Gauss Law in dielectrics

Size: px
Start display at page:

Download "Gauss Law in dielectrics"

Transcription

1 Gauss Law in dielectics We fist deive the diffeential fom of Gauss s law in the pesence of a dielectic. Recall, the diffeential fom of Gauss Law is This law is always tue. E In the pesence of dielectics, we know that we can divide the chages up into two types, fee bound whee bound P E fee P Fom Gauss s law, E P) D ( PYL1_216_L5 fee 1

2 ( H.W.) Gauss Law in dielectics The new field D E P is called the electic displacement It is a vey useful concept, as in tems of the electic displacement, Gauss s law looks the same as in the case of the vacuum, namely, E D fee The souce fo the electic displacement is fee chage only Specifying these fee, specify the D completely Using divegence theoem, the Integal fom of Gauss law: D da Q fee compaed to case of vacuum, This esult is extemely useful in poblems having symmety. Howeve, knowledge of the D is not enough to detemine the E as D E P PYL1_216_L5 E da Q / 2

3 Ex. 4.4 A long staight wie, caying unifom line chage, is suounded by ubbe insulation out to a adius a. Find D. Fo cylindical Gaussian suface shown, the Gauss Law fo dielectic D da Q yields, D(2 sl) L fee D sˆ This holds both within and outside insulation 2 s Since in outside egion, P=, E D D sˆ 2 s E P gives: Howeve, inside ubbe as P is not known, we can not find E. fo s a PYL1_216_L5 3

4 As in the case of E, we wish to wite D in tems of a potential It can be easily shown that no such potential exists fo D, as cul of D is nonzeo D E P E P P e.g., conside the ectangula ba with unifom P inside along its length (& P= outside). Fo the loop shown, P= P dl, by Stokes theoem, P P P D within the loop [It is obvious that P has a non zeo deivative along diections pependicula to the length at the top and bottom sufaces. Hence, The Cul of Electic Displacement P D ] 4 PYL1_216_L5

5 Electostatic Bounday Conditions 2.3.5: How the field E change acoss any suface? By Gauss s Law, fo the wafe-thin Gaussian Pillbox (thickness=) Q A enc E da S No contibutions to flux fom the sides in the limit, so we obtain fo the Nomal component of the field E above E below (Since aea vecto A points in opposite diection on the top and bottom faces of the pillbox) Conclusion: the nomal component of amount of / at any bounday. E is discontinuous by an PYL1_216_L5 5

6 To find the longitudinal component of E : we use E dl fo path In the limit E above l E below Tangential component of the field, H.W. E Combining, Futhe as, ; no contibution fom ends l above E below E V above above E V below below nˆ b E dl When path length dl shinks to zeo a PYL1_216_L5 n = unit vecto nomal to suface V V above Potential is always continuous below 6

7 ( H.W.) The bounday conditions fo D As D obeys Gauss s law, the bounday conditions fo the electic displacement D ae mathematically identical to the bounday conditions fo the electic field E. At the bounday between two media 1 and 2, if thee is a fee suface chage density fee pesent, then the bounday conditions ae: D da Qf enc D P D D D D 2 1 P Dielectic mateials can be divided up into 2 categoies, based on the dependence of P on E. fee 2// 1// 2// P1// PYL1_216_L5 7

8 Electets In most mateials, emoving the electic field causes the polaization to disappea. Such mateials ae called dielectics o paa-electics If the polaization is caused by the pola natue of molecules (i.e., molecules having pemanent dipole moment), those substances ae called as dipola/feoelectic mateials. These dioples get aligned even in the absence of any applied field to give the mateial a pemanent polaization This second class of mateials is also called as Electets. They have vey many uses especially as micophones, piezo tansduces, etc. (Slides 25 onwads to be taken in next lectue on Monday 8 Aug 216) PYL1_216_L5 8

9 Linea dielectics Of the class of mateials fo which the P is induced by the field E, almost all have a P which is popotional to the applied E (povided E is not too stong). P ee Such mateials ae called linea dielectics and the constant of popotionality is called the electic susceptibility of the mateial. This constant is dimensionless. e Fo such linea dielectics, D E P E ee D is also popotion al to Defining, PYL1_216_L5 (1 e) E E ( 1 e) D E 9

10 Linea dielectics ( 1 e) D E Hee is called the pemittivity of the mateial, then by analogy is the pemittivity of the vacuum. Thei atio is called the dielectic constant K o and is dimensionless. K 1 e Dielectic Constants of some substances (at 2C, 1 atm) PYL1_216_L5 1

