How does the angle and area of incident sunlight change as you move away from the Equator towards the poles?

Size: px
Start display at page:

Download "How does the angle and area of incident sunlight change as you move away from the Equator towards the poles?"

Transcription

1 Environmental Literacy Framework Flashlights on Earth Focus Questions: How does the angle and area of incident sunlight change as you move away from the Equator towards the poles? Have you ever wondered why it was so much less bright in the morning and evening than at noon on any given day? Or, if you live in higher latitude regions, such as the northern United States, have you noticed how the sunlight angles change from month to month causing a cooling in the fall? Time 1 class period for set up 1 class period to explore. Materials Preview The Sun s energy travels to Earth in the form of electromagnetic radiation. This solar energy travels 93 million miles (150 million km) through space from the Sun to Earth. We sense solar radiation in the form of heat and light. Solar radiation is the energy that drives many of the processes acting on the surface of Earth as well as life itself. Solar radiation that makes it through the atmosphere to Earth s surface is called insolation. On average, 342 watts/meter squared (W/m2) of solar energy reaches the Earth's outer atmosphere. More energy is received at the equatorial regions than at the poles. The change in the insolation angle is due to the fact that Earth s axis is tilted and Earth is round, not flat. Therefore the equatorial regions of Earth receive light that is nearly perpendicular (90 ) to the surface. As you move toward the polar regions, the angle of light decreases, and the area over which radiation is spread increases. This reduces the intensity of light and therefore the amount of incoming solar radiation per square meter.think for a moment of spreading jam on a bagel the larger the area of the bagel that you cover with jam, the less intense the flavor! Because the angle of incidence is lower at the polar regions, less solar radiation is available to be absorbed by the land and ocean, making them colder. However, thanks to the air and ocean currents, heat energy is transported from one area of Earth to another. This transfer of energy from warmer to cooler regions of the Earth helps to stabilize the climate of the planet. Inflatable globe with continents, 1 large, strong, focusable flashlight, such as a Maglite brand flashlight 3 smaller Maglite type flashlights Several cups or plastic bowls to act as a base for the flashlight and globe Shoebox to hold small flashlights Books, bowls and other objects to help prop up the shoebox and globe Clipboard to hold graph paper Graph paper Ruler and protractor Sharp knife for cutting hole in shoebox (adult supervision needed for this step) Hot glue gun (optional) Masking tape Pen for marking on shoebox Vocabulary (Terms) Angle of incidence Electromagnetic spectrum Insolation Solar radiation 3

2 Environmental Literacy Framework Activity 1A-Flashlights on Earth Prepare: This activity is presented in three parts. Part 1: Spreading the Light Around 1. Place a sheet of graph paper in the clipboard. Set a protractor on the table. Hold the clipboard and paper at a 90-degree angle to the beam of light (and to the table). This angle is perpendicular to the light beam. 2. In a darkened room, hold the flashlight approximately 50 cm (20 in) away from the paper and measure the distance. It will be important to have the same distance between the light and the clipboard each time. 3. Turn on the flashlight so that it is shining on the paper. Use a pencil to trace around the area on the graph paper that is lit by the light. (This is the 0-degree angle shown in the picture below.) Count the squares that are included in the circle. Partial squares may be included in the count. Record the number of squares on a separate piece of paper. 4. Tip the clipboard away from the flashlight, 45 degrees away from the initial 90- degree (perpendicular) position, or to an angle of 45 degrees on your protractor. Repeat the tracing, measurement and recording of number of squares, or simply observe the change. 5. Repeat the process again at a 30- degree angle from the perpendicular, or to 60- degrees on your protractor. 6. What changes in the circles do you observe? The flashlight remains stationary; all that changes is the angle of the clipboard. 4

3 Activity 1A-Flashlights on Earth Part 2 A: 1. Set your inflatable globe in a bowl on the tabletop. 2. Set the large flashlight on a bowl and tape it in place. Adjust the height of your flashlight to center on the Equator. Adjust the focus of the light to a tight circle by moving the flashlight and bowl closer to or farther away from the globe. 3. Darken the room so that you can see the light on the globe. 4. Explore tilting the axis of the globe towards and away from the light source. How does the circle of light change as you tilt the globe? Globe and flashlight on workbench after the clipboard activity, 5

