Pedigree Studies. Opening Activity: Latin Root Word: Review of Old Information: Guinea pigs can have curly or straight hair, where the curly gene is

Size: px
Start display at page:

Download "Pedigree Studies. Opening Activity: Latin Root Word: Review of Old Information: Guinea pigs can have curly or straight hair, where the curly gene is"

Transcription

1 Section: 3.7 Opening Activity: Latin Root Word: Name: Review of Old Information: Guinea pigs can have curly or straight hair, where the curly gene is recessive. Guinea pigs can also have a condition called bowlegged, where their legs curve noticeably outward. Bowleggedness is a dominant lethal allele if an individual inherits two copies of it (BB). Show the cross between a curly haired, bowlegged guinea pig and a heterozygous straight haired pig that is also bowlegged. How many of their offspring would you expect to be normal with curly hair? Pedigree Studies Background Information: Pedigrees are not reserved for show dogs and race horses. All living things, including humans, have pedigrees. A pedigree is a diagram that shows the occurrence and appearance, or phenotype of a particular genetic trait from one generation to the next in a family. Genotypes for individuals in a pedigree usually can be determined with an understanding of inheritance and probability. In this investigation you will: Pedigree Notes Pedigree = a. learn the meaning of all the symbols and lines that are used in a pedigree b. determine expected genotypes for all individuals shown in a pedigree.

2 are identified by Roman numerals An affected mother and an unaffected father have 3 children. The mother has a autosomal recessive disorder. One of the children marries a carrier. What is the probability that their child will be affected? (draw the pedigree in you notes) Autosomal Recessive Trait is in pedigree Trait often generations (hidden in carriers) Trait affects males and females (so not sex linked)

3 Autosomal Dominant Trait is in the pedigree Trait is found in generation Affected individuals transmit the trait to ~ of their children (regardless of sex) No Carriers What is the inheritance pattern of the following pedigree? Use your notes and the Background Information above to answer the following questions: 1. What can usually be determined when using a pedigree? 2. In a pedigree chart, what do the following represent: Roman numerals Numbers Squares Circles Horizontal lines Vertical lines

4 Procedure: For all the pedigrees in this worksheet, the trait being shown is earlobe shape. Geneticists recognize two general earlobe shapes; free lobes and attached lobes (see Figure 1 below). The gene responsible for free earlobes (E) is dominant over the gene for attached earlobes (e). Reading a Pedigree: Figure 2 Use Figure 2 to answer the following questions: 1. What is the sex of the oldest child? 2. What is the sex of the youngest child? Use Figure 3 (the same family as in Figure 2, but at a later time) to answer the following questions: Figure 3 3. Which person is the son-in-law (Name him by generation # and person #)? 4. To whom is he married (Name her by generation # and person #)? 5. What sex is their child? Determining Genotypes from a Pedigree: To predict the genotypes for each person on a pedigree showing inheritance of a RECESSIVE TRAIT, there are two rules you must follow:

5 Rule 1: Assign two recessive genes to any person on a pedigree whose symbol is shaded. (These persons show the recessive trait being studied). Two small letters (in this case ee) are written below that person s symbol. Rule 2: Assign one dominant gene to any person on a pedigree whose symbol is unshaded. (These persons show the dominant trait being studied). A capital letter (in this case E_) is written below that person s symbol. Use these rules to predict the genotypes for the individuals in Figure 4 below. Figure 4 6. What is the genotype of I-1? 7. What is the genotype of II-3? 8. What is the genotype of II-4? 9. Could child II-3 or II-4 be EE yes/no? To predict the genotype for person II-1, a different method must be used. 10. Can an EE person married to an ee person (II-2), have children with free lobes (EE or Ee) yes/no? Do the Punnett square to prove your answer. 11. Can an Ee person married to an ee person (II-2), have children with free lobes (EE or Ee) yes/no? Do the Punnett square to prove your answer.

6 In this case, the genotype for person II-2 would be ee. At some time in the future, you might be able to predict the father s genotype. For example, if they have some children with attached earlobes (ee), then he must be Ee. Examine this pedigree: 12. Which Punnett Square, A, B, or C, would best fit this family circle one? E e E e E E E EE Ee E EE Ee E EE E EE Ee e Ee ee E E EE EE EE A B C 13. Explain your choice. 14. Examine the pedigree below predict the genotypes for each person. Write the letters on the lines provided remember the 2 rules! Answer the following questions about the pedigree in Question #4. a. How many generations are shown? b. How many persons have free earlobes just write a number? c. How many persons have attached earlobes just write a number? d. Identify by generation and person number, those people with attached earlobes.