11 Linea dielectics Note that in any linea dielectic, the volume bound chage density is always popotional to the fee chage density. f e e e e e e e b D D E P 1 1 ) ) (1 ( ) ( 11 f e e b 1 PYL1_216_L5 ] ) (1 [ E D e ] [ f D

12 Linea dielectics Fom the foegoing, we summaize: We can show that even though the dielectic is linea and the electic field E is always deivable fom a potential, the electic displacement and polaization ae not descibed by a potential fo a finite dielectic This is most easily seen by taking any closed path which passes though the mateial and the vacuum outside. (The integal of the electic field ound the closed path is zeo as it is a consevative field (= -ve gadient of a potential)) The polaization is popotional to the field but vanishes on those pats of the path lying in vacuum, so the integal ound the closed path fo P is nonzeo. PYL1_216_L5 12

13 Solving dielectic poblems Dielectic poblems may be divided into two types and solved accodingly. 1. Poblems fo which the Polaization is specified Fo these we fist find the bound chage densities, and P n b P b We then solve the equivalent poblem of these bound chages placed in vacuum. 2. Poblems fo linea dielectics having fee chage Hee, we use Gauss s law fo the electic displacement D in tems of the fee chages. We then use the known pemittivity and susceptibility to find E and P. PYL1_216_L5 13

14 (da in xy-plane and =/2) PYL1_216_L5 14

15 Ex A long cylinde caies a chage density (s) that is popotional to the distance fom the axis such that, ( s) ks, fo some constant k. Find the electic field inside this cylinde. Daw a Gaussian Cylinde of length l and adius s, and applying Gauss Law on it: The enclosed chage is : (Pime coodinates ae used fo Gaussian suface ; d uns fom 2 & dz: l Contibution to suface integal fom cuved suface: No contibution fom sides (as da E) PYL1_216_L5 15

16 Ex. 2.4 An infinite plane caies a unifom suface chage. Find its electic field. PYL1_216_L5 16

17 Pob Use Gauss s law to find the electic field inside a unifomly chaged sphee (chaged density ) Gaussian Suface S E da E / Qenc E. 4 3 ˆ 4 Q R 3 3 E 1 4 Q R 3 PYL1_216_L5 17

18 Pob A thick spheical shell (inne adius=a, oute adius=b) is made of dielectic mateial with a fozen-in polaization, k P( ) ˆ whee k is a constant and is the distance fom cente. Find the electic field in all 3 egions by two methods: (a) Locate all the bound chage, and use Gauss s law to calculate field it poduces. (b) Use D da Q f to find D, and then find E fom (a) enc bound 1 P 2 k P ˆ P ˆ b b k P ˆ a 2 k k 2 at at b, a PYL1_216_L5 18 D E P

19 Pob k enc P( ) ˆ Gauss' s Law E ˆ 2 Fo Fo a a, Q enc b, Q,so enc 4ka 4k ( a) E k a 4k Fo k ' b, Q enc 2 4 a 2 4 ' a 2 Q,so d' E 1 Qenc 1 4k k E ˆ ˆ ˆ k [Due to volume bound chages, b ] 2 PYL1_216_L5 19

20 Pob PYL1_216_L5 2 eveywhee. (b) D Q da D enc f P E P E D 1 k P ˆ ( ) k k E ˆ ˆ 1 b, a Fo b) a & (fo So, E

21 The Loentz Foce Thus chaged paticles ae subject to two additional foces due to the electic and the magnetic fields; in addition to the foces that all othe unchaged paticles can be subjected to. These can be combined to give a single foce equation as, F loentz ee e v Vey often, it is this combined foce which is efeed to as the Loentz foce. The magnetic pat of this foce is most easily peceived in the case of cuents in conductos. We emind ouselves that within a conducto, we have positively chaged nuclei which ae nomally stationay and an almost equal numbe of electons which move feely. B PYL1_216_L5 21

22 Effects of the magnetic field on cuents Using these ules along with the ule that the cuent poduces a magnetic field, shows 1. Paallel cuents attact each othe, 2. Anti paallel cuents epel each othe. PYL1_216_L5 22

23 The cuent in Wie 1, poduce magnetic field at Wie 2. Each moving chage in Wie 2 expeiences a Loentz Foce, as F Q vb Thus, the two cuent caying wies inteact though (i) geneation of magnetic field, & (ii) Loentz foce due to B on moving chage PYL1_216_L5 23

24 SELF STUDY (H.W.) Line Cuents We can define cuents of vaious kinds, the fist is a line cuent. A line chage density tavelling down a wie at speed v I q t l t ( vt) t v I v Applying the Loentz foce ule to ou moving chage density, magnetic foce on a segment of cuent caying wie is F mag v B dq v B dl I B dl As cuent is constant and lie along the wie, F mag I B dl I dl B PYL1_216_L5 24

