Operating Limits of a Two Axis Beam Type Airborne Gravity Meter. John Halpenny. Abstract:

Size: px
Start display at page:

Download "Operating Limits of a Two Axis Beam Type Airborne Gravity Meter. John Halpenny. Abstract:"

Transcription

1 Operating Limits of a Two Axis Beam Type Airborne Gravity Meter Abstract: John Halpenny Airborne gravity measurements require a system that is accurate over a wide range of aircraft motions. The Geodetic Survey Division of Geomatics Canada operates a Lacoste & Romberg air/sea meter which was originally optimized for marine operations, but which has been used in airborne surveys on a number of different aircraft. This paper examines the limits to vertical and horizontal motion which can be tolerated by this meter and still keep within its operating range. Two cases are examined here. Tests in a Cessna Caravan by Sander Geophysics Ltd., described by Brunton et al. at this conference demonstrate hand flying operations at slow speed in turbulent conditions, while flights in a NRC Convair illustrate much faster and smoother flight with an autopilot. Both flight regimes create conditions where the meter can go off level or move the sensor mass against its stops. This paper discusses techniques for minimizing the problems and lays out the ultimate and practical limits of motion during a survey. This work makes use of data extracted from various test programs and is part of GSD s ongoing study of airborne gravity. Introduction The Lacoste & Romberg air-sea meter was developed in the 1960 s to measure gravity from a moving platform. Over 100 meters were built and were used primarily on ship surveys, although several were tested in aircraft. Our organization, then the Dominion Observatory, purchased S-56 in 1970 and used it for marine surveys for many years. In 1980, the sensor was replaced with a new linear sensor, SL-1, and much of the analog control system was replaced by a computer. In 1989 the DEC LSI-11 control computer was replaced by a desktop PC running QNX, resulting in much more reliability and less cost. Since then we have made several upgrades to the computer system and electronics system, but we have kept the original platform, gyros and accelerometers. In addition to marine surveys, the meter has been operated in airborne tests with Sander Geophysics Ltd. (SGL), Intera Kenting Ltd., and the US Naval Research Laboratory. We have performed one production airborne survey over the Arctic ocean with the Institute for Aeronautical Research (IAR), part of the Canadian National Research Council. Theory of Operation Operation of the linear sensor is similar to operation of Lacoste s older beam type sensors. A proof mass, usually called the beam, is supported by a spring and a measuring screw, and the screw is adjusted by a motor until the spring force just equals gravity. A feedback system moves the screw to keep the beam centered, and a system of dampers keeps it from hitting the stops during rapid acceleration. When the beam is stationary, the screw position represents the gravity reading, but under most conditions the beam is in motion and its velocity is used to correct the gravity. The screw reading is very accurate and stable, but the beam velocity correction is less accurate when there is a lot of motion.. The limits of the beam motion are set in the factory to provide adequate motion range and sensitivity. On our system, the beam moves from center to stop after an acceleration of 30,000 mgal for 7.5 seconds, or a velocity change of about 2 m/sec. In practice, the allowed velocity change would be smaller since the beam may not be centered and it should not operate near the stop. The sensor is held level in a gimbaled platform supported by bungee cord shock mounts. Two Honeywell GG-49 gyros measure the rotation about the two horizontal axes and torque motors keep the sensor steady. 556

2 A pair of Systron Donner accelerometers measure horizontal accelerations and the sensor is slowly rotated until there is no horizontal gravity component. The platform leveling period may be adjusted but is usually set to 4.75 minutes for aircraft operation. This will keep it level on most lines but will cause it to tip over when the aircraft turns, and it will take several minutes to come back to level. During this time a level correction may be calculated by comparing the accelerometers and GPS horizontal accelerations, but it is not as accurate as flying with a truly level platform. The platform will stay level during a turn if the platform period is set to a large value, which effectively turns off the accelerometer inputs. An operator or navigation system switch is set when a turn occurs and reset when it is finished so the leveling process can continue. The meter originally had a third axis which rotated the entire platform and could be used as a complete Schuler tuned navigation system, but it was mechanically large and complex and took a long time to align. The third axis was later removed. Operating limits The performance of the beam and level systems will be illustrated by three different flights. The flight on April 25, 0 in SGL s Cessna Caravan shows slow flight during typical daytime low level turbulence. Speed is less than 50 m/sec., the air is rough and an autopilot is not used. A typical smooth flight was taken from the Arctic survey in the IAR Convair on Sept 28, 1998 and is flown at about 110 m/sec. using an autopilot. A very smooth flight was made during a test by the Convair in the Ottawa area on Feb 7, 1. This used an autopilot in smooth early morning conditions and was flown at about 85 m/sec :30:00 Apr 21 Seconds 15:40:00 height raw beam Figure 1 : Height and Beam Position On April 25 Figure 1 is a ten minute segment taken from the SGL s Cessna Caravan on April 25. The upper trace shows height changes of up to 40 m. and vertical velocities of up to 1.5 m/sec. The lower trace is the beam position, with the beam stops being at the limits of the chart. The beam motion does not hit the limit, but it comes quite close. If the beam does hit the stop, the reading will be wrong and there will be a data gap the length of the filter. It can also be seen that if the beam is not centered to start with, the motion will cause it 557