7 1. Below is a pedigree for an inherited autosomal recessive lung disease. Provide the genotypes of each of the individuals marked with lower case letters. 2. Below is a pedigree for an inherited autosomal dominant brain disease. Provide the genotypes of each of the individuals marked with lower case letters.

8 3. Below is a pedigree for an inherited autosomal recessive heart disease. What is the probability that their child F would have the inherited heart disease?

CCR Biology - Chapter 7 Practice Test - Summer 2012

CCR Biology - Chapter 7 Practice Test - Summer 2012 Name: Class: Date: CCR Biology - Chapter 7 Practice Test - Summer 2012 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A person who has a disorder caused

More information

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers.

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers. Heredity 1. Sarah is doing an experiment on pea plants. She is studying the color of the pea plants. Sarah has noticed that many pea plants have purple flowers and many have white flowers. Sarah crosses

More information

GENETIC CROSSES. Monohybrid Crosses

GENETIC CROSSES. Monohybrid Crosses GENETIC CROSSES Monohybrid Crosses Objectives Explain the difference between genotype and phenotype Explain the difference between homozygous and heterozygous Explain how probability is used to predict

More information

Genetics with a Smile

Genetics with a Smile Teacher Notes Materials Needed: Two coins (penny, poker chip, etc.) per student - One marked F for female and one marked M for male Copies of student worksheets - Genetics with a Smile, Smiley Face Traits,

More information

Baby Lab. Class Copy. Introduction

Baby Lab. Class Copy. Introduction Class Copy Baby Lab Introduction The traits on the following pages are believed to be inherited in the explained manner. Most of the traits, however, in this activity were created to illustrate how human

More information

7A The Origin of Modern Genetics

7A The Origin of Modern Genetics Life Science Chapter 7 Genetics of Organisms 7A The Origin of Modern Genetics Genetics the study of inheritance (the study of how traits are inherited through the interactions of alleles) Heredity: the

More information

PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES

PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES PRACTICE PROBLEMS - PEDIGREES AND PROBABILITIES 1. Margaret has just learned that she has adult polycystic kidney disease. Her mother also has the disease, as did her maternal grandfather and his younger

More information

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square Period Date LAB : PAPER PET GENETICS 1. Given the list of characteristics below, you will create an imaginary pet and then breed it to review the concepts of genetics. Your pet will have the following

More information

Biology Final Exam Study Guide: Semester 2

Biology Final Exam Study Guide: Semester 2 Biology Final Exam Study Guide: Semester 2 Questions 1. Scientific method: What does each of these entail? Investigation and Experimentation Problem Hypothesis Methods Results/Data Discussion/Conclusion

More information

Variations on a Human Face Lab

Variations on a Human Face Lab Variations on a Human Face Lab Introduction: Have you ever wondered why everybody has a different appearance even if they are closely related? It is because of the large variety or characteristics that

More information

Ex) A tall green pea plant (TTGG) is crossed with a short white pea plant (ttgg). TT or Tt = tall tt = short GG or Gg = green gg = white

Ex) A tall green pea plant (TTGG) is crossed with a short white pea plant (ttgg). TT or Tt = tall tt = short GG or Gg = green gg = white Worksheet: Dihybrid Crosses U N I T 3 : G E N E T I C S STEP 1: Determine what kind of problem you are trying to solve. STEP 2: Determine letters you will use to specify traits. STEP 3: Determine parent

More information

CHROMOSOMES AND INHERITANCE

CHROMOSOMES AND INHERITANCE SECTION 12-1 REVIEW CHROMOSOMES AND INHERITANCE VOCABULARY REVIEW Distinguish between the terms in each of the following pairs of terms. 1. sex chromosome, autosome 2. germ-cell mutation, somatic-cell

More information

Mendelian and Non-Mendelian Heredity Grade Ten

Mendelian and Non-Mendelian Heredity Grade Ten Ohio Standards Connection: Life Sciences Benchmark C Explain the genetic mechanisms and molecular basis of inheritance. Indicator 6 Explain that a unit of hereditary information is called a gene, and genes

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ Meiosis Quiz 1. (1 point) A kidney cell is an example of which type of cell? a. sex cell b. germ cell c. somatic cell d. haploid cell 2. (1 point) How many chromosomes are in a human

More information

This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive.