25 SELF STUDY (H.W.) Suface cuents Fo a chage flow ove a suface; we define a suface cuent density K Cuent pe unit width pependicula to flow K di dl If is the mobile suface chage density, K I l 1 l q t 1 l ( vt l t We can use the Loentz foce law to compute the foce on this suface cuent K, K v F mag v B dq v B da F mag K B da PYL1_216_L5 ) v 25

26 Volume cuent density, J J cuent pe unit aea pependicula to flow If is mobile volume chage density (with velocity v) Foce on this volume cuent is, : di J J da J v Volume cuent density v t t v t l a a t q a a I J ) ( ) ( 1 1 d B v d B v B dq v F mag ) ( d B J F mag PYL1_216_L5 26 SELF STUDY (H.W.)

27 SELF STUDY (H.W.) Consevation of chage Cuent cossing a suface S, I Jda J da S S Total chage pe unit time leaving a volume V is, S J da V J d (using Div. theoem) Whateve flows out though the suface must come at the expense of that emaining inside: V dq dt d dt J d d d V V t PYL1_216_L5 27

28 SELF STUDY (H.W.) V dq dt d dt J d d d -ve sign means: the cuent flow deceases the chage left in V J Continuity equation mathematical statement of local chage consevation V t V t PYL1_216_L5 28

29 SELF STUDY (H.W.) Magneto-statics STEADY CURRENTS: We define these by analogy Steady cuents Continuous flow (So, no change and without chage piling up!) Thus, a point chage cannot constitute a steady cuent Steady cuent in a wie implies, I must be the same all along the wie, which equies that t J PYL1_216_L5 Slide No.29

30 SELF STUDY (H.W.) Biot Savat Law Fo a steady line cuent, the Biot Savat Law states B( ) I ˆ ˆ dl ' dl' I =41-7 N/A 2 Pemeability of space Units of B ae Tesla (=1N/(A-m)); 1 T = 1, Gauss Biot Savat law has the same impotance fo Magneto statics as Coulomb s law has fo Electostatics. Fo finite cuent loops, it has a 1 2 dependence PYL1_216_L5 Slide No.3

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information

Chapter 2. Electrostatics

Chapter 2. Electrostatics Chapte. Electostatics.. The Electostatic Field To calculate the foce exeted by some electic chages,,, 3,... (the souce chages) on anothe chage Q (the test chage) we can use the pinciple of supeposition.

More information

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere. Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming

More information

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C Geneal Physics - PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit

More information

Forces & Magnetic Dipoles. r r τ = μ B r

Forces & Magnetic Dipoles. r r τ = μ B r Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent

More information

Chapter 30: Magnetic Fields Due to Currents

Chapter 30: Magnetic Fields Due to Currents d Chapte 3: Magnetic Field Due to Cuent A moving electic chage ceate a magnetic field. One of the moe pactical way of geneating a lage magnetic field (.1-1 T) i to ue a lage cuent flowing though a wie.

More information

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2

Gravitation and Kepler s Laws Newton s Law of Universal Gravitation in vectorial. Gm 1 m 2. r 2 F Gm Gavitation and Keple s Laws Newton s Law of Univesal Gavitation in vectoial fom: F 12 21 Gm 1 m 2 12 2 ˆ 12 whee the hat (ˆ) denotes a unit vecto as usual. Gavity obeys the supeposition pinciple,

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

Charges, Coulomb s Law, and Electric Fields

Charges, Coulomb s Law, and Electric Fields Q&E -1 Chages, Coulomb s Law, and Electic ields Some expeimental facts: Expeimental fact 1: Electic chage comes in two types, which we call (+) and ( ). An atom consists of a heavy (+) chaged nucleus suounded

More information

Lesson 7 Gauss s Law and Electric Fields

Lesson 7 Gauss s Law and Electric Fields Lesson 7 Gauss s Law and Electic Fields Lawence B. Rees 7. You may make a single copy of this document fo pesonal use without witten pemission. 7. Intoduction While it is impotant to gain a solid conceptual

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

A r. (Can you see that this just gives the formula we had above?)