4 Activity 1A-Flashlights on Earth Part 2 B: After you have explored one light source, use a shoebox to build a simple support mechanism to hold three small flashlights. 1. Measure the length of the shoebox. Locate the center and mark an x with a pen. Measure two inches away on each side of the center mark, and make two more marks. You should now have three equally spaced x marks on your shoebox. 2. Use a sharp knife to cut two perpendicular slices at each mark. Safety Note: Ask an adult for help with the knife. Make the cuts small at first, just large enough for the base of the flashlight to fit through the hole. You can enlarge them as needed. 3. One at a time, insert each of the three flashlights into the holes. Adjust them so that they are level, and make sure that you can turn them on. Once you have them in place, use masking tape to secure them. Optional: Hot glue the lights to the box after you have adjusted them. 4. Set your globe in front of the flashlights, and adjust the height so that the center flashlight is aimed at the Equator. Turn on the flashlights and adjust the focal length, by sliding the globe closer to or farther from the shoebox, so that all three flashlights are creating tight areas of light on the globe. You should see three distinct circular areas on the globe. Look carefully at the globe; are the light areas all the same shape and area? 5. Observe and measure the length and width (area) of each of the light circles. Note how they change from the center of the globe (Equator) to the poles. Record this information in your science journal. Sketch the shape of the circles of light at each location. Compare the shapes of the circles to the circles on the graph paper in Part 1. Photos: Betsy Youngman 6

5 Activity 1A-Flashlights on Earth Practice Got the Big Idea? Solar insolation varies from the Equator to the poles. Due to this variation, the polar regions are colder and the equatorial regions are warmer. Incoming solar radiation measured at Earth's surface averaged over a 10-year period. Colors are values in kilowatt hours per square meter per day. Because the measurements are taken at Earth's surface, clouds (particularly in the tropical regions) have reduced the amount of solar energy. Image source: (Hint: may need to copy link into your browser.) 7

6 Activity 1A-Flashlights on Earth Ponder How are the light circles changing as you move north and south away from the Equator? How about from west to east across the Equator around the globe? Graphic: Rita Thomas, ANDRILL Science Management Office, University of Nebraska-Lincoln Axis Earth is tilted 23.5 degrees from perpendicular North Pole Sun s rays Equator South Pole Sun s rays Direction of Earth s Spin Present Special preparations for this station Make sure that you have plenty of fresh batteries for your flashlight. Place this station in a dark corner of the room or in a separate location for maximum effect. Repeat the previous activity steps to guide your audience's investigation. 8

7 Activity 1A-Flashlights on Earth Background Information for the Teacher 9 Activity In this hands-on activity, learners create a model to show how the angle of the Sun s incoming rays, due to the shape and tilt of the Earth, affect the amount of energy reaching the Earth s surface. Students explore the relationship between solar intensity and the incoming angle of the sunlight, also known as the angle of incidence. NSES 5-8 CLEP ELF Science as Inquiry Std A: Mathematics is important in all aspects of scientific inquiry. Physical Science Std B: Energy is transferred in many ways. Heat moves in predictable ways, flowing from warmer objects to cooler ones, until both reach the same temperature. Light interacts with matter by transmission (including refraction), absorption, or scattering (including reflection). The sun is a major source of energy for changes on the earth's surface. The sun loses energy by emitting light. A tiny fraction of that light reaches the earth, transferring energy from the sun to the earth. The sun's energy arrives as light with a range of wavelengths, consisting of visible light, infrared, and ultraviolet radiation. Earth Science Std D: The sun is the major source of energy for phenomena on the earth's surface, such as growth of plants, winds, ocean currents, and the water cycle. Seasons result from variations in the amount of the sun's energy hitting the surface, due to the tilt of the earth's rotation on its axis and the length of the day. Principle 1: The sun is the primary source of energy for Earth's climate system. 1C: The tilt of Earth s axis relative to its orbit around the Sun results in predictable changes in the duration of daylight and the amount of sunlight received at any latitude throughout a year. These changes cause the annual cycle of seasons and associated temperature changes. Energy 1: Solar energy is the driving force for Earth s climate system. Energy 1a: Solar energy measured at the Earth s surface (insolation) varies due to Earth s shape, its orientation with respect to the Sun, and the characteristics of its orbit around the Sun. Earth s tilt and orbit cause the annual cycle of seasons and associated temperature changes. Cyclical, long-term changes in Earth s orbit and tilt, called Milankovitch Cycles, have profound effects on insolation and therefore global climate.