This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive. 11111 This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive. In summary Genes contain the instructions for

More information

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes.

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes. 1. Why is the white-eye phenotype always observed in males carrying the white-eye allele? a. Because the trait is dominant b. Because the trait is recessive c. Because the allele is located on the X chromosome

More information

Mendelian inheritance and the

Mendelian inheritance and the Mendelian inheritance and the most common genetic diseases Cornelia Schubert, MD, University of Goettingen, Dept. Human Genetics EUPRIM-Net course Genetics, Immunology and Breeding Mangement German Primate

More information

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction: Bio EOC Topics for Cell Reproduction: Asexual vs. sexual reproduction Mitosis steps, diagrams, purpose o Interphase, Prophase, Metaphase, Anaphase, Telophase, Cytokinesis Meiosis steps, diagrams, purpose

More information

Lesson Plan: GENOTYPE AND PHENOTYPE

Lesson Plan: GENOTYPE AND PHENOTYPE Lesson Plan: GENOTYPE AND PHENOTYPE Pacing Two 45- minute class periods RATIONALE: According to the National Science Education Standards, (NSES, pg. 155-156), In the middle-school years, students should

More information

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele.

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. Genetics Problems Name ANSWER KEY Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele. 1. What would be the genotype

More information

DNA Determines Your Appearance!

DNA Determines Your Appearance! DNA Determines Your Appearance! Summary DNA contains all the information needed to build your body. Did you know that your DNA determines things such as your eye color, hair color, height, and even the

More information

Recovering the Romanovs

Recovering the Romanovs Recovering the Romanovs ACTIVITY 1 The Romanov Family: Screen #4 Inheritance of a Sex-linked Trait Key: H=normal allele; h=hemophilia allele; X=X chromosome; Y=Y chromosome 1. Use a Punnett square to show

More information

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes.

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. 1 Biology Chapter 10 Study Guide Trait A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes. Genes Genes are located on chromosomes

More information

7 th Grade Life Science Name: Miss Thomas & Mrs. Wilkinson Lab: Superhero Genetics Due Date:

7 th Grade Life Science Name: Miss Thomas & Mrs. Wilkinson Lab: Superhero Genetics Due Date: 7 th Grade Life Science Name: Miss Thomas & Mrs. Wilkinson Partner: Lab: Superhero Genetics Period: Due Date: The editors at Marvel Comics are tired of the same old characters. They re all out of ideas

More information

Chapter 4 Pedigree Analysis in Human Genetics. Chapter 4 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning

Chapter 4 Pedigree Analysis in Human Genetics. Chapter 4 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning Chapter 4 Pedigree Analysis in Human Genetics Mendelian Inheritance in Humans Pigmentation Gene and Albinism Fig. 3.14 Two Genes Fig. 3.15 The Inheritance of Human Traits Difficulties Long generation time

More information

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino)

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino) Genetics 1 We all know that children tend to resemble their parents. Parents and their children tend to have similar appearance because children inherit genes from their parents and these genes influence

More information

Heredity - Patterns of Inheritance

Heredity - Patterns of Inheritance Heredity - Patterns of Inheritance Genes and Alleles A. Genes 1. A sequence of nucleotides that codes for a special functional product a. Transfer RNA b. Enzyme c. Structural protein d. Pigments 2. Genes

More information

Influence of Sex on Genetics. Chapter Six

Influence of Sex on Genetics. Chapter Six Influence of Sex on Genetics Chapter Six Humans 23 Autosomes Chromosomal abnormalities very severe Often fatal All have at least one X Deletion of X chromosome is fatal Males = heterogametic sex XY Females

More information

The Making of the Fittest: Natural Selection in Humans

The Making of the Fittest: Natural Selection in Humans OVERVIEW MENDELIN GENETIC, PROBBILITY, PEDIGREE, ND CHI-QURE TTITIC This classroom lesson uses the information presented in the short film The Making of the Fittest: Natural election in Humans (http://www.hhmi.org/biointeractive/making-fittest-natural-selection-humans)

More information

MCB41: Second Midterm Spring 2009

MCB41: Second Midterm Spring 2009 MCB41: Second Midterm Spring 2009 Before you start, print your name and student identification number (S.I.D) at the top of each page. There are 7 pages including this page. You will have 50 minutes for

More information

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6 Name: Multiple-choice section Choose the answer which best completes each of the following statements or answers the following questions and so make your tutor happy! 1. Which of the following conclusions

More information

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes.

