Helium neon lasers flourish in face of diode-laser competition

Size: px
Start display at page:

Download "Helium neon lasers flourish in face of diode-laser competition"

Transcription

1 Helium neon lasers flourish in face of diode-laser competition The venerable HeNe laser still has a place in applications that need coherence, visible wavelengths, and good beam quality. Jeff Hecht, Contributing Editor Competition from semiconductor lasers has forced the helium neon (HeNe) laser to evolve. A diode laser can generate a 1-mW beam more cheaply and more efficiently, from a much smaller package, and without the need for high voltage. HeNe lasers survive because they have other advantages, including better coherence, better beam quality, and shorter wavelengths. These advantages combine to let HeNe lasers do some jobs that diode lasers cannot, such as recording holograms or generating milliwatt powers of green, yellow, or orange light. Red HeNe lasers remain cost-effective for other applications, such as high-speed laser printers and certain displays, because the human eye and many materials are more sensitive to the 633-nm HeNe line than to the 650- to 680-nm output of current commercial red diode lasers. Diode lasers are encroaching on many traditional HeNe-laser markets, including the largest one - barcode scanners. But the HeNe laser is not dead yet. HeNe-laser manufacturers are reducing production costs, improving lifetimes, and finetuning performance, which has helped HeNe lasers retain a healthy share of many markets, including fixed barcode scanners at supermarket checkouts, holography, and diagnostic medical systems. In addition, continuing production of equipment designed with HeNe lasers and a large installed base of existing HeNe-laser systems ensure a continuing market for new and replacement tubes. And before you scoff at the HeNe laser as just another vacuum tube, remember that electronics suppliers still stock some vacuum tubes 40 years after Sony built the first transistor radio. BASICS OF HENE-LASER OPERATION The first gas laser demonstrated the HeNe laser was constructed in 1961 by Ali Javan, Donald Herriott, and William Bennett at AT&T Bell Laboratories (Murray Hill, NJ). The original HeNe laser emitted at 1153 nm in the infrared (IR); lasing on the visible red line was demonstrated the following year. Since then, that strong nm red line has been the dominant wavelength. Commercial lasers can generate tens of milliwatts CW on the red line, although typical HeNe Laser - 1 (5) -

2 power levels are in the milliwatt range. Millions of milliwatt range red HeNe lasers have been sold since they came on the market in the 1960s, and they are the usual types used to demonstrate laser operation in schools and museums. Infrared, green, yellow, and orange HeNe lasers are also available, but for most purposes the basic HeNe laser remains a small red-emitting laser. The standard HeNe laser is a sausage-shaped glass tube filled with gas. An electric discharge passing between electrodes at opposite ends of the tube excites the gas, producing a population inversion. Light resonates between mirrors at opposite ends of the tube; one is totally reflecting, the other transmits about 1% of the incident light, which emerges as the beam. Cavity lengths range from about 10 cm to 2 m long. Over the years, the internal structure has become complex (see figure on the previous page). The discharge passes from the cathode to the anode through a capillary bore that is about 1 mm in diameter, which concentrates the discharge current to improve overall efficiency. The smalldiameter bore also controls transverse mode structure, beam diameter, and beam divergence. Overall tube diameter is much larger, typically about 3 cm, to provide a gas reservoir. Direct bonding of the mirrors to metal end plates on the tube reduces helium leakage to rates low enough that standard mass-produced tubes have operating lifetimes of 20,000 to 25,000 h. (Some special-purpose HeNe lasers are made with Brewster-angle windows and external-cavity mirrors; these typically are for multiwavelength or highpower operation.) The active medium in a HeNe laser is a mixture of helium and neon with total pressure of a fraction of a torr to several torr, depending on tube diameter. Typical mixtures contain 5 to 12 times more helium than neon. After an ignition pulse of 10 kv breaks down the gas to start laser operation, a current of a few milliamperes passes through the tube at V. Electrons in the discharge raise both helium and neon atoms to excited states. The moreabundant helium atoms collect most of the energy, then transfer it to neon atoms, which have excited states at about the same energy. The excited neon atoms then drop to lower metastable levels. Lasing is possible on several transitions, with the wavelength selected by the choice of optics and operating conditions (see Fig. 1). Although standard HeNe lasers are linear tubes, one unusual variation the ring laser-has found unusual applications. Ring laser resonators have three or four mirrors that define a "ring" path inside the laser cavity (see Fig. 2). Light oscillates around the ring in both directions. Slight differences between the two counterpropagating beams can detect rotation around the central axis in ring-laser gyroscopes used in commercial and military aerospace systems. Figure 1. Many HeNe-laser transitions are possible (solid lines with arrows). The expanded view at right shows how transitions to different sublevels produce the family of visible HeNe-laser lines. The strongest transition is at nm. - 2 (5) -

