Suggested Textbook Readings: Chapter 2: 2.1-2.2, and Chapter

More information

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm. PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle

More information

Derivatives as Rates of Change

Derivatives as Rates of Change Derivatives as Rates of Change One-Dimensional Motion An object moving in a straight line For an object moving in more complicated ways, consider the motion of the object in just one of the three dimensions

More information

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were: Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

More information

2 Applications to Business and Economics

2 Applications to Business and Economics 2 Applications to Business and Economics APPLYING THE DEFINITE INTEGRAL 442 Chapter 6 Further Topics in Integration In Section 6.1, you saw that area can be expressed as the limit of a sum, then evaluated

More information

Calculus AB 2014 Scoring Guidelines

Calculus AB 2014 Scoring Guidelines P Calculus B 014 Scoring Guidelines 014 The College Board. College Board, dvanced Placement Program, P, P Central, and the acorn logo are registered trademarks of the College Board. P Central is the official

More information

100. In general, we can define this as if b x = a then x = log b

100. In general, we can define this as if b x = a then x = log b Exponents and Logarithms Review 1. Solving exponential equations: Solve : a)8 x = 4! x! 3 b)3 x+1 + 9 x = 18 c)3x 3 = 1 3. Recall: Terminology of Logarithms If 10 x = 100 then of course, x =. However,

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

Section 12.6: Directional Derivatives and the Gradient Vector

Section 12.6: Directional Derivatives and the Gradient Vector Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

More information

A Detailed Price Discrimination Example

A Detailed Price Discrimination Example A Detailed Price Discrimination Example Suppose that there are two different types of customers for a monopolist s product. Customers of type 1 have demand curves as follows. These demand curves include

More information

2008 AP Calculus AB Multiple Choice Exam

2008 AP Calculus AB Multiple Choice Exam 008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus

More information

EXPONENTIAL FUNCTIONS 8.1.1 8.1.6

EXPONENTIAL FUNCTIONS 8.1.1 8.1.6 EXPONENTIAL FUNCTIONS 8.1.1 8.1.6 In these sections, students generalize what they have learned about geometric sequences to investigate exponential functions. Students study exponential functions of the

More information

a cos x + b sin x = R cos(x α)

a cos x + b sin x = R cos(x α) a cos x + b sin x = R cos(x α) In this unit we explore how the sum of two trigonometric functions, e.g. cos x + 4 sin x, can be expressed as a single trigonometric function. Having the ability to do this

More information

CHAPTER 1 Linear Equations

CHAPTER 1 Linear Equations CHAPTER 1 Linear Equations 1.1. Lines The rectangular coordinate system is also called the Cartesian plane. It is formed by two real number lines, the horizontal axis or x-axis, and the vertical axis or

More information

MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

More information

For additional information, see the Math Notes boxes in Lesson B.1.3 and B.2.3.

For additional information, see the Math Notes boxes in Lesson B.1.3 and B.2.3. EXPONENTIAL FUNCTIONS B.1.1 B.1.6 In these sections, students generalize what they have learned about geometric sequences to investigate exponential functions. Students study exponential functions of the

More information

3.3 Applications of Linear Functions

3.3 Applications of Linear Functions 3.3 Applications of Linear Functions A function f is a linear function if The graph of a linear function is a line with slope m and y-intercept b. The rate of change of a linear function is the slope m.

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

2013 MBA Jump Start Program

2013 MBA Jump Start Program 2013 MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Algebra Review Calculus Permutations and Combinations [Online Appendix: Basic Mathematical Concepts] 2 1 Equation of

More information

Math 113 Review for Exam I

Math 113 Review for Exam I Math 113 Review for Exam I Section 1.1 Cartesian Coordinate System, Slope, & Equation of a Line (1.) Rectangular or Cartesian Coordinate System You should be able to label the quadrants in the rectangular

More information

Calculus 1: Sample Questions, Final Exam, Solutions

Calculus 1: Sample Questions, Final Exam, Solutions Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.