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes. Genetic Mutations Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes. Agenda Warm UP: What is a mutation? Body cell? Gamete? Notes on Mutations Karyotype Web Activity

More information

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully Human Blood Types: Codominance and Multiple Alleles Codominance: both alleles in the heterozygous genotype express themselves fully Multiple alleles: three or more alleles for a trait are found in the

More information

Cystic Fibrosis Webquest Sarah Follenweider, The English High School 2009 Summer Research Internship Program

Cystic Fibrosis Webquest Sarah Follenweider, The English High School 2009 Summer Research Internship Program Cystic Fibrosis Webquest Sarah Follenweider, The English High School 2009 Summer Research Internship Program Introduction: Cystic fibrosis (CF) is an inherited chronic disease that affects the lungs and

More information

Incomplete Dominance and Codominance

Incomplete Dominance and Codominance Name: Date: Period: Incomplete Dominance and Codominance 1. In Japanese four o'clock plants red (R) color is incompletely dominant over white (r) flowers, and the heterozygous condition (Rr) results in

More information

If you crossed a homozygous, black guinea pig with a white guinea pig, what would be the phenotype(s)

If you crossed a homozygous, black guinea pig with a white guinea pig, what would be the phenotype(s) Biological Principles Name: In guinea pigs, black hair (B) is dominant to white hair (b). Homozygous black guinea pig White guinea pig Heterozygous black guinea pig Genotype Phenotype Why is there no heterozygous

More information

Chapter 9 Patterns of Inheritance

Chapter 9 Patterns of Inheritance Bio 100 Patterns of Inheritance 1 Chapter 9 Patterns of Inheritance Modern genetics began with Gregor Mendel s quantitative experiments with pea plants History of Heredity Blending theory of heredity -

More information

Two copies of each autosomal gene affect phenotype.

Two copies of each autosomal gene affect phenotype. SECTION 7.1 CHROMOSOMES AND PHENOTYPE Study Guide KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. VOCABULARY carrier sex-linked gene X chromosome inactivation

More information

Hardy-Weinberg Equilibrium Problems

Hardy-Weinberg Equilibrium Problems Hardy-Weinberg Equilibrium Problems 1. The frequency of two alleles in a gene pool is 0.19 (A) and 0.81(a). Assume that the population is in Hardy-Weinberg equilibrium. (a) Calculate the percentage of

More information

Title: Genetics and Hearing Loss: Clinical and Molecular Characteristics

Title: Genetics and Hearing Loss: Clinical and Molecular Characteristics Session # : 46 Day/Time: Friday, May 1, 2015, 1:00 4:00 pm Title: Genetics and Hearing Loss: Clinical and Molecular Characteristics Presenter: Kathleen S. Arnos, PhD, Gallaudet University This presentation

More information

Terms: The following terms are presented in this lesson (shown in bold italics and on PowerPoint Slides 2 and 3):

Terms: The following terms are presented in this lesson (shown in bold italics and on PowerPoint Slides 2 and 3): Unit B: Understanding Animal Reproduction Lesson 4: Understanding Genetics Student Learning Objectives: Instruction in this lesson should result in students achieving the following objectives: 1. Explain

More information

Genetics for the Novice

Genetics for the Novice Genetics for the Novice by Carol Barbee Wait! Don't leave yet. I know that for many breeders any article with the word genetics in the title causes an immediate negative reaction. Either they quickly turn

More information

Ringneck Doves. A Handbook of Care & Breeding

Ringneck Doves. A Handbook of Care & Breeding Ringneck Doves A Handbook of Care & Breeding With over 100 Full Color Photos, Including Examples and Descriptions of 33 Different Colors and Varieties. K. Wade Oliver Table of Contents Introduction, 4

More information

2 GENETIC DATA ANALYSIS

2 GENETIC DATA ANALYSIS 2.1 Strategies for learning genetics 2 GENETIC DATA ANALYSIS We will begin this lecture by discussing some strategies for learning genetics. Genetics is different from most other biology courses you have

More information

Genetics Module B, Anchor 3

Genetics Module B, Anchor 3 Genetics Module B, Anchor 3 Key Concepts: - An individual s characteristics are determines by factors that are passed from one parental generation to the next. - During gamete formation, the alleles for

More information

Chromosomes, Mapping, and the Meiosis Inheritance Connection

Chromosomes, Mapping, and the Meiosis Inheritance Connection Chromosomes, Mapping, and the Meiosis Inheritance Connection Carl Correns 1900 Chapter 13 First suggests central role for chromosomes Rediscovery of Mendel s work Walter Sutton 1902 Chromosomal theory

More information

Mendelian Genetics in Drosophila

Mendelian Genetics in Drosophila Mendelian Genetics in Drosophila Lab objectives: 1) To familiarize you with an important research model organism,! Drosophila melanogaster. 2) Introduce you to normal "wild type" and various mutant phenotypes.