8 Activity 1A-Flashlights on Earth NSES: National Science Education Standards ( CLEP: Climate Literacy Essential Principles ( ELF: Environmental Literacy Framework ( Additional Information: Climate and Earth s Energy Budget Background Information One could say that we live on a solar-powered planet. The solar radiation that reaches Earth s surface is the energy that drives many of the processes acting on the surface of the Earth, including our weather and climate, wind and ocean currents, and life-giving photosynthesis. The Sun s energy travels to Earth in the form of electromagnetic radiation. Solar energy travels 93 million miles (150 million kilometers) through space, from the Sun to Earth. Because of the distance that it travels, solar radiation contacts the Earth's surface in essentially parallel lines. Solar radiation that makes it to Earth s atmosphere and surface is called solar insolation (this is short for incoming solar radiation). Satellite measurements have shown that on average, 342 watts per square meter of solar radiation reaches the top of Earth s atmosphere. About 70% of that energy (in the form of visible and infrared light) makes it through the atmosphere and enters the Earth s climate system. We sense this incoming solar radiation in the form of heat and light. Because the angle of incoming sunlight is lower at higher latitudes, and it must travel through a greater amount of atmosphere, more energy is absorbed by the atmosphere. For these two reasons, less solar radiation is available to be absorbed by any given area in the Polar Regions, making them colder. However, thanks to the air and ocean currents, absorbed heat energy near the Equator is transported (via convection, conduction, and evaporation) to the Polar Regions. This transfer of energy from warmer to cooler regions of the Earth is important because it helps to stabilize and equalize the climate of the planet. Presently, the Earth s axis is tilted at an angle of 23.5 to the plane of its revolution around the Sun. Therefore, over the course of a year, as Earth revolves around the Sun, its inclination angle towards the Sun also changes. This change causes a variation in the light (and heat) intensity that occurs on Earth s surface. 10

9 Activity 1A-Flashlights on Earth Additional Resources: Image source: Image source: 11

10 Activity 1A-Flashlights on Earth Glossary Unit Activity Vocabulary Word Definition Energy Energy Flashlights on Earth Flashlights on Earth Energy Flashlights on Earth Energy Flashlights on Earth Angle of Incidence Electromagnetic Spectrum Insolation Solar Radiation An angular measurement of an object away from 'straight up' (E.g., if a flagpole is perpendicular to the ground, it has an angle of incidence of 0 o. If it is tilted to one side, its angle of incidence is the degrees from perpendicular.) The range of all possible frequencies of electromagnetic radiation (Short frequency waves, such as x-rays, are high energy; longer waves with lower frequencies, such as radio waves, have lower energy.) The amount of solar radiation received by the Earth in a given area in a given time, usually expressed as watts per square meter, W/m 2 We experience solar radiation as visible light, heat (thermal energy), and ultraviolet light. Its source is the Sun. 12

The following words and their definitions should be addressed before completion of the reading:

The following words and their definitions should be addressed before completion of the reading: Seasons Vocabulary: The following words and their definitions should be addressed before completion of the reading: sphere any round object that has a surface that is the same distance from its center

More information

Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity

Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure

More information

Shadows, Angles, and the Seasons

Shadows, Angles, and the Seasons Shadows, Angles, and the Seasons If it's cold in winter, why is Earth closer to the Sun? This activity shows the relationship between Earth-Sun positions and the seasons. From The WSU Fairmount Center

More information

For further information, and additional background on the American Meteorological Society s Education Program, please contact:

For further information, and additional background on the American Meteorological Society s Education Program, please contact: Project ATMOSPHERE This guide is one of a series produced by Project ATMOSPHERE, an initiative of the American Meteorological Society. Project ATMOSPHERE has created and trained a network of resource agents

More information

The Reasons for the Seasons

The Reasons for the Seasons The Reasons for the Seasons (The Active Learning Approach) Materials: 4 Globes, One light on stand with soft white bulb, 4 flashlights, Four sets of "Seasons" Cards, Four laminated black cards with 1 inch

More information

Energy Pathways in Earth s Atmosphere

Energy Pathways in Earth s Atmosphere BRSP - 10 Page 1 Solar radiation reaching Earth s atmosphere includes a wide spectrum of wavelengths. In addition to visible light there is radiation of higher energy and shorter wavelength called ultraviolet

More information

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF FIRST GRADE UNIVERSE WEEK 1. PRE: Describing the Universe. LAB: Comparing and contrasting bodies that reflect light. POST: Exploring

More information

ATM S 111, Global Warming: Understanding the Forecast

ATM S 111, Global Warming: Understanding the Forecast ATM S 111, Global Warming: Understanding the Forecast DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 1: OCTOBER 1, 2015 Outline How exactly the Sun heats the Earth How strong? Important concept