3 to hit a stop. Unfortunately SL-1, unlike the older Lacoste meters, does not have a clamp which the operator can use to bring the beam to the center position at the start of a line, but must rely on the spring tension adjustment to move the beam :30:00 Sep 28 Seconds 13:40:00 raw beam gps ht Figure 2: Height and Beam on September 28 By comparison, Figure 2 shows a flight over the arctic ocean in NRC s Convair with an autopilot. Although the largest bump gives a vertical motion of nearly 1 m/sec, the height variations are less than 5 meters and the response of the meter is much more subdued. There is no problem with the beam approaching the stops and the accelerations are much smaller. 558

4 :40:00 Jan 6 Seconds 12:50:00 height raw beam Figure 3: Height and Beam on Feb 7 Figure 3 shows the meter operation under very smooth conditions. The beam is centered and there is little correction to the reading. These are the conditions which perhaps give the best gravity traces. Platform Level When there is no horizontal acceleration, the meter platform will level itself and stay level. The motion is a damped oscillation with a period of 4.75 minutes, which was set to allow a shipborne meter to settle down in a reasonable time but be insensitive to wave motions. The period is adjustable, and can be set to any value, including 84 minutes for a Schuler tuned platform, or infinite, entered as 999 minutes, which means that the accelerometer inputs are ignored and the platform is fixed in space. Longer periods increase the setup time and thus are only useful if the system is already level. On any reasonably straight line the meter levels itself within a few minutes and stay that way. During a turn, the sustained horizontal acceleration is read as an error, the platform tilts to compensate and only becomes level again after several minutes. It is possible to detect a turn using the accelerometers and a navigation input and ignore the sideways acceleration. However, because there are only 2 axes, the platform turns with the aircraft and changes the earth rate component in each axis, so it will still tip after the turn is finished. 559

5 :40:00 Apr 25 Seconds 16:20:00 c acc l acc fa5m faofff Figure 4: Accelerations on rough flight In Figure 4, taken in a test area flight, the accelerations are shown during a flight segment that includes a turn. The cross acceleration, in dark red, is larger than the long acceleration and is quite large during the turn. Also notice that it does not return to zero immediately after the turn, but takes some time to settle out. The aircraft bank angle was kept to 10 degrees to avoid losing any GPS satellites, and the acceleration is small so there is not a clear distinction between lines and turns. The meter tries to use the GPS cross acceleration to distinguish turns from lines, but it is just as noisy as the accelerometers 560

6 :50:00 Sep 28 Seconds 14:30:00 c acc l acc fa5m faoff Figure 5: Accelerations on Sept. 28 In the smooth flight and turn of Figure 5, the sideways accelerations are much smaller during the line and the level corrections are insignificant. However, notice that the cross acceleration goes to saturation during the turn. The accelerometer is limited to 0.25 g, which is equivalent to a 15 degree turn, and most aircraft maneuvers are larger than that. The gravity does not change very much during the turn but the off level correction, based on the saturated accelerometer, goes off the scale. When the line begins, the meter is only slightly off level and is much more easily corrected. In this case, the automatic turn correction has shut off the platform and has operated reasonably well due to the fact that there is a very clear distinction between turns and lines. 561

7 :45:00 Seconds 12:25:00 c acc Feb 7 l acc fa5m faofff Figure 6: Accelerations on Feb.7 Figure 6 shows a line that is not only smooth, but the turn has been limited to 10 degrees and the accelerometers do not saturate. The turn cutoff has worked well and the platform is almost level after the turn. The turn produces a lump in the (green) gravity trace and there is an off level correction that unfortunately does not improve the performance very much Figure 7: Improved level correction :45:00 Seconds 12:25:00 c acc Feb 7 l acc fa5m faofff 562