3 WAVELENGTHS AND PROPERTIES Red HeNe lasers operating on the nm line remain the least expensive and offer the highest power levels. Ironically, the gain at nm (0.5 db/m) is much lower than a gain at 3.39 μm (22 db/m). 1 A lack of applications for the strong IR line, however, led developers to concentrate on the nm red line. As the table shows, gain on the red line is 5 to 17 times higher than gain on other visible lines, and the highest visible powers are in the red. The other visible lines probably would not have been developed if HeNe-laser technology had not already been established for red lasers. Typical red powers are mw, with the most powerful commercial models rated at 75 mw. The 543 nm green line is the weakest, with highest powers only about 1.5 mw, but there is strong interest in that wavelength. The yellow and orange lines can deliver more power, but fall far short of the 633 nm red line. Some HeNe lasers can be tuned to emit on several visible and near-ir lines from 543 to 730 nm or to emit simultaneously on several visible lines. Infrared HeNe lasers have long been available, primarily at and 3392 nm, where powers can reach tens of milliwatts. A weak line at HELIUM NEON WAVELENGTHS AND POWER LEVELS Wavelength (nm) Maximum power (mw) Gain (relative to nm) / / / / / / / / / / nm, generating up to 1.5 mw, has attracted interest because it falls into the window of minimum loss in silica-glass optical fibers, making it useful for testing. Limited production and the need for special optics combine to make prices higher for HeNe lasers operating at wavelengths other than the standard red line. Sales of mass-produced red HeNe lasers remain much larger than those of HeNe lasers operating at other wavelengths, but the number of those specialty lasers may grow as diode lasers displace red HeNe lasers in many traditional uses. BANDWIDTH AND COHERENCE Most HeNe lasers oscillate in a single transverse mode, producing a TEM 00 beam with classical Gaussian-intensity distribution, but some models emit multiple transverse modes. The Doppler-broadened gain curve of mass-produced HeNe lasers typically is about 1.4 GHz, the equivalent of nm in the red. This spans several narrow longitudinal cavity modes (the number is dependent on the length of the cavity), which determines mode spacing (see Fig. 3). The shorter the laser cavity, the fewer modes fall under the gain curve. Mass-produced HeNe lasers with normal linewidth of 1 part in have coherence lengths of cm, adequate for holography of small objects if care is taken. If narrower linewidth is required, optics can be added to restrict oscillation to a single cavity mode, which also greatly extends coherence length. Figure 2. A triangular ring laser can be used to sense rotation around the laser axis. - 3 (5) -