More information

1 Functions, Graphs and Limits

1 Functions, Graphs and Limits 1 Functions, Graphs and Limits 1.1 The Cartesian Plane In this course we will be dealing a lot with the Cartesian plane (also called the xy-plane), so this section should serve as a review of it and its

More information

Mark Howell Gonzaga High School, Washington, D.C.

Mark Howell Gonzaga High School, Washington, D.C. Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,

More information

Polynomials. Dr. philippe B. laval Kennesaw State University. April 3, 2005

Polynomials. Dr. philippe B. laval Kennesaw State University. April 3, 2005 Polynomials Dr. philippe B. laval Kennesaw State University April 3, 2005 Abstract Handout on polynomials. The following topics are covered: Polynomial Functions End behavior Extrema Polynomial Division

More information

1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved.

1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved. 1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs

More information

MAT12X Intermediate Algebra

MAT12X Intermediate Algebra MAT12X Intermediate Algebra Workshop I - Exponential Functions LEARNING CENTER Overview Workshop I Exponential Functions of the form y = ab x Properties of the increasing and decreasing exponential functions

More information

Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown.

Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown. Warm Up Write an equation given the slope and y-intercept Write an equation of the line shown. EXAMPLE 1 Write an equation given the slope and y-intercept From the graph, you can see that the slope is

More information

Calculus 1st Semester Final Review

Calculus 1st Semester Final Review Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ) R S T, c /, > 0 Find the limit: lim

More information

or, put slightly differently, the profit maximizing condition is for marginal revenue to equal marginal cost:

or, put slightly differently, the profit maximizing condition is for marginal revenue to equal marginal cost: Chapter 9 Lecture Notes 1 Economics 35: Intermediate Microeconomics Notes and Sample Questions Chapter 9: Profit Maximization Profit Maximization The basic assumption here is that firms are profit maximizing.

More information

Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)

Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y) Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = Last day, we saw that the function f(x) = ln x is one-to-one, with domain (, ) and range (, ). We can conclude that f(x) has an inverse function

More information

c. Given your answer in part (b), what do you anticipate will happen in this market in the long-run?

c. Given your answer in part (b), what do you anticipate will happen in this market in the long-run? Perfect Competition Questions Question 1 Suppose there is a perfectly competitive industry where all the firms are identical with identical cost curves. Furthermore, suppose that a representative firm

More information

3. Solve the equation containing only one variable for that variable.

3. Solve the equation containing only one variable for that variable. Question : How do you solve a system of linear equations? There are two basic strategies for solving a system of two linear equations and two variables. In each strategy, one of the variables is eliminated

More information

Practice Final Math 122 Spring 12 Instructor: Jeff Lang

Practice Final Math 122 Spring 12 Instructor: Jeff Lang Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6

More information

Average rate of change of y = f(x) with respect to x as x changes from a to a + h:

Average rate of change of y = f(x) with respect to x as x changes from a to a + h: L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,

More information

CHAPTER 10 MARKET POWER: MONOPOLY AND MONOPSONY

CHAPTER 10 MARKET POWER: MONOPOLY AND MONOPSONY CHAPTER 10 MARKET POWER: MONOPOLY AND MONOPSONY EXERCISES 3. A monopolist firm faces a demand with constant elasticity of -.0. It has a constant marginal cost of $0 per unit and sets a price to maximize

More information

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued

More information

Economics 431 Fall 2003 1st midterm Answer Key

Economics 431 Fall 2003 1st midterm Answer Key Economics 431 Fall 003 1st midterm Answer Key 1) (7 points) Consider an industry that consists of a large number of identical firms. In the long run competitive equilibrium, a firm s marginal cost must

More information

Constrained optimization.