8 The level correction has been greatly improved in figure 7 by adjusting the offset of the long accelerometer. However, this offset is slightly different from the one found during the platform calibration, which may indicate that it drifts, probably with temperature changes. Conclusions The performance of our gravity system is affected by aircraft motion. During smooth flight, the gravity trace is stable and few corrections are needed. The system can operate during daytime turbulence with height excursions of up to 20 meters and vertical accelerations of 1.5 m/sec, but there is the possibility of hitting a stop and losing data, and great care is needed in calibrating the accelerometers. Rough flights also cause more noise in the GPS position and require much more care in matching the meter and GPS times. The meter is also supported by fairly soft bungee cords and the sensor may move significantly with respect to the aircraft. The meter data is recorded at 10 hertz and the GPS data for the more recent flights is collected at the same rate. However, the gravity processing is done at 1 hertz, and there may be distortion when the vertical accelerations and gravity are lined up on rough days. I plan to reprocess some flights at the higher rate and I expect some improvement. The accelerometers are the oldest part of the system and are not temperature controlled. They are adequate for smooth flights, but could do better in rough air if they were moved into the temperature controlled meter case, or perhaps replaced entirely. 563

MGL Avionics Compass operation and calibration

MGL Avionics Compass operation and calibration MGL Avionics Compass operation and calibration Page 1 Table of Contents General...3 Inside a MGL SP-6 compass...3 Compass modes...4 Compass mode 2 (3D accel)...4 Compass mode 4 (3D EFIS)...4 Other compass

More information

Basic Principles of Inertial Navigation. Seminar on inertial navigation systems Tampere University of Technology

Basic Principles of Inertial Navigation. Seminar on inertial navigation systems Tampere University of Technology Basic Principles of Inertial Navigation Seminar on inertial navigation systems Tampere University of Technology 1 The five basic forms of navigation Pilotage, which essentially relies on recognizing landmarks

More information

ACCELERATION DUE TO GRAVITY

ACCELERATION DUE TO GRAVITY EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities

More information

The accelerometer designed and realized so far is intended for an. aerospace application. Detailed testing and analysis needs to be

The accelerometer designed and realized so far is intended for an. aerospace application. Detailed testing and analysis needs to be 86 Chapter 4 Accelerometer Testing 4.1 Introduction The accelerometer designed and realized so far is intended for an aerospace application. Detailed testing and analysis needs to be conducted to qualify

More information

Information regarding the Lockheed F-104 Starfighter F-104 LN-3. An article published in the Zipper Magazine #48. December-2001. Theo N.M.M.

Information regarding the Lockheed F-104 Starfighter F-104 LN-3. An article published in the Zipper Magazine #48. December-2001. Theo N.M.M. Information regarding the Lockheed F-104 Starfighter F-104 LN-3 An article published in the Zipper Magazine #48 December-2001 Author: Country: Website: Email: Theo N.M.M. Stoelinga The Netherlands http://www.xs4all.nl/~chair

More information

Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory

Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory Physics 41, Winter 1998 Lab 1 - The Current Balance Theory Consider a point at a perpendicular distance d from a long straight wire carrying a current I as shown in figure 1. If the wire is very long compared

More information

Lab 7: Rotational Motion

Lab 7: Rotational Motion Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

More information

How To Control Gimbal

How To Control Gimbal Tarot 2-Axis Brushless Gimbal for Gopro User Manual V1.0 1. Introduction Tarot T-2D gimbal is designed for the Gopro Hero3, which is widely used in film, television productions, advertising aerial photography,

More information

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket.

Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket. Acceleration= Force OVER Mass Design Considerations for Water-Bottle Rockets The next few pages are provided to help in the design of your water-bottle rocket. Newton s First Law: Objects at rest will

More information

Harmonic oscillations of spiral springs Springs linked in parallel and in series

Harmonic oscillations of spiral springs Springs linked in parallel and in series .3.26 Related topics Spring constant, Hooke s Law, oscillations, limit of elasticity, parallel springs, serial springs, use of an interface. Principle and task The spring constant D is determined for different

More information

Welcome to FBL Gyro Configuration software

Welcome to FBL Gyro Configuration software Welcome to FBL Gyro Configuration software If you have gone flybarless and are using the ALZRC 3GYS, CopterX 3X1000, Helicox TG-1, Hobby King ZYX or Tarot ZYX then this software may be useful to you. Based

More information

Acceleration Introduction: Objectives: Methods:

Acceleration Introduction: Objectives: Methods: Acceleration Introduction: Acceleration is defined as the rate of change of velocity with respect to time, thus the concepts of velocity also apply to acceleration. In the velocity-time graph, acceleration