More information

About The Causes of Hearing Loss

About The Causes of Hearing Loss About 1 in 500 infants is born with or develops hearing loss during early childhood. Hearing loss has many causes: some are genetic (that is, caused by a baby s genes) or non-genetic (such as certain infections

More information

Marrying a relative. Is there an increased chance that a child will have genetic problems if its parents are related to each other?

Marrying a relative. Is there an increased chance that a child will have genetic problems if its parents are related to each other? Marrying a relative Is there an increased chance that a child will have genetic problems if its parents are related to each other? The simple answer to this question is Yes, there is an increased chance.

More information

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9 Ch. 8 Cell Division Cells divide to produce new cells must pass genetic information to new cells - What process of DNA allows this? Two types

More information

Phenotypes and Genotypes of Single Crosses

Phenotypes and Genotypes of Single Crosses GENETICS PROBLEM PACKET- Gifted NAME PER Phenotypes and Genotypes of Single Crosses Use these characteristics about plants to answer the following questions. Round seed is dominant over wrinkled seed Yellow

More information

Variations on a Human Face Donna Mae Jablecki

Variations on a Human Face Donna Mae Jablecki SCIENCE EXPERIMENTS ON FILE Revised Edition 4.11-1 Variations on a Human Face Donna Mae Jablecki Topic Genetics Time 60 to 90 minutes! Safety Please click on the safety icon to view the safety precautions.

More information

17. A testcross A.is used to determine if an organism that is displaying a recessive trait is heterozygous or homozygous for that trait. B.

17. A testcross A.is used to determine if an organism that is displaying a recessive trait is heterozygous or homozygous for that trait. B. ch04 Student: 1. Which of the following does not inactivate an X chromosome? A. Mammals B. Drosophila C. C. elegans D. Humans 2. Who originally identified a highly condensed structure in the interphase

More information

UNIT 13 (OPTION) Genetic Abnormalities

UNIT 13 (OPTION) Genetic Abnormalities Unit 13 Genetic Abnormailities 1 UNIT 13 (OPTION) Genetic Abnormalities Originally developed by: Hildur Helgedottir RN, MN Revised (2000) by: Marlene Reimer RN, PhD, CCN (C) Associate Professor Faculty

More information

Can receive blood from: * I A I A and I A i o Type A Yes No A or AB A or O I B I B and I B i o Type B No Yes B or AB B or O

Can receive blood from: * I A I A and I A i o Type A Yes No A or AB A or O I B I B and I B i o Type B No Yes B or AB B or O Genetics of the ABO Blood Groups written by J. D. Hendrix Learning Objectives Upon completing the exercise, each student should be able: to explain the concept of blood group antigens; to list the genotypes

More information

B2 5 Inheritrance Genetic Crosses

B2 5 Inheritrance Genetic Crosses B2 5 Inheritrance Genetic Crosses 65 minutes 65 marks Page of 55 Q. A woman gives birth to triplets. Two of the triplets are boys and the third is a girl. The triplets developed from two egg cells released

More information

2 18. If a boy s father has haemophilia and his mother has one gene for haemophilia. What is the chance that the boy will inherit the disease? 1. 0% 2

2 18. If a boy s father has haemophilia and his mother has one gene for haemophilia. What is the chance that the boy will inherit the disease? 1. 0% 2 1 GENETICS 1. Mendel is considered to be lucky to discover the laws of inheritance because 1. He meticulously analyzed his data statistically 2. He maintained pedigree records of various generations he

More information

X Linked Inheritance

X Linked Inheritance X Linked Inheritance Information for Patients and Families 2 X linked Inheritance The following will give you information about what X linked inheritance means and how X linked conditions are inherited.