4 APPLICATIONS Sales of HeNe lasers rose steadily through the 1980s, driven largely by the growth of barcode scanning-first in supermarkets, then in other inventory-control applications. HeNe lasers have long dominated that market, but other light sources recently captured a large share. The reasons are partly historical. Barcode developers wrote their initial standards for the Universal Product Code (UPC) in the 1970s, at a time when the HeNe laser was the only low-cost, mass-produced laser. Those specifications included the assumption that UPC symbols would be read at the red HeNe-laser wavelength. That specification allows visible inspection of barcode quality during printing and lets packagers use colors other than black and white, but it forces all scanners to use red light. The high beam quality of HeNe lasers is essential for supermarket scanners. The beam repetitively scans a well-defined pattern, and variations in the scattered light are decoded to read the symbols. In theory, the scanner should be able to read barcodes regardless of their orientation if they come reasonably close to the scanning window in the checkout counter. Reading barcodes without regard to their orientation requires a large depth of focus, which is possible only with a good-quality beam, because the window is about 0.5 m from the laser head Figure 3. Doppler-broadened gain curve of a HeNe laser shows the much narrower cavity resonances that lie within the curve. Doppler FWHM (full width at half maximum) is 1.4 GHz ( nm), mode spacing is 0.5 GHz ( nm) and cavity FWHM is 1.2 MHz ( nm) when HeNe gain peaks at Hz (632.8 nm). under the checkout counter. That depth of focus is not needed for hand-held wand scanners used in lower-volume retail operations in which clerks pass the scanner directly over the barcode. At this writing, HeNe lasers remain the standard choice for stationary checkout scanners, but red diode lasers and LEDs are preferred for scanners that do not require great depth of focus. Helium neon lasers are well established in a broad range of applications. While some of these applications may be challenged by visible diode lasers, the better coherence, beam quality, and wavelength of HeNe lasers will hold other applications. Holography. The coherence, low cost, and visible output of red HeNe lasers have made them the standard choice for recording holograms of stationary objects since the first laser holograms were made in the early 1960s. They are likely to remain so because their output is more coherent than standard diode lasers. Demonstrations and displays. Red HeNe lasers have been the standard choice for school and museum laser demonstrations because of their good beam quality, coherence, and modest cost. Similarly, they are used in laser displays in which their red color and milliwatt power levels will suffice. Other visible HeNe-laser lines can be used in displays, taking advantage of the human eye's greater sensitivity at shorter wavelengths. Red diode lasers have captured much of the market for laser pointers, because diode lasers can be made much smaller and can operate from batteries for a reasonable time. Alignment and positioning. An early commercial use of HeNe lasers was to draw straight lines to aid in aligning or positioning using human eyes or electronic detectors. Construction workers use scanning beams to define a plane or line while building walls and hanging ceilings. Visible lasers draw straight lines to keep sewer pipes and tunnels on straight courses. Laser beams are used to align grading equipment for construction and agricultural irrigation. Lasers define straight paths for ma-chine tools and help medical personnel position patients in x-ray imaging systems. Infrared diode lasers have replaced HeNe lasers in some systems with electronic sensors; the use of visible diode lasers is spreading. HeNe lasers offer better beam quality and visibility than visible diode lasers, but their larger power requirement is a disadvantage. Writing and recording. A modulated laser beam can be scanned across a light-sensitive sur- - 4 (5) -

5 face to record information. In laser printers, the beam scans a photoconductive drum, discharging the electrostatic charge held by the surface at points where the beam on, producing a pattern that is printed by a copier-like process. Lasers also can encode data as a series of dots on light-sensitive disks for computer data storage. Initially, HeNe lasers were used for these applications, but today most systems use semiconductor lasers, except for high-speed printing. HeNe lasers also are used in some printing and publishing applications such as color separation and reprographics. Medicine. Red HeNe lasers have been used in several types of medical therapy, primarily unconventional treatments such as laser acupuncture, biostimulation, wound-healing stimulation, and pain alleviation, but they are being replaced by visible diode lasers in many of these treatments. The orthodox medical establishment uses HeNe lasers as pointers for IR surgical lasers. HeNe lasers are also used in diagnostic instruments that sort cells and perform biological measurement such as light scattering. The green and yellow lines can excite fluorescent dyes and also are used in instrumentation for cell sorting and counting. Measarement. Good coherence and beam quality make red HeNe lasers the most common choice for interferometric measurements of surface contours. They also are used to measure light scattering, as are some HeNe lasers operating at other visible wavelengths. Ring lasers are used as rotation sensors or laser gyroscopes for aircraft navigation; they are standard on Boeing 757 and 767 airliners. Research and development. HeNe lasers provide inexpensive sources of tightly collimated, coherent beams for many types of research. Although red HeNe lasers are common, those operating at other wavelengths also are widely used in research. For example, the 3.39 μm line is absorbed strongly by carbon hydrogen bonds in hydrocarbons, which is important for spectroscopy. Single-frequency lasers may be used in laboratory measurements of time and frequency. ACKNOWLEDGMENT This material was adapted with permission from The Laser Guidebook, 2nd. ed., J. Hecht (McGraw-Hill, New York, NY, 1992). Ordering information can be obtained by calling McGRAW. REFERENCE 1. Robert G. Knollenberg, "Prospects for the HeNe laser through the end of the century," in Design of Optical Systems Incorporating Low- Power Lasers, SPIE Proc. Vol.741, Betlingham, WA (1987). - 5 (5) -

Experiment 5. Lasers and laser mode structure

Experiment 5. Lasers and laser mode structure Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,

More information

Helium-Neon Laser. Figure 1: Diagram of optical and electrical components used in the HeNe laser experiment.