More information

TRACKING MAIN ROTOR BLADES

TRACKING MAIN ROTOR BLADES TRACKING MAIN ROTOR BLADES Date: September 26, 2013 Subject; Tracking the Enstrom Rotor System using the Chadwick 2000 balance system. Models: All models Effectively: All Serial Numbers Experience shows

More information

Wind Turbines. Wind Turbines 2. Wind Turbines 4. Wind Turbines 3. Wind Turbines 5. Wind Turbines 6

Wind Turbines. Wind Turbines 2. Wind Turbines 4. Wind Turbines 3. Wind Turbines 5. Wind Turbines 6 Wind Turbines 1 Wind Turbines 2 Introductory Question Wind Turbines You and a child half your height lean out over the edge of a pool at the same angle. If you both let go simultaneously, who will tip

More information

Figure 1. The Ball and Beam System.

Figure 1. The Ball and Beam System. BALL AND BEAM : Basics Peter Wellstead: control systems principles.co.uk ABSTRACT: This is one of a series of white papers on systems modelling, analysis and control, prepared by Control Systems Principles.co.uk

More information

EZdok CAMERA ADDON EZCA. for. Microsoft Flight Simulator X. Advanced Effects Manual

EZdok CAMERA ADDON EZCA. for. Microsoft Flight Simulator X. Advanced Effects Manual EZdok CAMERA ADDON EZCA for Microsoft Flight Simulator X Advanced Effects Manual 1 CONTENTS Chapter Title Page Number 1 Preface 3 2 RND effect 4 2.1 Generators 4 2.2 Mixer-distributor 9 2.3 Profiles 11

More information

SL720 GYRO/PC INTERFACE MANUAL

SL720 GYRO/PC INTERFACE MANUAL SL720 GYRO/PC INTERFACE MANUAL INTRODUCTION The SL720 gyro has a 'PC' port that allows the internal settings of the gyro to be examined and adjusted to users' requirements. For most users the pre-loaded

More information

OPTO-PLUS 204. Type DSX2

OPTO-PLUS 204. Type DSX2 1 OPTO-PLUS 204 Type DSX2 OPTO-ELECTRONIC LASER ALIGNER Operators manual 2 Operators manual for OPTO-PLUS wheel aligner Model 204 Type DSX2 (Dual Sensor Doubble Laser) INDEX Accessories and specifications

More information

Laboratory Report Scoring and Cover Sheet

Laboratory Report Scoring and Cover Sheet Laboratory Report Scoring and Cover Sheet Title of Lab _Newton s Laws Course and Lab Section Number: PHY 1103-100 Date _23 Sept 2014 Principle Investigator _Thomas Edison Co-Investigator _Nikola Tesla

More information

Acceleration of Gravity Lab Basic Version

Acceleration of Gravity Lab Basic Version Acceleration of Gravity Lab Basic Version In this lab you will explore the motion of falling objects. As an object begins to fall, it moves faster and faster (its velocity increases) due to the acceleration

More information

product. Please read this instruction before setup your VenomXTM.

product. Please read this instruction before setup your VenomXTM. Tuact Corp. Ltd. TM Venom X mouse controller combo Setup Software Instruction Thank you for purchasing our VenomXTM product. Please read this instruction before setup your VenomXTM. Introduction Venom

More information

Work and Energy. W =!KE = KE f

Work and Energy. W =!KE = KE f Activity 19 PS-2826 Work and Energy Mechanics: work-energy theorem, conservation of energy GLX setup file: work energy Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002 1 PASPORT Motion

More information

Mechanics. Determining the gravitational constant with the gravitation torsion balance after Cavendish. LD Physics Leaflets P1.1.3.1.

Mechanics. Determining the gravitational constant with the gravitation torsion balance after Cavendish. LD Physics Leaflets P1.1.3.1. Mechanics Measuring methods Determining the gravitational constant LD Physics Leaflets P1.1.3.1 Determining the gravitational constant with the gravitation torsion balance after Cavendish Measuring the

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

Uniformly Accelerated Motion

Uniformly Accelerated Motion Uniformly Accelerated Motion Under special circumstances, we can use a series of three equations to describe or predict movement V f = V i + at d = V i t + 1/2at 2 V f2 = V i2 + 2ad Most often, these equations

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

Building a simple seismometer

Building a simple seismometer Building a simple seismometer Seismometers operate on the principle of inertia, i.e. a body at rest will tend to remain that way unless a force is applied to make it move. An ideal seismometer would be