A r. (Can you see that this just gives the formula we had above?) 24-1 (SJP, Phys 1120) lectic flux, and Gauss' law Finding the lectic field due to a bunch of chages is KY! Once you know, you know the foce on any chage you put down - you can pedict (o contol) motion

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges

The force between electric charges. Comparing gravity and the interaction between charges. Coulomb s Law. Forces between two charges The foce between electic chages Coulomb s Law Two chaged objects, of chage q and Q, sepaated by a distance, exet a foce on one anothe. The magnitude of this foce is given by: kqq Coulomb s Law: F whee

More information

Mechanics 1: Motion in a Central Force Field

Mechanics 1: Motion in a Central Force Field Mechanics : Motion in a Cental Foce Field We now stud the popeties of a paticle of (constant) ass oving in a paticula tpe of foce field, a cental foce field. Cental foces ae ve ipotant in phsics and engineeing.

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is

More information

SELF-INDUCTANCE AND INDUCTORS

SELF-INDUCTANCE AND INDUCTORS MISN-0-144 SELF-INDUCTANCE AND INDUCTORS SELF-INDUCTANCE AND INDUCTORS by Pete Signell Michigan State Univesity 1. Intoduction.............................................. 1 A 2. Self-Inductance L.........................................

More information

Lesson 8 Ampère s Law and Differential Operators

Lesson 8 Ampère s Law and Differential Operators Lesson 8 Ampèe s Law and Diffeential Opeatos Lawence Rees 7 You ma make a single cop of this document fo pesonal use without witten pemission 8 Intoduction Thee ae significant diffeences between the electic

More information

AP Physics Electromagnetic Wrap Up

AP Physics Electromagnetic Wrap Up AP Physics Electomagnetic Wap Up Hee ae the gloious equations fo this wondeful section. F qsin This is the equation fo the magnetic foce acting on a moing chaged paticle in a magnetic field. The angle

More information

Deflection of Electrons by Electric and Magnetic Fields

Deflection of Electrons by Electric and Magnetic Fields Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An

More information

Solution Derivations for Capa #8

Solution Derivations for Capa #8 Solution Deivations fo Capa #8 1) A ass spectoete applies a voltage of 2.00 kv to acceleate a singly chaged ion (+e). A 0.400 T field then bends the ion into a cicula path of adius 0.305. What is the ass

More information

The Role of Gravity in Orbital Motion

The Role of Gravity in Orbital Motion ! The Role of Gavity in Obital Motion Pat of: Inquiy Science with Datmouth Developed by: Chistophe Caoll, Depatment of Physics & Astonomy, Datmouth College Adapted fom: How Gavity Affects Obits (Ohio State

More information

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r Moment and couple In 3-D, because the detemination of the distance can be tedious, a vecto appoach becomes advantageous. o k j i M k j i M o ) ( ) ( ) ( + + M o M + + + + M M + O A Moment about an abita

More information

PY1052 Problem Set 8 Autumn 2004 Solutions

PY1052 Problem Set 8 Autumn 2004 Solutions PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what

More information

Experiment MF Magnetic Force

Experiment MF Magnetic Force Expeiment MF Magnetic Foce Intoduction The magnetic foce on a cuent-caying conducto is basic to evey electic moto -- tuning the hands of electic watches and clocks, tanspoting tape in Walkmans, stating

More information

Functions of a Random Variable: Density. Math 425 Intro to Probability Lecture 30. Definition Nice Transformations. Problem

Functions of a Random Variable: Density. Math 425 Intro to Probability Lecture 30. Definition Nice Transformations. Problem Intoduction One Function of Random Vaiables Functions of a Random Vaiable: Density Math 45 Into to Pobability Lectue 30 Let gx) = y be a one-to-one function whose deiatie is nonzeo on some egion A of the

More information

GAUSS S LAW APPLIED TO CYLINDRICAL AND PLANAR CHARGE DISTRIBUTIONS ` E MISN-0-133. CHARGE DISTRIBUTIONS by Peter Signell, Michigan State University

GAUSS S LAW APPLIED TO CYLINDRICAL AND PLANAR CHARGE DISTRIBUTIONS ` E MISN-0-133. CHARGE DISTRIBUTIONS by Peter Signell, Michigan State University MISN-0-133 GAUSS S LAW APPLIED TO CYLINDRICAL AND PLANAR CHARGE DISTRIBUTIONS GAUSS S LAW APPLIED TO CYLINDRICAL AND PLANAR CHARGE DISTRIBUTIONS by Pete Signell, Michigan State Univesity 1. Intoduction..............................................