Helium-Neon Laser. Figure 1: Diagram of optical and electrical components used in the HeNe laser experiment. Helium-Neon Laser Experiment objectives: assemble and align a 3-mW HeNe laser from readily available optical components, record photographically the transverse mode structure of the laser output beam,

More information

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to : PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

More information

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator. PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the

More information

Aesthetic Plus LASER TRAINING MANUAL FOR MEDICAL PROFESSIONALS. presents

Aesthetic Plus LASER TRAINING MANUAL FOR MEDICAL PROFESSIONALS. presents Aesthetic Plus presents LASER TRAINING MANUAL FOR MEDICAL PROFESSIONALS INTRODUCTION More than ever before, people are turning to laser esthetics for cosmetic purposes. This is because lasers offer a number

More information

Alignement of a ring cavity laser

Alignement of a ring cavity laser Alignement of a ring cavity laser 1 Introduction This manual describes a procedure to align the cavity of our Ti:Sapphire ring laser and its injection with an Argon-Ion pump laser beam. The setup is shown

More information

Lasers Design and Laser Systems

Lasers Design and Laser Systems Lasers Design and Laser Systems Tel: 04-8563674 Nir Dahan Tel: 04-8292151 nirdahan@tx.technion.ac.il Thank You 1 Example isn't another way to teach, it is the only way to teach. -- Albert Einstein Course

More information

Zecotek S Light Projection Network Marketing

Zecotek S Light Projection Network Marketing White Paper Zecotek Visible Fiber Laser Platform Enabling the future of laser technology Zecotek Photonics Inc. (TSX- V: ZMS; Frankfurt: W1I) www.zecotek.com is a Canadian photonics technology company

More information

DIODE PUMPED CRYSTALASER

DIODE PUMPED CRYSTALASER DIODE PUMPED CRYSTALASER Ultra-compact CW & Pulsed Turnkey Systems UV Visible to IR High Reliability High Stability High Efficiency TEMoo & SLM Low Noise Low Cost ULTRA-COMPACT DIODE-PUMPED CRYSTAL LASER

More information

- thus, the total number of atoms per second that absorb a photon is

- thus, the total number of atoms per second that absorb a photon is Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons

More information

High-Performance Wavelength-Locked Diode Lasers

High-Performance Wavelength-Locked Diode Lasers Copyright 29 Society of Photo-Optical Instrumentation Engineers. This paper was published in the proceedings of the SPIE Photonics West 29, Vol. 7198-38 (29), High-Power Diode Laser Technology and High-Performance

More information

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. Outcomes After completing this experiment, the student should be able to: 1. Prepare

More information

Synthetic Sensing: Proximity / Distance Sensors

Synthetic Sensing: Proximity / Distance Sensors Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,

More information

Radiant Dyes Laser Accessories GmbH

Radiant Dyes Laser Accessories GmbH New NarrowScan New Resonator Design Improved Sine Drive Unit Autotracking Frequency doubling, tripling and mixing Wavelength Separation Unit Frequency Stabilization Temperature Stabilization Wavelength

More information

Outline. Quantizing Intensities. Achromatic Light. Optical Illusion. Quantizing Intensities. CS 430/585 Computer Graphics I

Outline. Quantizing Intensities. Achromatic Light. Optical Illusion. Quantizing Intensities. CS 430/585 Computer Graphics I CS 430/585 Computer Graphics I Week 8, Lecture 15 Outline Light Physical Properties of Light and Color Eye Mechanism for Color Systems to Define Light and Color David Breen, William Regli and Maxim Peysakhov

More information

Extended spectral coverage of BWO combined with frequency multipliers

Extended spectral coverage of BWO combined with frequency multipliers Extended spectral coverage of BWO combined with frequency multipliers Walter C. Hurlbut, Vladimir G. Kozlov, Microtech Instruments, Inc. (United States) Abstract: Solid state frequency multipliers extend