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

How to increase Bat Speed & Bat Quickness / Acceleration

How to increase Bat Speed & Bat Quickness / Acceleration How to increase Bat Speed & Bat Quickness / Acceleration What is Bat Speed? Bat Speed: Bat speed is measured in miles per hour (MPH) and considers only the highest speed of the bat head (peak velocity)

More information

TwinCAT NC Configuration

TwinCAT NC Configuration TwinCAT NC Configuration NC Tasks The NC-System (Numeric Control) has 2 tasks 1 is the SVB task and the SAF task. The SVB task is the setpoint generator and generates the velocity and position control

More information

AEO Head Movement Tracker X-GYRO 1000 USER MANUAL(V1.1bata 20091019)

AEO Head Movement Tracker X-GYRO 1000 USER MANUAL(V1.1bata 20091019) AEO Head Movement Tracker X-GYRO 1000 USER MANUAL(V1.1bata 20091019) Introduction: X-GYRO 1000 is a two axis head tracking system, based on G sensor technique, designed for tracking complicated three-dimensional

More information

What causes Tides? If tidal forces were based only on mass, the Sun should have a tidegenerating

What causes Tides? If tidal forces were based only on mass, the Sun should have a tidegenerating What are Tides? Tides are very long-period waves that move through the oceans as a result of the gravitational attraction of the Moon and the Sun for the water in the oceans of the Earth. Tides start in

More information

Improving Workflow Efficiency using the Trimble R10 with SurePoint. Marco Wuethrich Trimble Applications Specialist

Improving Workflow Efficiency using the Trimble R10 with SurePoint. Marco Wuethrich Trimble Applications Specialist Improving Workflow Efficiency using the Trimble R10 with SurePoint Marco Wuethrich Trimble Applications Specialist Content Trimble SurePoint technology Trimble R10 (1) ebubble, (2) tilt auto-measure and

More information

Accuracy and Tuning in CNC Machine Tools

Accuracy and Tuning in CNC Machine Tools FAMA Technical Article/001 Accuracy and Tuning in CNC Machine Tools Introduction: This article explains how it is possible to achieve a better performance on High Speed CNC Machine Tools. Performance is

More information

Practice Exam Three Solutions

Practice Exam Three Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,

More information

Transmission Line and Back Loaded Horn Physics

Transmission Line and Back Loaded Horn Physics Introduction By Martin J. King, 3/29/3 Copyright 23 by Martin J. King. All Rights Reserved. In order to differentiate between a transmission line and a back loaded horn, it is really important to understand

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5 Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

More information

Robot Perception Continued

Robot Perception Continued Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart

More information

ENERGYand WORK (PART I and II) 9-MAC

ENERGYand WORK (PART I and II) 9-MAC ENERGYand WORK (PART I and II) 9-MAC Purpose: To understand work, potential energy, & kinetic energy. To understand conservation of energy and how energy is converted from one form to the other. Apparatus:

More information

FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the

FXA 2008. UNIT G484 Module 2 4.2.3 Simple Harmonic Oscillations 11. frequency of the applied = natural frequency of the 11 FORCED OSCILLATIONS AND RESONANCE POINTER INSTRUMENTS Analogue ammeter and voltmeters, have CRITICAL DAMPING so as to allow the needle pointer to reach its correct position on the scale after a single

More information

Cane Creek Double Barrel Instructions

Cane Creek Double Barrel Instructions Cane Creek Double Barrel Instructions Congratulations on your purchase of the Cane Creek Double Barrel (CCDB) rear shock. Developed in partnership with Öhlins Racing, the Double Barrel brings revolutionary

More information

(I) s(t) = s 0 v 0 (t t 0 ) + 1 2 a (t t 0) 2 (II). t 2 = t 0 + 2 v 0. At the time. E kin = 1 2 m v2 = 1 2 m (a (t t 0) v 0 ) 2

(I) s(t) = s 0 v 0 (t t 0 ) + 1 2 a (t t 0) 2 (II). t 2 = t 0 + 2 v 0. At the time. E kin = 1 2 m v2 = 1 2 m (a (t t 0) v 0 ) 2 Mechanics Translational motions of a mass point One-dimensional motions on the linear air track LD Physics Leaflets P1.3.3.8 Uniformly accelerated motion with reversal of direction Recording and evaluating

More information

Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes

Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes J. Peraire, S. Widnall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L30-3D Rigid Body Dynamics: Tops and Gyroscopes 3D Rigid Body Dynamics: Euler Equations in Euler Angles In lecture 29, we introduced

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

Determining the Acceleration Due to Gravity

Determining the Acceleration Due to Gravity Chabot College Physics Lab Scott Hildreth Determining the Acceleration Due to Gravity Introduction In this experiment, you ll determine the acceleration due to earth s gravitational force with three different

More information

Active Vibration Isolation of an Unbalanced Machine Spindle

Active Vibration Isolation of an Unbalanced Machine Spindle UCRL-CONF-206108 Active Vibration Isolation of an Unbalanced Machine Spindle D. J. Hopkins, P. Geraghty August 18, 2004 American Society of Precision Engineering Annual Conference Orlando, FL, United States

More information

Using angular speed measurement with Hall effect sensors to observe grinding operation with flexible robot.