More information

Chapter 4: Fluid Kinematics

Chapter 4: Fluid Kinematics Oveview Fluid kinematics deals with the motion of fluids without consideing the foces and moments which ceate the motion. Items discussed in this Chapte. Mateial deivative and its elationship to Lagangian

More information

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL

CHAPTER 5 GRAVITATIONAL FIELD AND POTENTIAL CHATER 5 GRAVITATIONAL FIELD AND OTENTIAL 5. Intoduction. This chapte deals with the calculation of gavitational fields and potentials in the vicinity of vaious shapes and sizes of massive bodies. The

More information

Carter-Penrose diagrams and black holes

Carter-Penrose diagrams and black holes Cate-Penose diagams and black holes Ewa Felinska The basic intoduction to the method of building Penose diagams has been pesented, stating with obtaining a Penose diagam fom Minkowski space. An example

More information

VISCOSITY OF BIO-DIESEL FUELS

VISCOSITY OF BIO-DIESEL FUELS VISCOSITY OF BIO-DIESEL FUELS One of the key assumptions fo ideal gases is that the motion of a given paticle is independent of any othe paticles in the system. With this assumption in place, one can use

More information

Exam in physics, El-grunder (Electromagnetism), 2014-03-26, kl 9.00-15.00

Exam in physics, El-grunder (Electromagnetism), 2014-03-26, kl 9.00-15.00 Umeå Univesitet, Fysik 1 Vitly Bychkov Em in physics, El-gunde (Electomgnetism, 14--6, kl 9.-15. Hjälpmedel: Students my use ny book(s. Mino notes in the books e lso llowed. Students my not use thei lectue

More information

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3

Lecture 16: Color and Intensity. and he made him a coat of many colours. Genesis 37:3 Lectue 16: Colo and Intensity and he made him a coat of many colous. Genesis 37:3 1. Intoduction To display a pictue using Compute Gaphics, we need to compute the colo and intensity of the light at each

More information

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of Homewok VI Ch. 7 - Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the

More information

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6 Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe

More information

Chapter 4: Fluid Kinematics

Chapter 4: Fluid Kinematics 4-1 Lagangian g and Euleian Desciptions 4-2 Fundamentals of Flow Visualization 4-3 Kinematic Desciption 4-4 Reynolds Tanspot Theoem (RTT) 4-1 Lagangian and Euleian Desciptions (1) Lagangian desciption

More information

Mechanics 1: Work, Power and Kinetic Energy

Mechanics 1: Work, Power and Kinetic Energy Mechanics 1: Wok, Powe and Kinetic Eneg We fist intoduce the ideas of wok and powe. The notion of wok can be viewed as the bidge between Newton s second law, and eneg (which we have et to define and discuss).

More information

Fluids Lecture 15 Notes

Fluids Lecture 15 Notes Fluids Lectue 15 Notes 1. Unifom flow, Souces, Sinks, Doublets Reading: Andeson 3.9 3.12 Unifom Flow Definition A unifom flow consists of a velocit field whee V = uî + vĵ is a constant. In 2-D, this velocit

More information

Solutions for Physics 1301 Course Review (Problems 10 through 18)

Solutions for Physics 1301 Course Review (Problems 10 through 18) Solutions fo Physics 1301 Couse Review (Poblems 10 though 18) 10) a) When the bicycle wheel comes into contact with the step, thee ae fou foces acting on it at that moment: its own weight, Mg ; the nomal

More information

Introduction to Fluid Mechanics

Introduction to Fluid Mechanics Chapte 1 1 1.6. Solved Examples Example 1.1 Dimensions and Units A body weighs 1 Ibf when exposed to a standad eath gavity g = 3.174 ft/s. (a) What is its mass in kg? (b) What will the weight of this body

More information

Episode 401: Newton s law of universal gravitation

Episode 401: Newton s law of universal gravitation Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce

More information

Coordinate Systems L. M. Kalnins, March 2009

Coordinate Systems L. M. Kalnins, March 2009 Coodinate Sstems L. M. Kalnins, Mach 2009 Pupose of a Coodinate Sstem The pupose of a coodinate sstem is to uniquel detemine the position of an object o data point in space. B space we ma liteall mean

More information

Electrostatic properties of conductors and dielectrics

Electrostatic properties of conductors and dielectrics Unit Electostatic popeties of conductos and dielectics. Intoduction. Dielectic beaking. onducto in electostatic equilibium..3 Gound connection.4 Phenomena of electostatic influence. Electostatic shields.5

More information

Model Question Paper Mathematics Class XII

Model Question Paper Mathematics Class XII Model Question Pape Mathematics Class XII Time Allowed : 3 hous Maks: 100 Ma: Geneal Instuctions (i) The question pape consists of thee pats A, B and C. Each question of each pat is compulsoy. (ii) Pat

More information

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION

TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION MISN-0-34 TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION shaft TORQUE AND ANGULAR MOMENTUM IN CIRCULAR MOTION by Kiby Mogan, Chalotte, Michigan 1. Intoduction..............................................