More information

ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING

ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING 5-1 Introduction Weather is the state of the atmosphere at a particular place for a short period of time. The condition of the atmosphere

More information

Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year

Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year Purpose To help students understand how solar radiation varies (duration and intensity) during

More information

What Causes Climate? Use Target Reading Skills

What Causes Climate? Use Target Reading Skills Climate and Climate Change Name Date Class Climate and Climate Change Guided Reading and Study What Causes Climate? This section describes factors that determine climate, or the average weather conditions

More information

Name Period 4 th Six Weeks Notes 2015 Weather

Name Period 4 th Six Weeks Notes 2015 Weather Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the

More information

Lab Activity on the Causes of the Seasons

Lab Activity on the Causes of the Seasons Lab Activity on the Causes of the Seasons 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Objectives When you have completed this lab you

More information

Earth-Sun Relationships. The Reasons for the Seasons

Earth-Sun Relationships. The Reasons for the Seasons Earth-Sun Relationships The Reasons for the Seasons Solar Radiation The earth intercepts less than one two-billionth of the energy given off by the sun. However, the radiation is sufficient to provide

More information

Heat Transfer. Energy from the Sun. Introduction

Heat Transfer. Energy from the Sun. Introduction Introduction The sun rises in the east and sets in the west, but its exact path changes over the course of the year, which causes the seasons. In order to use the sun s energy in a building, we need to

More information

Chapter 2: Solar Radiation and Seasons

Chapter 2: Solar Radiation and Seasons Chapter 2: Solar Radiation and Seasons Spectrum of Radiation Intensity and Peak Wavelength of Radiation Solar (shortwave) Radiation Terrestrial (longwave) Radiations How to Change Air Temperature? Add

More information

CHAPTER 2 Energy and Earth

CHAPTER 2 Energy and Earth CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect

More information

How Do Oceans Affect Weather and Climate?

How Do Oceans Affect Weather and Climate? How Do Oceans Affect Weather and Climate? In Learning Set 2, you explored how water heats up more slowly than land and also cools off more slowly than land. Weather is caused by events in the atmosphere.

More information

Earth, Moon, and Sun Inquiry Template Eclipses

Earth, Moon, and Sun Inquiry Template Eclipses One Stop Shop For Educators The following instructional plan is part of a GaDOE collection of Unit Frameworks, Performance Tasks, examples of Student Work, and Teacher Commentary. Many more GaDOE approved

More information

Essential Question. Enduring Understanding

Essential Question. Enduring Understanding Earth In Space Unit Diagnostic Assessment: Students complete a questionnaire answering questions about their ideas concerning a day, year, the seasons and moon phases: My Ideas About A Day, Year, Seasons

More information

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun

More information

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)

More information

The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases

The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases The Four Seasons A Warm Up Exercise What fraction of the Moon s surface is illuminated by the Sun (except during a lunar eclipse)? a) Between zero and one-half b) The whole surface c) Always half d) Depends

More information

Standards A complete list of the standards covered by this lesson is included in the Appendix at the end of the lesson.

Standards A complete list of the standards covered by this lesson is included in the Appendix at the end of the lesson. Lesson 3: Albedo Time: approximately 40-50 minutes, plus 30 minutes for students to paint pop bottles Materials: Text: Albedo (from web site 1 per group) Small thermometers, at least 0ºC to 100ºC range

More information

Geography affects climate.

Geography affects climate. KEY CONCEPT Climate is a long-term weather pattern. BEFORE, you learned The Sun s energy heats Earth s surface unevenly The atmosphere s temperature changes with altitude Oceans affect wind flow NOW, you

More information

Seasons on Earth LESSON

Seasons on Earth LESSON LESSON 4 Seasons on Earth On Earth, orange and red autumn leaves stand out against the blue sky. NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION (NOAA) PHOTO LIBRARY/NOAA CENTRAL LIBRARY INTRODUCTION Nearly

More information

Noon Sun Angle = 90 Zenith Angle

Noon Sun Angle = 90 Zenith Angle Noon Sun Angle Worksheet Name Name Date Subsolar Point (Latitude where the sun is overhead at noon) Equinox March 22 nd 0 o Equinox September 22 nd 0 o Solstice June 22 nd 23.5 N Solstice December 22 nd

More information

CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS

CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS INTRODUCTION CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS This is a scientific presentation to provide you with knowledge you can use to understand the sky above in relation to the earth. Before