Constrained optimization. ams/econ 11b supplementary notes ucsc Constrained optimization. c 2010, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values

More information

Solutions to Midterm #1 Practice Problems

Solutions to Midterm #1 Practice Problems MAT Fall 0 Solutions to Midterm # Practice Problems. Below is the graph of a function y = r(). y = r() Sketch graphs of the following functions: (a) y = r( 3) (b) y = r( ) 3 (c) y = r() + (d) y = r( +

More information

AP Calculus AB 2004 Scoring Guidelines

AP Calculus AB 2004 Scoring Guidelines AP Calculus AB 4 Scoring Guidelines The materials included in these files are intended for noncommercial use by AP teachers for course and eam preparation; permission for any other use must be sought from

More information

*X100/12/02* X100/12/02. MATHEMATICS HIGHER Paper 1 (Non-calculator) MONDAY, 21 MAY 1.00 PM 2.30 PM NATIONAL QUALIFICATIONS 2012

*X100/12/02* X100/12/02. MATHEMATICS HIGHER Paper 1 (Non-calculator) MONDAY, 21 MAY 1.00 PM 2.30 PM NATIONAL QUALIFICATIONS 2012 X00//0 NTIONL QULIFITIONS 0 MONY, MY.00 PM.0 PM MTHEMTIS HIGHER Paper (Non-calculator) Read carefully alculators may NOT be used in this paper. Section Questions 0 (40 marks) Instructions for completion

More information

Payment streams and variable interest rates

Payment streams and variable interest rates Chapter 4 Payment streams and variable interest rates In this chapter we consider two extensions of the theory Firstly, we look at payment streams A payment stream is a payment that occurs continuously,

More information

An Introduction to Calculus. Jackie Nicholas

An Introduction to Calculus. Jackie Nicholas Mathematics Learning Centre An Introduction to Calculus Jackie Nicholas c 2004 University of Sydney Mathematics Learning Centre, University of Sydney 1 Some rules of differentiation and how to use them

More information

Visualizing Differential Equations Slope Fields. by Lin McMullin

Visualizing Differential Equations Slope Fields. by Lin McMullin Visualizing Differential Equations Slope Fields by Lin McMullin The topic of slope fields is new to the AP Calculus AB Course Description for the 2004 exam. Where do slope fields come from? How should

More information

MEMORANDUM. All students taking the CLC Math Placement Exam PLACEMENT INTO CALCULUS AND ANALYTIC GEOMETRY I, MTH 145:

MEMORANDUM. All students taking the CLC Math Placement Exam PLACEMENT INTO CALCULUS AND ANALYTIC GEOMETRY I, MTH 145: MEMORANDUM To: All students taking the CLC Math Placement Eam From: CLC Mathematics Department Subject: What to epect on the Placement Eam Date: April 0 Placement into MTH 45 Solutions This memo is an

More information

a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F

a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all

More information

x 2 y 2 +3xy ] = d dx dx [10y] dy dx = 2xy2 +3y

x 2 y 2 +3xy ] = d dx dx [10y] dy dx = 2xy2 +3y MA7 - Calculus I for thelife Sciences Final Exam Solutions Spring -May-. Consider the function defined implicitly near (,) byx y +xy =y. (a) [7 points] Use implicit differentiation to find the derivative

More information

1 Calculus of Several Variables

1 Calculus of Several Variables 1 Calculus of Several Variables Reading: [Simon], Chapter 14, p. 300-31. 1.1 Partial Derivatives Let f : R n R. Then for each x i at each point x 0 = (x 0 1,..., x 0 n) the ith partial derivative is defined

More information

, plus the present value of the $1,000 received in 15 years, which is 1, 000(1 + i) 30. Hence the present value of the bond is = 1000 ;

, plus the present value of the $1,000 received in 15 years, which is 1, 000(1 + i) 30. Hence the present value of the bond is = 1000 ; 2 Bond Prices A bond is a security which offers semi-annual* interest payments, at a rate r, for a fixed period of time, followed by a return of capital Suppose you purchase a $,000 utility bond, freshly

More information

Math 113 HW #7 Solutions

Math 113 HW #7 Solutions Math 3 HW #7 Solutions 35 0 Given find /dx by implicit differentiation y 5 + x 2 y 3 = + ye x2 Answer: Differentiating both sides with respect to x yields 5y 4 dx + 2xy3 + x 2 3y 2 ) dx = dx ex2 + y2x)e