More information

Displacement, Velocity And Acceleration

Displacement, Velocity And Acceleration Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,

More information

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013 PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0

More information

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

Uniform Rectilinear Motion

Uniform Rectilinear Motion Engineeing Mechanics : Dynamics Unifom Rectilinea Motion Fo paticle in unifom ectilinea motion, the acceleation is zeo and the elocity is constant. d d t constant t t 11-1 Engineeing Mechanics : Dynamics

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distibution A. It would be vey tedious if, evey time we had a slightly diffeent poblem, we had to detemine the pobability distibutions fom scatch. Luckily, thee ae enough similaities between

More information

Gravitation. AP Physics C

Gravitation. AP Physics C Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this inestigation

More information

Lab M4: The Torsional Pendulum and Moment of Inertia

Lab M4: The Torsional Pendulum and Moment of Inertia M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disk-like mass suspended fom a thin od o wie. When the mass is twisted about the

More information

Excitation energies for molecules by Time-Dependent. based on Effective Exact Exchange Kohn-Sham potential

Excitation energies for molecules by Time-Dependent. based on Effective Exact Exchange Kohn-Sham potential Excitation enegies fo molecules by Time-Dependent Density-Functional Theoy based on Effective Exact Exchange Kohn-Sham potential Fabio Della Sala National Nanotechnology Laboatoies Lecce Italy A. Göling

More information

Supplementary Material for EpiDiff

Supplementary Material for EpiDiff Supplementay Mateial fo EpiDiff Supplementay Text S1. Pocessing of aw chomatin modification data In ode to obtain the chomatin modification levels in each of the egions submitted by the use QDCMR module

More information

NURBS Drawing Week 5, Lecture 10

NURBS Drawing Week 5, Lecture 10 CS 43/585 Compute Gaphics I NURBS Dawing Week 5, Lectue 1 David Been, William Regli and Maim Pesakhov Geometic and Intelligent Computing Laboato Depatment of Compute Science Deel Univesit http://gicl.cs.deel.edu

More information

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary 7 Cicula Motion 7-1 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o

More information

Multiple choice questions [70 points]

Multiple choice questions [70 points] Multiple choice questions [70 points] Answe all of the following questions. Read each question caefull. Fill the coect bubble on ou scanton sheet. Each question has exactl one coect answe. All questions

More information

Questions for Review. By buying bonds This period you save s, next period you get s(1+r)

Questions for Review. By buying bonds This period you save s, next period you get s(1+r) MACROECONOMICS 2006 Week 5 Semina Questions Questions fo Review 1. How do consumes save in the two-peiod model? By buying bonds This peiod you save s, next peiod you get s() 2. What is the slope of a consume

More information

PAN STABILITY TESTING OF DC CIRCUITS USING VARIATIONAL METHODS XVIII - SPETO - 1995. pod patronatem. Summary

PAN STABILITY TESTING OF DC CIRCUITS USING VARIATIONAL METHODS XVIII - SPETO - 1995. pod patronatem. Summary PCE SEMINIUM Z PODSTW ELEKTOTECHNIKI I TEOII OBWODÓW 8 - TH SEMIN ON FUNDMENTLS OF ELECTOTECHNICS ND CICUIT THEOY ZDENĚK BIOLEK SPŠE OŽNO P.., CZECH EPUBLIC DLIBO BIOLEK MILITY CDEMY, BNO, CZECH EPUBLIC

More information

2. Orbital dynamics and tides

2. Orbital dynamics and tides 2. Obital dynamics and tides 2.1 The two-body poblem This efes to the mutual gavitational inteaction of two bodies. An exact mathematical solution is possible and staightfowad. In the case that one body

More information

Magnetic Bearing with Radial Magnetized Permanent Magnets

Magnetic Bearing with Radial Magnetized Permanent Magnets Wold Applied Sciences Jounal 23 (4): 495-499, 2013 ISSN 1818-4952 IDOSI Publications, 2013 DOI: 10.5829/idosi.wasj.2013.23.04.23080 Magnetic eaing with Radial Magnetized Pemanent Magnets Vyacheslav Evgenevich

More information

Classical Mechanics (CM):

Classical Mechanics (CM): Classical Mechanics (CM): We ought to have some backgound to aeciate that QM eally does just use CM and makes one slight modification that then changes the natue of the oblem we need to solve but much

More information

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom

Chapter 17 The Kepler Problem: Planetary Mechanics and the Bohr Atom Chapte 7 The Keple Poblem: Planetay Mechanics and the Boh Atom Keple s Laws: Each planet moves in an ellipse with the sun at one focus. The adius vecto fom the sun to a planet sweeps out equal aeas in