More information

PHSC 3033: Meteorology Seasons

PHSC 3033: Meteorology Seasons PHSC 3033: Meteorology Seasons Changing Aspect Angle Direct Sunlight is more intense and concentrated. Solar Incidence Angle is Latitude and Time/Date Dependent Daily and Seasonal Variation Zenith There

More information

Renewable Energy. Solar Power. Courseware Sample 86352-F0

Renewable Energy. Solar Power. Courseware Sample 86352-F0 Renewable Energy Solar Power Courseware Sample 86352-F0 A RENEWABLE ENERGY SOLAR POWER Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this

More information

Answers for the Study Guide: Sun, Earth and Moon Relationship Test

Answers for the Study Guide: Sun, Earth and Moon Relationship Test Answers for the Study Guide: Sun, Earth and Moon Relationship Test 1) It takes one day for the Earth to make one complete on its axis. a. Rotation 2) It takes one year for the Earth to make one around

More information

The Balance of Power in the Earth-Sun System

The Balance of Power in the Earth-Sun System NASA Facts National Aeronautics and Space Administration www.nasa.gov The Balance of Power in the Earth-Sun System The Sun is the major source of energy for Earth s oceans, atmosphere, land, and biosphere.

More information

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault CELESTIAL MOTIONS Stars appear to move counterclockwise on the surface of a huge sphere the Starry Vault, in their daily motions about Earth Polaris remains stationary. In Charlottesville we see Polaris

More information

Which month has larger and smaller day time?

Which month has larger and smaller day time? ACTIVITY-1 Which month has larger and smaller day time? Problem: Which month has larger and smaller day time? Aim: Finding out which month has larger and smaller duration of day in the Year 2006. Format

More information

Tropical Horticulture: Lecture 2

Tropical Horticulture: Lecture 2 Lecture 2 Theory of the Tropics Earth & Solar Geometry, Celestial Mechanics The geometrical relationship between the earth and sun is responsible for the earth s climates. The two principal movements of

More information

Basic Coordinates & Seasons Student Guide

Basic Coordinates & Seasons Student Guide Name: Basic Coordinates & Seasons Student Guide There are three main sections to this module: terrestrial coordinates, celestial equatorial coordinates, and understanding how the ecliptic is related to

More information

Full credit for this chapter to Prof. Leonard Bachman of the University of Houston

Full credit for this chapter to Prof. Leonard Bachman of the University of Houston Chapter 6: SOLAR GEOMETRY Full credit for this chapter to Prof. Leonard Bachman of the University of Houston SOLAR GEOMETRY AS A DETERMINING FACTOR OF HEAT GAIN, SHADING AND THE POTENTIAL OF DAYLIGHT PENETRATION...

More information

CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles

CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles I. Air Temperature: Five important factors influence air temperature: A. Insolation B. Latitude C. Surface types D. Coastal vs. interior

More information

After a wave passes through a medium, how does the position of that medium compare to its original position?

After a wave passes through a medium, how does the position of that medium compare to its original position? Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.

More information

Transferring Solar Energy

Transferring Solar Energy activity 14 Transferring Solar Energy BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN Grade 4 Quarter 2 Activity 14 SC.B.1.2.2 The student recognizes various forms of energy (e.g., heat, light, and electricity).

More information

SOLAR ENERGY How much strikes the earth? How much can my building get? When is it too much?

SOLAR ENERGY How much strikes the earth? How much can my building get? When is it too much? SOLAR ENERGY How much strikes the earth? How much can my building get? When is it too much? The sun: friend of foe? Drawing by Le Corbusier ENGS 44 Sustainable Design Benoit Cushman-Roisin 14 April 2015

More information

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X?

Solar System. 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? Solar System 1. The diagram below represents a simple geocentric model. Which object is represented by the letter X? A) Earth B) Sun C) Moon D) Polaris 2. Which object orbits Earth in both the Earth-centered

More information

Clouds and the Energy Cycle

Clouds and the Energy Cycle August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and

More information

8.5 Comparing Canadian Climates (Lab)

8.5 Comparing Canadian Climates (Lab) These 3 climate graphs and tables of data show average temperatures and precipitation for each month in Victoria, Winnipeg and Whitehorse: Figure 1.1 Month J F M A M J J A S O N D Year Precipitation 139

More information

Earth, Moon, and Sun Study Guide. (Test Date: )

Earth, Moon, and Sun Study Guide. (Test Date: ) Earth, Moon, and Sun Study Guide Name: (Test Date: ) Essential Question #1: How are the Earth, Moon, and Sun alike and how are they different? 1. List the Earth, Moon, and Sun, in order from LARGEST to