Using angular speed measurement with Hall effect sensors to observe grinding operation with flexible robot. Using angular speed measurement with Hall effect sensors to observe grinding operation with flexible robot. François Girardin 1, Farzad Rafieian 1, Zhaoheng Liu 1, Marc Thomas 1 and Bruce Hazel 2 1 Laboratoire

More information

Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section

Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance Your name Lab section 1. What do you investigate in this lab? 2. Two straight wires are in parallel and carry electric currents in opposite directions

More information

MANUAL TR-110 TR-110

MANUAL TR-110 TR-110 MANUAL TR-110 TR-110 CONTENTS 1. GENERAL INTRODUCTION 2 2. WORK PRINCIPLE 3 3. STANDARD DELIVERY 4 4. NAME OF EACH PART 5 5. OPERATION 6 5.1 Preparation before operation 6 5.2 Switch on, Switch off and

More information

- Time-lapse panorama - TWAN (The World At Night) - Astro-Panoramic Photography

- Time-lapse panorama - TWAN (The World At Night) - Astro-Panoramic Photography User manual for PHOTOROBOT Photo Robot is a simple, small, lightweight (only 900g), but very reliable panoramic and astro photo head. It is motorised and allows quick and easy entry to all three "exotic"

More information

Series 6000 Torque measured metal bellow coupling

Series 6000 Torque measured metal bellow coupling Properties Free of float metal bellow coupling with integrated torque measurement Non-contact measurement system, high robustness High torsional stiffness Limited torque of inertia Performance Measurement

More information

Precision Miniature Load Cell. Models 8431, 8432 with Overload Protection

Precision Miniature Load Cell. Models 8431, 8432 with Overload Protection w Technical Product Information Precision Miniature Load Cell with Overload Protection 1. Introduction The load cells in the model 8431 and 8432 series are primarily designed for the measurement of force

More information

Experiment 7: Forces and Torques on Magnetic Dipoles

Experiment 7: Forces and Torques on Magnetic Dipoles MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics 8. Spring 5 OBJECTIVES Experiment 7: Forces and Torques on Magnetic Dipoles 1. To measure the magnetic fields due to a pair of current-carrying

More information

Oscillations: Mass on a Spring and Pendulums

Oscillations: Mass on a Spring and Pendulums Chapter 3 Oscillations: Mass on a Spring and Pendulums 3.1 Purpose 3.2 Introduction Galileo is said to have been sitting in church watching the large chandelier swinging to and fro when he decided that

More information

Mounting instructions. Acceleration Transducer B12. B 26.B12.10 en

Mounting instructions. Acceleration Transducer B12. B 26.B12.10 en Mounting instructions Acceleration Transducer B12 B 26.B12.10 en B12 3 Contents Page Safety instructions.............................................. 4 1 Scope of supply..............................................

More information

Simple Harmonic Motion Experiment. 1 f

Simple Harmonic Motion Experiment. 1 f Simple Harmonic Motion Experiment In this experiment, a motion sensor is used to measure the position of an oscillating mass as a function of time. The frequency of oscillations will be obtained by measuring

More information

0 28 November 2011 N/A First Release of Manual 1 24 February 2012 Page 21 Error in FY31AP connection diagram corrected.