More information

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information

The Developing Person Through the Life Span 8e by Kathleen Stassen Berger

The Developing Person Through the Life Span 8e by Kathleen Stassen Berger The Developing Person Through the Life Span 8e by Kathleen Stassen Berger Chapter 3 Heredity and Environment PowerPoint Slides developed by Martin Wolfger and Michael James Ivy Tech Community College-Bloomington

More information

Bio 102 Practice Problems Mendelian Genetics and Extensions

Bio 102 Practice Problems Mendelian Genetics and Extensions Bio 102 Practice Problems Mendelian Genetics and Extensions Short answer (show your work or thinking to get partial credit): 1. In peas, tall is dominant over dwarf. If a plant homozygous for tall is crossed

More information

RELEASED TEST ITEMS. Biology. October 2012. Sample Student Work Illustrating EOC Achievement Levels

RELEASED TEST ITEMS. Biology. October 2012. Sample Student Work Illustrating EOC Achievement Levels While this document contains multiple-choice items that are still relevant to the Biology EOC, the 2-point constructed response (CR) items were replaced in 2013 with an extended-response task. The CR is

More information

Genetics Part 1: Inheritance of Traits

Genetics Part 1: Inheritance of Traits Genetics Part 1: Inheritance of Traits Genetics is the study of how traits are passed from parents to offspring. Offspring usually show some traits of each parent. For a long time, scientists did not understand

More information

LAB 11 Drosophila Genetics

LAB 11 Drosophila Genetics LAB 11 Drosophila Genetics Introduction: Drosophila melanogaster, the fruit fly, is an excellent organism for genetics studies because it has simple food requirements, occupies little space, is hardy,

More information

somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive

somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive CHAPTER 6 MEIOSIS AND MENDEL Vocabulary Practice somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive CHAPTER 6 Meiosis and Mendel sex

More information

Population Genetics and Multifactorial Inheritance 2002

Population Genetics and Multifactorial Inheritance 2002 Population Genetics and Multifactorial Inheritance 2002 Consanguinity Genetic drift Founder effect Selection Mutation rate Polymorphism Balanced polymorphism Hardy-Weinberg Equilibrium Hardy-Weinberg Equilibrium

More information

Got Lactase? The Co-evolution of Genes and Culture

Got Lactase? The Co-evolution of Genes and Culture The Making of the Fittest: Natural The Making Selection of the and Fittest: Adaptation Natural Selection and Adaptation OVERVIEW PEDIGREES AND THE INHERITANCE OF LACTOSE INTOLERANCE This activity serves

More information

Part I Failure to Thrive

Part I Failure to Thrive Part I Failure to Thrive Emma and Jacob Miller were so excited at the birth of their baby Matthew. Jacob, he s just so perfect! Just one problem though, it looks like he has your hairline! Emma teased

More information

DRAGON GENETICS LAB -- Principles of Mendelian Genetics

DRAGON GENETICS LAB -- Principles of Mendelian Genetics DragonGeneticsProtocol Mendelian Genetics lab Student.doc DRAGON GENETICS LAB -- Principles of Mendelian Genetics Dr. Pamela Esprivalo Harrell, University of North Texas, developed an earlier version of

More information

Bio 102 Practice Problems Mendelian Genetics: Beyond Pea Plants

Bio 102 Practice Problems Mendelian Genetics: Beyond Pea Plants Bio 102 Practice Problems Mendelian Genetics: Beyond Pea Plants Short answer (show your work or thinking to get partial credit): 1. In four-o'clock flowers, red flower color (R) is incompletely dominant

More information

BioBoot Camp Genetics

BioBoot Camp Genetics BioBoot Camp Genetics BIO.B.1.2.1 Describe how the process of DNA replication results in the transmission and/or conservation of genetic information DNA Replication is the process of DNA being copied before

More information

Blood Stains at the Crime Scene Forensic Investigation

Blood Stains at the Crime Scene Forensic Investigation Blood Stains at the Crime Scene Forensic Investigation Introduction Blood stains at a crime scene can be crucial in solving the crime. Numerous analytical techniques can be used to study blood stains.

More information

Gene Mapping Techniques

Gene Mapping Techniques Gene Mapping Techniques OBJECTIVES By the end of this session the student should be able to: Define genetic linkage and recombinant frequency State how genetic distance may be estimated State how restriction

More information

EXERCISE 11 MENDELIAN GENETICS PROBLEMS

EXERCISE 11 MENDELIAN GENETICS PROBLEMS EXERCISE 11 MENDELIAN GENETICS PROBLEMS These problems are divided into subdivisions composed of problems that require application of a specific genetic principle. These problems are intended to complement

More information

Genetics Review for USMLE (Part 2)

Genetics Review for USMLE (Part 2) Single Gene Disorders Genetics Review for USMLE (Part 2) Some Definitions Alleles variants of a given DNA sequence at a particular location (locus) in the genome. Often used more narrowly to describe alternative