More information

Chapter 3 Earth - Sun Relations

Chapter 3 Earth - Sun Relations 3.1 Introduction We saw in the last chapter that the short wave radiation from the sun passes through the atmosphere and heats the earth, which in turn radiates energy in the infrared portion of the electromagnetic

More information

The Atmosphere and Winds

The Atmosphere and Winds Oceanography 10, T. James Noyes, El Camino College 8A-1 The Atmosphere and Winds We need to learn about the atmosphere, because the ocean and atmosphere are tightly interconnected with one another: you

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

STUDY GUIDE: Earth Sun Moon

STUDY GUIDE: Earth Sun Moon The Universe is thought to consist of trillions of galaxies. Our galaxy, the Milky Way, has billions of stars. One of those stars is our Sun. Our solar system consists of the Sun at the center, and all

More information

Solar Energy for Space Exploration Teacher s Guide

Solar Energy for Space Exploration Teacher s Guide Solar Energy for Space Exploration Teacher s Guide GRADE LEVEL: 6 to 12 SUBJECT: Physical Science eacher s Resources 1 Solar Energy for Space Exploration Table of Contents Introduction... 4 Objectives...

More information

Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction

Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.

More information

Reflection Lesson Plan

Reflection Lesson Plan Lauren Beal Seventh Grade Science AMY-Northwest Middle School Three Days May 2006 (45 minute lessons) 1. GUIDING INFORMATION: Reflection Lesson Plan a. Student and Classroom Characteristics These lessons

More information

APPENDIX D: SOLAR RADIATION

APPENDIX D: SOLAR RADIATION APPENDIX D: SOLAR RADIATION The sun is the source of most energy on the earth and is a primary factor in determining the thermal environment of a locality. It is important for engineers to have a working

More information

2. The map below shows high-pressure and low-pressure weather systems in the United States.

2. The map below shows high-pressure and low-pressure weather systems in the United States. 1. Which weather instrument has most improved the accuracy of weather forecasts over the past 40 years? 1) thermometer 3) weather satellite 2) sling psychrometer 4) weather balloon 6. Wind velocity is

More information

Geography I Pre Test #1

Geography I Pre Test #1 Geography I Pre Test #1 1. The sun is a star in the galaxy. a) Orion b) Milky Way c) Proxima Centauri d) Alpha Centauri e) Betelgeuse 2. The response to earth's rotation is a) an equatorial bulge b) polar

More information

AS COMPETITION PAPER 2008

AS COMPETITION PAPER 2008 AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

More information

Solar energy and the Earth s seasons

Solar energy and the Earth s seasons Solar energy and the Earth s seasons Name: Tilt of the Earth s axis and the seasons We now understand that the tilt of Earth s axis makes it possible for different parts of the Earth to experience different

More information

M O N T E R E Y B A Y A Q U A R I U M

M O N T E R E Y B A Y A Q U A R I U M Topics Biodiversity, Measurement Grades K-2 Sites Schoolyard, Classroom Duration 15-30 minutes each month throughout the school year Materials Quadrats (see Teacher Preparation, page 2) Thermometer Tape

More information

MAKING SENSE OF ENERGY Electromagnetic Waves

MAKING SENSE OF ENERGY Electromagnetic Waves Adapted from State of Delaware TOE Unit MAKING SENSE OF ENERGY Electromagnetic Waves GOALS: In this Part of the unit you will Learn about electromagnetic waves, how they are grouped, and how each group

More information

Practice final for Basic Physics spring 2005 answers on the last page Name: Date:

Practice final for Basic Physics spring 2005 answers on the last page Name: Date: Practice final for Basic Physics spring 2005 answers on the last page Name: Date: 1. A 12 ohm resistor and a 24 ohm resistor are connected in series in a circuit with a 6.0 volt battery. Assuming negligible

More information

Solar Angles and Latitude

Solar Angles and Latitude Solar Angles and Latitude Objectives The student will understand that the sun is not directly overhead at noon in most latitudes. The student will research and discover the latitude ir classroom and calculate

More information

Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question.

Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question. Review 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When hydrogen nuclei fuse into helium nuclei a. the nuclei die. c. particles collide. b. energy

More information

Light Energy. Countdown: Experiment 1: 1 tomato paste can (without top or bottom) table lamp white poster board, 7 x 9

Light Energy. Countdown: Experiment 1: 1 tomato paste can (without top or bottom) table lamp white poster board, 7 x 9 Light Energy Grade Level: 5 Time Required: 1-2 class periods Suggested TEKS: Science - 5.8 Suggested SCANS: Information. Acquires and evaluates information. National Science and Math Standards Science

More information

Teaching Time: One-to-two 50-minute periods

Teaching Time: One-to-two 50-minute periods Lesson Summary Students create a planet using a computer game and change features of the planet to increase or decrease the planet s temperature. Students will explore some of the same principles scientists

More information

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name: Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose

More information

Motions of Earth, Moon, and Sun

Motions of Earth, Moon, and Sun Motions of Earth, Moon, and Sun Apparent Motions of Celestial Objects An apparent motion is a motion that an object appears to make. Apparent motions can be real or illusions. When you see a person spinning

More information

1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K

1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K 1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K 2. How does the amount of heat energy reflected by a smooth, dark-colored concrete

More information

Mirror, mirror - Teacher Guide

Mirror, mirror - Teacher Guide Introduction Mirror, mirror - Teacher Guide In this activity, test the Law of Reflection based on experimental evidence. However, the back-silvered glass mirrors present a twist. As light travels from

More information

Sunlight and its Properties. EE 495/695 Y. Baghzouz

Sunlight and its Properties. EE 495/695 Y. Baghzouz Sunlight and its Properties EE 495/695 Y. Baghzouz The sun is a hot sphere of gas whose internal temperatures reach over 20 million deg. K. Nuclear fusion reaction at the sun's core converts hydrogen to

More information

Solar Matters II Teacher Page

Solar Matters II Teacher Page Solar Matters II Teacher Page Sun Misconceptions Student Objective understands why some common phrases about the Sun are incorrect can describe how the Earth s rotation affects how we perceive the Sun

More information

Physics PH1FP. (Jun15PH1FP01) General Certificate of Secondary Education Foundation Tier June 2015. Unit Physics P1. Unit Physics P1 TOTAL

Physics PH1FP. (Jun15PH1FP01) General Certificate of Secondary Education Foundation Tier June 2015. Unit Physics P1. Unit Physics P1 TOTAL Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Question Mark Science A Unit Physics P1 Physics Unit Physics P1 Friday 12 June 2015 General

More information

Phases of the Moon. Preliminaries:

Phases of the Moon. Preliminaries: Phases of the Moon Sometimes when we look at the Moon in the sky we see a small crescent. At other times it appears as a full circle. Sometimes it appears in the daylight against a bright blue background.

More information

a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes.

a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes. J.D. McAlpine ATMS 611 HMWK #8 a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes. These sides of the slopes will tend to have less average solar

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. Test 2 f14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Carbon cycles through the Earth system. During photosynthesis, carbon is a. released from wood

More information

Theremino System Theremino Spectrometer Technology

Theremino System Theremino Spectrometer Technology Theremino System Theremino Spectrometer Technology theremino System - Theremino Spectrometer Technology - August 15, 2014 - Page 1 Operation principles By placing a digital camera with a diffraction grating

More information

The Earth s Atmosphere

The Earth s Atmosphere THE SUN-EARTH SYSTEM III The Earth s Atmosphere Composition and Distribution of the Atmosphere The composition of the atmosphere and the way its gases interact with electromagnetic radiation determine

More information

6 th Grade Science Assessment: Weather & Water Select the best answer on the answer sheet. Please do not make any marks on this test.

6 th Grade Science Assessment: Weather & Water Select the best answer on the answer sheet. Please do not make any marks on this test. Select the be answer on the answer sheet. Please do not make any marks on this te. 1. Weather is be defined as the A. changes that occur in cloud formations from day to day. B. amount of rain or snow that

More information

Graphing Sea Ice Extent in the Arctic and Antarctic

Graphing Sea Ice Extent in the Arctic and Antarctic Graphing Sea Ice Extent in the Arctic and Antarctic Summary: Students graph sea ice extent (area) in both polar regions (Arctic and Antarctic) over a three-year period to learn about seasonal variations

More information

Physics 25 Exam 3 November 3, 2009

Physics 25 Exam 3 November 3, 2009 1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,

More information

Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons?

Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons? Reasons for Seasons Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the Sun in winter. Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the

More information

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10 Lecture 3: Constellations and the Distances to the Stars Astro 2010 Prof. Tom Megeath Questions for Today How do the stars move in the sky? What causes the phases of the moon? What causes the seasons?