More information

Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud

Structure and evolution of circumstellar disks during the early phase of accretion from a parent cloud Cente fo Tubulence Reseach Annual Reseach Biefs 2001 209 Stuctue and evolution of cicumstella disks duing the ealy phase of accetion fom a paent cloud By Olusola C. Idowu 1. Motivation and Backgound The

More information

Chapter 2 Coulomb s Law

Chapter 2 Coulomb s Law Chapte Coulomb s Law.1 lectic Chage...-3. Coulomb's Law...-3 Animation.1: Van de Gaaff Geneato...-4.3 Pinciple of Supeposition...-5 xample.1: Thee Chages...-5.4 lectic Field...-7 Animation.: lectic Field

More information

3 Molecules in Electric and Magnetic Fields

3 Molecules in Electric and Magnetic Fields Chapte, page Molecules in Electic and Magnetic Fields. Basic Equations fom Electodynamics The basis of the desciption of the behaviou of molecules in electic and magnetic fields ae the mateial equations

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P

More information

(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m?

(Ch. 22.5) 2. What is the magnitude (in pc) of a point charge whose electric field 50 cm away has a magnitude of 2V/m? Em I Solutions PHY049 Summe 0 (Ch..5). Two smll, positively chged sphees hve combined chge of 50 μc. If ech sphee is epelled fom the othe by n electosttic foce of N when the sphees e.0 m pt, wht is the

More information

Dipole moments 1 2.10 DETERMINATION OF DIPOLE MOMENT FROM RELATIVE PERMITTIVITY AND REFRACTIVE INDEX. Plates applying external electric field

Dipole moments 1 2.10 DETERMINATION OF DIPOLE MOMENT FROM RELATIVE PERMITTIVITY AND REFRACTIVE INDEX. Plates applying external electric field Dipole moments 1.10 DETERMINATION OF DIPOLE MOMENT FROM RELATIVE PERMITTIVITY AND REFRACTIVE INDEX (4 points) Plates applying extenal electic field Suface chages on dielectic block Figue 1. Polaization

More information

Do Vibrations Make Sound?

Do Vibrations Make Sound? Do Vibations Make Sound? Gade 1: Sound Pobe Aligned with National Standads oveview Students will lean about sound and vibations. This activity will allow students to see and hea how vibations do in fact

More information

F G r. Don't confuse G with g: "Big G" and "little g" are totally different things.

F G r. Don't confuse G with g: Big G and little g are totally different things. G-1 Gavity Newton's Univesal Law of Gavitation (fist stated by Newton): any two masses m 1 and m exet an attactive gavitational foce on each othe accoding to m m G 1 This applies to all masses, not just

More information

dz + η 1 r r 2 + c 1 ln r + c 2 subject to the boundary conditions of no-slip side walls and finite force over the fluid length u z at r = 0

dz + η 1 r r 2 + c 1 ln r + c 2 subject to the boundary conditions of no-slip side walls and finite force over the fluid length u z at r = 0 Poiseuille Flow Jean Louis Maie Poiseuille, a Fench physicist and physiologist, was inteested in human blood flow and aound 1840 he expeimentally deived a law fo flow though cylindical pipes. It s extemely

More information

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to . Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate

More information

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project

Spirotechnics! September 7, 2011. Amanda Zeringue, Michael Spannuth and Amanda Zeringue Dierential Geometry Project Spiotechnics! Septembe 7, 2011 Amanda Zeingue, Michael Spannuth and Amanda Zeingue Dieential Geomety Poject 1 The Beginning The geneal consensus of ou goup began with one thought: Spiogaphs ae awesome.

More information

NUCLEAR MAGNETIC RESONANCE

NUCLEAR MAGNETIC RESONANCE 19 Jul 04 NMR.1 NUCLEAR MAGNETIC RESONANCE In this expeiment the phenomenon of nuclea magnetic esonance will be used as the basis fo a method to accuately measue magnetic field stength, and to study magnetic

More information

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360! 1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the

More information

The LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero.