More information

CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE. Section B: Sex Chromosomes

CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE. Section B: Sex Chromosomes CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE Section B: Sex Chromosomes 1. The chromosomal basis of sex varies with the organism 2. Sex-linked genes have unique patterns of inheritance 1. The chromosomal

More information

The Genetics of Drosophila melanogaster

The Genetics of Drosophila melanogaster The Genetics of Drosophila melanogaster Thomas Hunt Morgan, a geneticist who worked in the early part of the twentieth century, pioneered the use of the common fruit fly as a model organism for genetic

More information

BIO 184 Page 1 Spring 2013 NAME VERSION 1 EXAM 3: KEY. Instructions: PRINT your Name and Exam version Number on your Scantron

BIO 184 Page 1 Spring 2013 NAME VERSION 1 EXAM 3: KEY. Instructions: PRINT your Name and Exam version Number on your Scantron BIO 184 Page 1 Spring 2013 EXAM 3: KEY Instructions: PRINT your Name and Exam version Number on your Scantron Example: PAULA SMITH, EXAM 2 VERSION 1 Write your name CLEARLY at the top of every page of

More information

Basics of Marker Assisted Selection

Basics of Marker Assisted Selection asics of Marker ssisted Selection Chapter 15 asics of Marker ssisted Selection Julius van der Werf, Department of nimal Science rian Kinghorn, Twynam Chair of nimal reeding Technologies University of New

More information

Activity 4 Probability, Genetics, and Inheritance

Activity 4 Probability, Genetics, and Inheritance Activity 4 Probability, Genetics, and Inheritance Objectives After completing this activity students will understand basic probability and single-gene inheritance. Students will be able to predict expected

More information

Tuesday 14 May 2013 Morning

Tuesday 14 May 2013 Morning THIS IS A NEW SPECIFICATION H Tuesday 14 May 2013 Morning GCSE TWENTY FIRST CENTURY SCIENCE BIOLOGY A A161/02 Modules B1 B2 B3 (Higher Tier) *A137150613* Candidates answer on the Question Paper. A calculator

More information

Saffiyah Y. Manboard Biology Instructor Seagull Alternative High School Saffiyah.manboard@browardschools.com

Saffiyah Y. Manboard Biology Instructor Seagull Alternative High School Saffiyah.manboard@browardschools.com The Effect of Discovery Learning through Biotechnology on the Knowledge and Perception of Sickle Cell Anemia and It s Genetics on Lower Income Students Saffiyah Y. Manboard Biology Instructor Seagull Alternative

More information

Chapter 13: Meiosis and Sexual Life Cycles

Chapter 13: Meiosis and Sexual Life Cycles Name Period Concept 13.1 Offspring acquire genes from parents by inheriting chromosomes 1. Let s begin with a review of several terms that you may already know. Define: gene locus gamete male gamete female

More information

Life Insurance. What you need to know about. Mucopolysaccharide and related diseases including Fabry disease

Life Insurance. What you need to know about. Mucopolysaccharide and related diseases including Fabry disease Society for Mucopolysaccharide Diseases MPS House, Repton Place White Lion Road, Amersham Buckinghamshire, HP7 9LP, UK 0345 389 9901 mps@mpssociety.org.uk www.mpssociety.org.uk Mucopolysaccharide and related

More information

LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics Period Date LAB : THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

More information

08 BIO-PROCESS LAB SAMPLE TOURNAMENT

08 BIO-PROCESS LAB SAMPLE TOURNAMENT 08 BIO-PROCESS LAB SAMPLE TOURNAMENT Station A: Using a Microscope 1. What is the range of magnification (lowest to highest) for this microscope? 2. A slide with the letters "P" is positioned in the normal

More information

Basic Concepts Recombinant DNA Use with Chapter 13, Section 13.2

Basic Concepts Recombinant DNA Use with Chapter 13, Section 13.2 Name Date lass Master 19 Basic oncepts Recombinant DN Use with hapter, Section.2 Formation of Recombinant DN ut leavage Splicing opyright lencoe/mcraw-hill, a division of he Mcraw-Hill ompanies, Inc. Bacterial

More information

Type A carbohydrate molecules on their red blood cells. Type B carbohydrate molecules on their red blood cells

Type A carbohydrate molecules on their red blood cells. Type B carbohydrate molecules on their red blood cells Using Blood Tests to Identify Babies and Criminals Copyright, 2010, by Drs. Jennifer Doherty and Ingrid Waldron, Department of Biology, University of Pennsylvania 1 I. Were the babies switched? Two couples