More information

Chapter 6. Sustainability and Renewable Energy

Chapter 6. Sustainability and Renewable Energy Chapter 6 Sustainability and Renewable Energy 1 CHAPTER 6. SUSTAINABILITY AND RENEWABLE ENERGY 6.1 Introduction The Sustainability and Renewable Energy field addresses global technological challenges balancing

More information

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

More information

Electromagnetic Radiation Energy that comes to us from the sun is transported in the form of waves known as electromagnetic energy.

Electromagnetic Radiation Energy that comes to us from the sun is transported in the form of waves known as electromagnetic energy. Electromagnetic Radiation Energy that comes to us from the sun is transported in the form of waves known as electromagnetic energy. This combines electricity and magnetism such that setting up an electric

More information

The Water Cycle Now You See It, Now You Don t

The Water Cycle Now You See It, Now You Don t The Water Cycle Now You See It, Now You Don t Unit: Salinity Patterns & the Water Cycle l Grade Level: Elementary l Time Required: Introduction - 30 min. - Activity as groups 45min Wrap Up 20 min l Content

More information

Earth in the Solar System

Earth in the Solar System Copyright 2011 Study Island - All rights reserved. Directions: Challenge yourself! Print out the quiz or get a pen/pencil and paper and record your answers to the questions below. Check your answers with

More information

Solar Power at Vernier Software & Technology

Solar Power at Vernier Software & Technology Solar Power at Vernier Software & Technology Having an eco-friendly business is important to Vernier. Towards that end, we have recently completed a two-phase project to add solar panels to our building

More information

1. Theoretical background

1. Theoretical background 1. Theoretical background We consider the energy budget at the soil surface (equation 1). Energy flux components absorbed or emitted by the soil surface are: net radiation, latent heat flux, sensible heat

More information

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

astronomy 2008 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 1. A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times. 5. If the distance between the Earth and the Sun were increased,

More information

Interference. Physics 102 Workshop #3. General Instructions

Interference. Physics 102 Workshop #3. General Instructions Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by

More information

Lab Activity on Global Wind Patterns

Lab Activity on Global Wind Patterns Lab Activity on Global Wind Patterns 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Objectives When you have completed this lab you should

More information

Earth, Sun and Moon is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - 'Earth, Sun and Moon'.

Earth, Sun and Moon is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - 'Earth, Sun and Moon'. is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - ''. Learning Connections Primary Science Interactives are teaching tools which have been created

More information

Cycles in the Sky. Teacher Guide: Cycles in the Sky Page 1 of 8 2008 Discovery Communications, LLC

Cycles in the Sky. Teacher Guide: Cycles in the Sky Page 1 of 8 2008 Discovery Communications, LLC Cycles in the Sky What is a Fun damental? Each Fun damental is designed to introduce your younger students to some of the basic ideas about one particular area of science. The activities in the Fun damental

More information

Seasonal Temperature Variations

Seasonal Temperature Variations Seasonal and Daily Temperatures Fig. 3-CO, p. 54 Seasonal Temperature Variations What causes the seasons What governs the seasons is the amount of solar radiation reaching the ground What two primary factors

More information

Science Standard 3 Energy and Its Effects Grade Level Expectations

Science Standard 3 Energy and Its Effects Grade Level Expectations Science Standard 3 Energy and Its Effects Grade Level Expectations Science Standard 3 Energy and Its Effects The flow of energy drives processes of change in all biological, chemical, physical, and geological

More information

Celestial Observations

Celestial Observations Celestial Observations Earth experiences two basic motions: Rotation West-to-East spinning of Earth on its axis (v rot = 1770 km/hr) (v rot Revolution orbit of Earth around the Sun (v orb = 108,000 km/hr)

More information

Copyrighted Material. 1 Basics of Climate. The climate s delicate, the air most sweet. William Shakespeare, A Winter s Tale

Copyrighted Material. 1 Basics of Climate. The climate s delicate, the air most sweet. William Shakespeare, A Winter s Tale 1 Basics of Climate The climate s delicate, the air most sweet. William Shakespeare, A Winter s Tale To appreciate the role of the ocean in climate, we need to have a basic understanding of how the climate

More information

Changes in Our Sky Grade Two

Changes in Our Sky Grade Two Ohio Standards Connection: Earth and Space Sciences Benchmark A Observe constant and changing patterns of objects in the day and night sky. Indicator 2 Observe and describe how the sun, moon and stars

More information

Effect of Light Colors on Bean Plant Growth

Effect of Light Colors on Bean Plant Growth Effect of Light Colors on Bean Plant Growth Teacher Edition Grade: Grades 6-8 Delaware State Science Standard: Science Standard 6 - Life Processes Strand: Structure/Function Relationship Strand: Matter

More information