More information

u dx + y = 0 z x z x = x + y + 2 + 2 = 0 6) 2

u dx + y = 0 z x z x = x + y + 2 + 2 = 0 6) 2 DIFFERENTIAL EQUATIONS 6 Many physical problems, when formulated in mathematical forms, lead to differential equations. Differential equations enter naturally as models for many phenomena in economics,

More information

Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10

Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10 Dirk Bergemann Department of Economics Yale University s by Olga Timoshenko Economics 121b: Intermediate Microeconomics Problem Set 2 1/20/10 This problem set is due on Wednesday, 1/27/10. Preliminary

More information

PART A: For each worker, determine that worker's marginal product of labor.

PART A: For each worker, determine that worker's marginal product of labor. ECON 3310 Homework #4 - Solutions 1: Suppose the following indicates how many units of output y you can produce per hour with different levels of labor input (given your current factory capacity): PART

More information

Slope-Intercept Equation. Example

Slope-Intercept Equation. Example 1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the y-intercept. Determine

More information

AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period:

AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period: AP Calculus AB First Semester Final Eam Practice Test Content covers chapters 1- Name: Date: Period: This is a big tamale review for the final eam. Of the 69 questions on this review, questions will be

More information

1.7 Graphs of Functions

1.7 Graphs of Functions 64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each x-coordinate was matched with only one y-coordinate. We spent most

More information

1. [20 pts] Find an integrating factor and solve the equation y 3y = e 2t. Then solve the initial value problem y 3y = e 2t, y(0) = 3.

1. [20 pts] Find an integrating factor and solve the equation y 3y = e 2t. Then solve the initial value problem y 3y = e 2t, y(0) = 3. 22M:034 Engineer Math IV: Differential Equations Midterm Exam 1 October 2, 2013 Name Section number 1. [20 pts] Find an integrating factor and solve the equation 3 = e 2t. Then solve the initial value

More information

Examples on Monopoly and Third Degree Price Discrimination

Examples on Monopoly and Third Degree Price Discrimination 1 Examples on Monopoly and Third Degree Price Discrimination This hand out contains two different parts. In the first, there are examples concerning the profit maximizing strategy for a firm with market

More information

Math 1314 Lesson 8 Business Applications: Break Even Analysis, Equilibrium Quantity/Price

Math 1314 Lesson 8 Business Applications: Break Even Analysis, Equilibrium Quantity/Price Math 1314 Lesson 8 Business Applications: Break Even Analysis, Equilibrium Quantity/Price Three functions of importance in business are cost functions, revenue functions and profit functions. Cost functions

More information

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

More information

3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea.

3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH. In Isaac Newton's day, one of the biggest problems was poor navigation at sea. BA01 ENGINEERING MATHEMATICS 01 CHAPTER 3 APPLICATION OF DIFFERENTIATION 3.1 MAXIMUM, MINIMUM AND INFLECTION POINT & SKETCHING THE GRAPH Introduction to Applications of Differentiation In Isaac Newton's

More information

1 Mathematical Models of Cost, Revenue and Profit

1 Mathematical Models of Cost, Revenue and Profit Section 1.: Mathematical Modeling Math 14 Business Mathematics II Minh Kha Goals: to understand what a mathematical model is, and some of its examples in business. Definition 0.1. Mathematical Modeling

More information

Solutions for Review Problems

Solutions for Review Problems olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

More information

Section 3.2 Polynomial Functions and Their Graphs

Section 3.2 Polynomial Functions and Their Graphs Section 3.2 Polynomial Functions and Their Graphs EXAMPLES: P(x) = 3, Q(x) = 4x 7, R(x) = x 2 +x, S(x) = 2x 3 6x 2 10 QUESTION: Which of the following are polynomial functions? (a) f(x) = x 3 +2x+4 (b)

More information

Consumer Theory. The consumer s problem

Consumer Theory. The consumer s problem Consumer Theory The consumer s problem 1 The Marginal Rate of Substitution (MRS) We define the MRS(x,y) as the absolute value of the slope of the line tangent to the indifference curve at point point (x,y).