The LCOE is defined as the energy price ($ per unit of energy output) for which the Net Present Value of the investment is zero. Poject Decision Metics: Levelized Cost of Enegy (LCOE) Let s etun to ou wind powe and natual gas powe plant example fom ealie in this lesson. Suppose that both powe plants wee selling electicity into the

More information

UNIT CIRCLE TRIGONOMETRY

UNIT CIRCLE TRIGONOMETRY UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -

More information

12.1. FÖRSTER RESONANCE ENERGY TRANSFER

12.1. FÖRSTER RESONANCE ENERGY TRANSFER ndei Tokmakoff, MIT epatment of Chemisty, 3/5/8 1-1 1.1. FÖRSTER RESONNCE ENERGY TRNSFER Föste esonance enegy tansfe (FR) efes to the nonadiative tansfe of an electonic excitation fom a dono molecule to

More information

Continuous Compounding and Annualization

Continuous Compounding and Annualization Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem

More information

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2 Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the

More information

Symmetric polynomials and partitions Eugene Mukhin

Symmetric polynomials and partitions Eugene Mukhin Symmetic polynomials and patitions Eugene Mukhin. Symmetic polynomials.. Definition. We will conside polynomials in n vaiables x,..., x n and use the shotcut p(x) instead of p(x,..., x n ). A pemutation

More information

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 10 Solutions

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 10 Solutions Peason Physics Level 30 Unit VI Foces and Fields: hapte 10 Solutions Student Book page 518 oncept heck 1. It is easie fo ebonite to eove electons fo fu than fo silk.. Ebonite acquies a negative chage when

More information

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field

Physics HSC Course Stage 6. Space. Part 1: Earth s gravitational field Physics HSC Couse Stage 6 Space Pat 1: Eath s gavitational field Contents Intoduction... Weight... 4 The value of g... 7 Measuing g...8 Vaiations in g...11 Calculating g and W...13 You weight on othe

More information

Semipartial (Part) and Partial Correlation

Semipartial (Part) and Partial Correlation Semipatial (Pat) and Patial Coelation his discussion boows heavily fom Applied Multiple egession/coelation Analysis fo the Behavioal Sciences, by Jacob and Paticia Cohen (975 edition; thee is also an updated

More information

Chapte 3 Is Gavitation A Results Of Asymmetic Coulomb Chage Inteactions? Jounal of Undegaduate Reseach èjurè Univesity of Utah è1992è, Vol. 3, No. 1, pp. 56í61. Jeæey F. Gold Depatment of Physics, Depatment

More information

An Introduction to Omega

An Introduction to Omega An Intoduction to Omega Con Keating and William F. Shadwick These distibutions have the same mean and vaiance. Ae you indiffeent to thei isk-ewad chaacteistics? The Finance Development Cente 2002 1 Fom

More information

Problem Set # 9 Solutions

Problem Set # 9 Solutions Poblem Set # 9 Solutions Chapte 12 #2 a. The invention of the new high-speed chip inceases investment demand, which shifts the cuve out. That is, at evey inteest ate, fims want to invest moe. The incease

More information

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM

AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM AN IMPLEMENTATION OF BINARY AND FLOATING POINT CHROMOSOME REPRESENTATION IN GENETIC ALGORITHM Main Golub Faculty of Electical Engineeing and Computing, Univesity of Zageb Depatment of Electonics, Micoelectonics,

More information

TECHNICAL DATA. JIS (Japanese Industrial Standard) Screw Thread. Specifications

TECHNICAL DATA. JIS (Japanese Industrial Standard) Screw Thread. Specifications JIS (Japanese Industial Standad) Scew Thead Specifications TECNICAL DATA Note: Although these specifications ae based on JIS they also apply to and DIN s. Some comments added by Mayland Metics Coutesy

More information

High-frequency properties of systems with drifting electrons and polar optical phonons

High-frequency properties of systems with drifting electrons and polar optical phonons Semiconducto Physics, Quantum Electonics & Optoelectonics, 8. V., N. P. 43-49. PACS 7.38.-k High-fequency popeties of systems with difting electons and pola optical phonons S.M. Kukhtauk V. Lashkayov Institute

More information

Relativistic Quantum Mechanics

Relativistic Quantum Mechanics Chapte Relativistic Quantum Mechanics In this Chapte we will addess the issue that the laws of physics must be fomulated in a fom which is Loentz invaiant, i.e., the desciption should not allow one to

More information

Multiple choice questions [60 points]

Multiple choice questions [60 points] 1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions

More information

Nontrivial lower bounds for the least common multiple of some finite sequences of integers

Nontrivial lower bounds for the least common multiple of some finite sequences of integers J. Numbe Theoy, 15 (007), p. 393-411. Nontivial lowe bounds fo the least common multiple of some finite sequences of integes Bai FARHI bai.fahi@gmail.com Abstact We pesent hee a method which allows to

More information

Chapter 3 Savings, Present Value and Ricardian Equivalence

Chapter 3 Savings, Present Value and Ricardian Equivalence Chapte 3 Savings, Pesent Value and Ricadian Equivalence Chapte Oveview In the pevious chapte we studied the decision of households to supply hous to the labo maket. This decision was a static decision,

More information