More information

Reebops. A model organism for teaching genetic concepts

Reebops. A model organism for teaching genetic concepts A model organism for teaching genetic concepts The activity helps to demonstrate how genetics is responsible both for similarities and variation among members of the same species. are imaginary organisms

More information

Using Blood Tests to Identify Babies and Criminals

Using Blood Tests to Identify Babies and Criminals Using Blood Tests to Identify Babies and Criminals Copyright, 2012, by Drs. Jennifer Doherty and Ingrid Waldron, Department of Biology, University of Pennsylvania 1 I. Were the babies switched? Two couples

More information

Inheritance of Color And The Polled Trait Dr. R. R. Schalles, Dept. of Animal Sciences and Industry Kansas State University

Inheritance of Color And The Polled Trait Dr. R. R. Schalles, Dept. of Animal Sciences and Industry Kansas State University Inheritance of Color And The Polled Trait Dr. R. R. Schalles, Dept. of Animal Sciences and Industry Kansas State University Introduction All functions of an animal are controlled by the enzymes (and other

More information

Patient Information. for Childhood

Patient Information. for Childhood Patient Information Genetic Testing for Childhood Hearing Loss Introduction This document describes the most common genetic cause of childhood hearing loss and explains the role of genetic testing. Childhood

More information

Carol Ludowese, MS, CGC Certified Genetic Counselor HDSA Center of Excellence at Hennepin County Medical Center Minneapolis, Minnesota

Carol Ludowese, MS, CGC Certified Genetic Counselor HDSA Center of Excellence at Hennepin County Medical Center Minneapolis, Minnesota Carol Ludowese, MS, CGC Certified Genetic Counselor HDSA Center of Excellence at Hennepin County Medical Center Minneapolis, Minnesota The information provided by speakers in workshops, forums, sharing/networking

More information

Why are some drugs only available on prescription? Depressants. Pain killers. Stimulants. Performance enhancers. Hallucinogens

Why are some drugs only available on prescription? Depressants. Pain killers. Stimulants. Performance enhancers. Hallucinogens Explain the terms Addiction Tolerance How are drugs classified? Class A = Class C= In tobacco smoke what do the following cause? Explain the effect of a depressant on the synapse CO Withdrawal symptoms

More information

CCpp X ccpp. CcPp X CcPp. CP Cp cp cp. Purple. White. Purple CcPp. Purple Ccpp White. White. Summary: 9/16 purple, 7/16 white

CCpp X ccpp. CcPp X CcPp. CP Cp cp cp. Purple. White. Purple CcPp. Purple Ccpp White. White. Summary: 9/16 purple, 7/16 white P F 1 CCpp X ccpp Cp Cp CcPp X CcPp F 2 CP Cp cp cp CP Cp cp cp CCPP CCPp CcPP CcPp CCPp CCpp CcPp Ccpp CcPP CcPp ccpp ccpp Summary: 9/16 purple, 7/16 white CcPp Ccpp ccpp ccpp AABB X aabb P AB ab Gametes

More information

State Performance Indicators

State Performance Indicators Sequences of Seventh Grade Science 2012-2013 *Results must be reported to Principal GLE Imbedded Standards Checking for Understanding State Performance Indicators Resource / Required Lab Projected Dates

More information

Teacher Guide: Traits Bingo ACTIVITY OVERVIEW. http://gslc.genetics.utah.edu

Teacher Guide: Traits Bingo ACTIVITY OVERVIEW. http://gslc.genetics.utah.edu ACTIVITY OVERVIEW Abstract: In this bingo game students cross off or color bingo squares in response to questions about their traits. This activity is designed to be used as a review following An Inventory

More information

Summary. 16 1 Genes and Variation. 16 2 Evolution as Genetic Change. Name Class Date

Summary. 16 1 Genes and Variation. 16 2 Evolution as Genetic Change. Name Class Date Chapter 16 Summary Evolution of Populations 16 1 Genes and Variation Darwin s original ideas can now be understood in genetic terms. Beginning with variation, we now know that traits are controlled by

More information

Okami Study Guide: Chapter 3 1

Okami Study Guide: Chapter 3 1 Okami Study Guide: Chapter 3 1 Chapter in Review 1. Heredity is the tendency of offspring to resemble their parents in various ways. Genes are units of heredity. They are functional strands of DNA grouped

More information