More information

Manual for SOA Exam FM/CAS Exam 2.

Manual for SOA Exam FM/CAS Exam 2. Manual for SOA Exam FM/CAS Exam 2. Chapter 3. Annuities. c 2009. Miguel A. Arcones. All rights reserved. Extract from: Arcones Manual for the SOA Exam FM/CAS Exam 2, Financial Mathematics. Fall 2009 Edition,

More information

Time Value of Money. 2014 Level I Quantitative Methods. IFT Notes for the CFA exam

Time Value of Money. 2014 Level I Quantitative Methods. IFT Notes for the CFA exam Time Value of Money 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction...2 2. Interest Rates: Interpretation...2 3. The Future Value of a Single Cash Flow...4 4. The

More information

1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some

1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some Section 3.1: First Derivative Test Definition. Let f be a function with domain D. 1. Then f has a relative maximum at x = c if f(c) f(x) for all values of x in some open interval containing c. The number

More information

Multi-variable Calculus and Optimization

Multi-variable Calculus and Optimization Multi-variable Calculus and Optimization Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Multi-variable Calculus and Optimization 1 / 51 EC2040 Topic 3 - Multi-variable Calculus

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

Section 3.1 Quadratic Functions and Models

Section 3.1 Quadratic Functions and Models Section 3.1 Quadratic Functions and Models DEFINITION: A quadratic function is a function f of the form fx) = ax 2 +bx+c where a,b, and c are real numbers and a 0. Graphing Quadratic Functions Using the

More information

Lecture 3: Derivatives and extremes of functions

Lecture 3: Derivatives and extremes of functions Lecture 3: Derivatives and extremes of functions Lejla Batina Institute for Computing and Information Sciences Digital Security Version: spring 2011 Lejla Batina Version: spring 2011 Wiskunde 1 1 / 16

More information

Homework # 3 Solutions

Homework # 3 Solutions Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8

More information

QUADRATIC EQUATIONS AND FUNCTIONS

QUADRATIC EQUATIONS AND FUNCTIONS Douglas College Learning Centre QUADRATIC EQUATIONS AND FUNCTIONS Quadratic equations and functions are very important in Business Math. Questions related to quadratic equations and functions cover a wide

More information

Student Performance Q&A:

Student Performance Q&A: Student Performance Q&A: 2008 AP Calculus AB and Calculus BC Free-Response Questions The following comments on the 2008 free-response questions for AP Calculus AB and Calculus BC were written by the Chief

More information

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving

More information

Course outline, MA 113, Spring 2014 Part A, Functions and limits. 1.1 1.2 Functions, domain and ranges, A1.1-1.2-Review (9 problems)

Course outline, MA 113, Spring 2014 Part A, Functions and limits. 1.1 1.2 Functions, domain and ranges, A1.1-1.2-Review (9 problems) Course outline, MA 113, Spring 2014 Part A, Functions and limits 1.1 1.2 Functions, domain and ranges, A1.1-1.2-Review (9 problems) Functions, domain and range Domain and range of rational and algebraic

More information

+ 4θ 4. We want to minimize this function, and we know that local minima occur when the derivative equals zero. Then consider

+ 4θ 4. We want to minimize this function, and we know that local minima occur when the derivative equals zero. Then consider Math Xb Applications of Trig Derivatives 1. A woman at point A on the shore of a circular lake with radius 2 miles wants to arrive at the point C diametrically opposite A on the other side of the lake

More information

National 5 Mathematics Course Assessment Specification (C747 75)

National 5 Mathematics Course Assessment Specification (C747 75) National 5 Mathematics Course Assessment Specification (C747 75) Valid from August 013 First edition: April 01 Revised: June 013, version 1.1 This specification may be reproduced in whole or in part for

More information

Name: Date: 2. Find the input of the function f() corresponding to the output f() t = 3to