0 28 November 2011 N/A First Release of Manual 1 24 February 2012 Page 21 Error in FY31AP connection diagram corrected. Rev 1: 24 February 2012 FEIYU TECH FY31AP Autopilot System Installation & Operation Guide Guilin Feiyu Electronic Technology Co., Ltd Rm. B305, Innovation Building, Information Industry Park, Chaoyang

More information

Lateral Acceleration. Chris Garner

Lateral Acceleration. Chris Garner Chris Garner Forward Acceleration Forward acceleration is easy to quantify and understand. Forward acceleration is simply the rate of change in speed. In car terms, the quicker the car accelerates, the

More information

SE05: Getting Started with Cognex DataMan Bar Code Readers - Hands On Lab Werner Solution Expo April 8 & 9

SE05: Getting Started with Cognex DataMan Bar Code Readers - Hands On Lab Werner Solution Expo April 8 & 9 SE05: Getting Started with Cognex DataMan Bar Code Readers - Hands On Lab Werner Solution Expo April 8 & 9 Learning Goals: At the end of this lab, the student should have basic familiarity with the DataMan

More information

Rotational Motion: Moment of Inertia

Rotational Motion: Moment of Inertia Experiment 8 Rotational Motion: Moment of Inertia 8.1 Objectives Familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body

More information

6. Block and Tackle* Block and tackle

6. Block and Tackle* Block and tackle 6. Block and Tackle* A block and tackle is a combination of pulleys and ropes often used for lifting. Pulleys grouped together in a single frame make up what is called a pulley block. The tackle refers

More information

Hand Gestures Remote Controlled Robotic Arm

Hand Gestures Remote Controlled Robotic Arm Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 5 (2013), pp. 601-606 Research India Publications http://www.ripublication.com/aeee.htm Hand Gestures Remote Controlled

More information

Parachute Jumping, Falling, and Landing David C. Arney, Barbra S. Melendez, Debra Schnelle 1

Parachute Jumping, Falling, and Landing David C. Arney, Barbra S. Melendez, Debra Schnelle 1 Parachute Jumping, Falling, and Landing David C. Arney, Barbra S. Melendez, Debra Schnelle 1 Introduction It is extremely important that leaders of airborne units understand the safety, medical, and operational

More information

Motion & The Global Positioning System (GPS)

Motion & The Global Positioning System (GPS) Grade Level: K - 8 Subject: Motion Prep Time: < 10 minutes Duration: 30 minutes Objective: To learn how to analyze GPS data in order to track an object and derive its velocity from positions and times.

More information

Building a Better Robot

Building a Better Robot http://tinyurl.com/betterro Building a Better Robot Tips and Techniques for a great robot design Weight and Balance Too much weight on non-drive wheel(s) Hard to make turns Need more force to overcome

More information

Standing Waves on a String

Standing Waves on a String 1 of 6 Standing Waves on a String Summer 2004 Standing Waves on a String If a string is tied between two fixed supports, pulled tightly and sharply plucked at one end, a pulse will travel from one end

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

Parrot Bebop Drone FAQ s

Parrot Bebop Drone FAQ s Parrot Bebop Drone FAQ s Where can I find information about regulation of the use of drones? The use and the regulation depend on your place of flight. For further information, consult the relevant authorities:

More information

Conservation of Energy Physics Lab VI

Conservation of Energy Physics Lab VI Conservation of Energy Physics Lab VI Objective This lab experiment explores the principle of energy conservation. You will analyze the final speed of an air track glider pulled along an air track by a

More information

Conservation of Momentum Using PASCO TM Carts and Track to Study Collisions in One Dimension

Conservation of Momentum Using PASCO TM Carts and Track to Study Collisions in One Dimension 14 Conservation of Conservation of Using PASCO TM Carts and Track to Study s in One Dimension OBJECTIVE Students will collide two PASCO TM carts on a track to determine the momentum before and after a

More information

Current Loop Tuning Procedure. Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) General Procedure AN-015

Current Loop Tuning Procedure. Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) General Procedure AN-015 Servo Drive Current Loop Tuning Procedure (intended for Analog input PWM output servo drives) The standard tuning values used in ADVANCED Motion Controls drives are conservative and work well in over 90%

More information

Keywords: Torque, calibration, uncertainty, torque tools, torque testers. Contents

Keywords: Torque, calibration, uncertainty, torque tools, torque testers. Contents Measurement uncertainty in torque calibration Luca G. Bochese, ASQ CQE, CRE (Boch - Milano), info@boch.net, www.boch.net Dr. A. Bochese ( Feanor - Tallinn), info@feanor.com, www.feanor.com Keywords: Torque,

More information

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Frequently Asked Questions (FAQs)

Frequently Asked Questions (FAQs) Frequently Asked Questions (FAQs) OS5000 & OS4000 Family of Compasses FAQ Document Rev. 2.0 Important Notes: Please also reference the OS5000 family user guide & OS4000 user guide on our download page.

More information

ACTIVITY 6: Falling Objects

ACTIVITY 6: Falling Objects UNIT FM Developing Ideas ACTIVITY 6: Falling Objects Purpose and Key Question You developed your ideas about how the motion of an object is related to the forces acting on it using objects that move horizontally.

More information

Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

More information

SYNCHRONOUS MACHINES

SYNCHRONOUS MACHINES SYNCHRONOUS MACHINES The geometry of a synchronous machine is quite similar to that of the induction machine. The stator core and windings of a three-phase synchronous machine are practically identical

More information

Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k

Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k Physics 1C Midterm 1 Summer Session II, 2011 Solutions 1. If F = kx, then k m is (a) A (b) ω (c) ω 2 (d) Aω (e) A 2 ω Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of

More information

Scientific Graphing in Excel 2010

Scientific Graphing in Excel 2010 Scientific Graphing in Excel 2010 When you start Excel, you will see the screen below. Various parts of the display are labelled in red, with arrows, to define the terms used in the remainder of this overview.

More information

Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

More information

OPERATOR S MANUAL SUPPORTED TORQUE CALIBRATION BEAM. Part Number 34320 Issue 4 Original Instructions (English)

OPERATOR S MANUAL SUPPORTED TORQUE CALIBRATION BEAM. Part Number 34320 Issue 4 Original Instructions (English) OPERATOR S MANUAL SUPPORTED TORQUE CALIBRATION BEAM Part Number 34320 Issue 4 Original Instructions (English) CONTENTS Part Numbers Covered by This Manual 2 Safety 2 Introduction 2 Parts Included 2 Accessories

More information

RL HW / RL HW+ / RL HGW / RL HV / RL HVPW/RL HVPW-G

RL HW / RL HW+ / RL HGW / RL HV / RL HVPW/RL HVPW-G Auto-Levelling Rotary Laser Level RL HW / RL HW+ / RL HGW / RL HV / RL HVPW/RL HVPW-G 77-496 / 77-429 / 77-439 / 77-497 / 77-427/ 77-441 Please read these instructions before operating the product Auto-Levelling

More information

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE

E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE E. K. A. ADVANCED PHYSICS LABORATORY PHYSICS 3081, 4051 NUCLEAR MAGNETIC RESONANCE References for Nuclear Magnetic Resonance 1. Slichter, Principles of Magnetic Resonance, Harper and Row, 1963. chapter

More information

User s Guide by David Burch

User s Guide by David Burch TrueWind by David Burch About TrueWind...2 How to use TrueWind...3 Definitions Wind direction...4 Apparent wind...4 Apparent wind angle...4 Apparent wind speed... 5 True wind angle... 5 True wind speed...

More information

The Technical Archer. Austin Wargo

The Technical Archer. Austin Wargo The Technical Archer Austin Wargo May 14, 2010 Abstract A mathematical model of the interactions between a long bow and an arrow. The model uses the Euler-Lagrange formula, and is based off conservation

More information

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make

More information

Accelerometers: Theory and Operation

Accelerometers: Theory and Operation 12-3776C Accelerometers: Theory and Operation The Vertical Accelerometer Accelerometers measure accelerations by measuring forces. The vertical accelerometer in this kit consists of a lead sinker hung

More information

Applications of Magnetic Sensors for Low Cost Compass Systems

Applications of Magnetic Sensors for Low Cost Compass Systems Applications of Magnetic Sensors for Low Cost Compass Systems Michael J. Caruso Honeywell, SSEC Abstract A method for heading determination is described here that will include the effects of pitch and

More information

Application Note 3: TrendView Recorder Smart Logging

Application Note 3: TrendView Recorder Smart Logging Application Note : TrendView Recorder Smart Logging Logging Intelligently with the TrendView Recorders The advanced features of the TrendView recorders allow the user to gather tremendous amounts of data.

More information

Torque and Rotary Motion

Torque and Rotary Motion Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straight-forward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

Atomic Force Microscope

Atomic Force Microscope Atomic Force Microscope (Veeco Nanoman) User Manual Basic Operation 4 th Edition Aug 2012 NR System Startup If the system is currently ON To start the NanoScope software, double-click the NanoScope startup

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

A Short Course on Wheel Alignment

A Short Course on Wheel Alignment A Short Course on Wheel Alignment In its most basic form, a wheel alignment consists of adjusting the angles of the wheels so that they are perpendicular to the ground and parallel to each other. The purpose

More information

Stereoscopic 3D Digital Theater System. Operator Manual (MI-2100)

Stereoscopic 3D Digital Theater System. Operator Manual (MI-2100) Stereoscopic 3D Digital Theater System Operator Manual (MI-2100) -1- All information contained in or disclosed by this document is confidential and propriety to masterimage Co., Ltd. (hereinafter referred

More information