Name: Date: 2. Find the input of the function f() corresponding to the output f() t = 3to Name: Date: 1. Find the input of the function f( x) = 8 x+7 corresponding to the output f( x ) = 5.. Find the input of the function f() t = 48 corresponding to the output f() t = 3to t e +1 three decimal

More information

Homework #1 Solutions

Homework #1 Solutions MAT 303 Spring 203 Homework # Solutions Problems Section.:, 4, 6, 34, 40 Section.2:, 4, 8, 30, 42 Section.4:, 2, 3, 4, 8, 22, 24, 46... Verify that y = x 3 + 7 is a solution to y = 3x 2. Solution: From

More information

Problems 1-21 could be on the no Derive part. Sections 1.2, 2.2, 2.3, 3.1, 3.3, 3.4, 4.1, 4.2

Problems 1-21 could be on the no Derive part. Sections 1.2, 2.2, 2.3, 3.1, 3.3, 3.4, 4.1, 4.2 MTH 120 Practice Test #1 Sections 1.2, 2.2, 2.3, 3.1, 3.3, 3.4, 4.1, 4.2 Use the properties of limits to help decide whether the limit eists. If the limit eists, find its value. 1) lim 5 2) lim 3 2-25

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

More information

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate

More information

Chapter 7 Outline Math 236 Spring 2001

Chapter 7 Outline Math 236 Spring 2001 Chapter 7 Outline Math 236 Spring 2001 Note 1: Be sure to read the Disclaimer on Chapter Outlines! I cannot be responsible for misfortunes that may happen to you if you do not. Note 2: Section 7.9 will

More information

MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2

MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2 MATH 10550, EXAM SOLUTIONS (1) Find an equation for the tangent line to at the point (1, ). + y y + = Solution: The equation of a line requires a point and a slope. The problem gives us the point so we

More information

Exponential Functions. Exponential Functions and Their Graphs. Example 2. Example 1. Example 3. Graphs of Exponential Functions 9/17/2014

Exponential Functions. Exponential Functions and Their Graphs. Example 2. Example 1. Example 3. Graphs of Exponential Functions 9/17/2014 Eponential Functions Eponential Functions and Their Graphs Precalculus.1 Eample 1 Use a calculator to evaluate each function at the indicated value of. a) f ( ) 8 = Eample In the same coordinate place,

More information

Review Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C.

Review Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C. Review Solutions MAT V. (a) If u 4 x, then du dx. Hence, substitution implies dx du u + C 4 x + C. 4 x u (b) If u e t + e t, then du (e t e t )dt. Thus, by substitution, we have e t e t dt e t + e t u

More information

Average rate of change

Average rate of change Average rate of change 1 1 Average rate of change A fundamental philosophical truth is that everything changes. 1 Average rate of change A fundamental philosophical truth is that everything changes. In

More information

Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

More information

Particular Solutions. y = Ae 4x and y = 3 at x = 0 3 = Ae 4 0 3 = A y = 3e 4x

Particular Solutions. y = Ae 4x and y = 3 at x = 0 3 = Ae 4 0 3 = A y = 3e 4x Particular Solutions If the differential equation is actually modeling something (like the cost of milk as a function of time) it is likely that you will know a specific value (like the fact that milk

More information

Section 4.5 Exponential and Logarithmic Equations

Section 4.5 Exponential and Logarithmic Equations Section 4.5 Exponential and Logarithmic Equations Exponential Equations An exponential equation is one in which the variable occurs in the exponent. EXAMPLE: Solve the equation x = 7. Solution 1: We have

More information

Graphing Linear Equations

Graphing Linear Equations Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope

More information

Section 1.5 Linear Models

Section 1.5 Linear Models Section 1.5 Linear Models Some real-life problems can be modeled using linear equations. Now that we know how to find the slope of a line, the equation of a line, and the point of intersection of two lines,

More information

1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved.

1.3 LINEAR EQUATIONS IN TWO VARIABLES. Copyright Cengage Learning. All rights reserved. 1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points

More information