More information

FTIR Instrumentation

FTIR Instrumentation FTIR Instrumentation Adopted from the FTIR lab instruction by H.-N. Hsieh, New Jersey Institute of Technology: http://www-ec.njit.edu/~hsieh/ene669/ftir.html 1. IR Instrumentation Two types of instrumentation

More information

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus

Optical Fibres. Introduction. Safety precautions. For your safety. For the safety of the apparatus Please do not remove this manual from from the lab. It is available at www.cm.ph.bham.ac.uk/y2lab Optics Introduction Optical fibres are widely used for transmitting data at high speeds. In this experiment,

More information

Ultrasonic Wave Propagation Review

Ultrasonic Wave Propagation Review Ultrasonic Wave Propagation Review Presented by: Sami El-Ali 1 1. Introduction Ultrasonic refers to any study or application of sound waves that are higher frequency than the human audible range. Ultrasonic

More information

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007

PUMPED Nd:YAG LASER. Last Revision: August 21, 2007 PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow

More information

Acousto-optic modulator

Acousto-optic modulator 1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).

More information

Blackbody Radiation References INTRODUCTION

Blackbody Radiation References INTRODUCTION Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt

More information

Laser diffuse reflection light scanner with background suppression. Dimensioned drawing

Laser diffuse reflection light scanner with background suppression. Dimensioned drawing Specifications and description HRTL 3B Laser diffuse reflection light scanner with background suppression Dimensioned drawing We reserve the right to make changes DS_HRTL3B_en.fm en 01-2010/12 50114049

More information

INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet.

INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet. INTRODUCTION Fibre optics behave quite different to metal cables. The concept of information transmission is the same though. We need to take a "carrier" signal, identify a signal parameter we can modulate,

More information

Laser Gyroscope. 1) Helium-Neon laser

Laser Gyroscope. 1) Helium-Neon laser Laser Gyroscope In this experiment you will explore a Helium-Neon laser with a triangular cavity and observe the Sagnac effect which is used for measurements of rotation rate. Recall that uniform linear

More information

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Background theory. 1. Electromagnetic waves and their properties. 2. Polarisation of light: a) unpolarised

More information

Name Class Date. spectrum. White is not a color, but is a combination of all colors. Black is not a color; it is the absence of all light.

Name Class Date. spectrum. White is not a color, but is a combination of all colors. Black is not a color; it is the absence of all light. Exercises 28.1 The Spectrum (pages 555 556) 1. Isaac Newton was the first person to do a systematic study of color. 2. Circle the letter of each statement that is true about Newton s study of color. a.

More information

How Lasers Work by Matthew Weschler

How Lasers Work by Matthew Weschler How Lasers Work by Matthew Weschler Browse the article How Lasers Work Introduction to How Lasers Work "Star Wars," "Star Trek," "Battlestar Galactica" -- laser technology plays a pivotal role in science

More information

Waves Sound and Light

Waves Sound and Light Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are

More information

A Simple Fiber Optic displacement Sensor for Measurement of Light Intensity with the Displacement

A Simple Fiber Optic displacement Sensor for Measurement of Light Intensity with the Displacement A Simple Fiber Optic displacement Sensor for Measurement of Light Intensity with the Displacement Trilochan patra Assistant professor, Department of Electronics and Communication Engineering, Techno India

More information

The photoionization detector (PID) utilizes ultraviolet

The photoionization detector (PID) utilizes ultraviolet Chapter 6 Photoionization Detectors The photoionization detector (PID) utilizes ultraviolet light to ionize gas molecules, and is commonly employed in the detection of volatile organic compounds (VOCs).

More information

Alignment Laser System.

Alignment Laser System. - O T 6 0 0 0 Alignment Laser System. The OT-6000. Multi -Target,Two Dimensional Alignment. Introducing the most powerful way to measure alignment at distances up to 300 feet. The OT-6000 Alignment Laser

More information

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

More information

A More Efficient Way to De-shelve 137 Ba +

A More Efficient Way to De-shelve 137 Ba + A More Efficient Way to De-shelve 137 Ba + Abstract: Andrea Katz Trinity University UW REU 2010 In order to increase the efficiency and reliability of de-shelving barium ions, an infrared laser beam was

More information

Single Mode Fiber Lasers

Single Mode Fiber Lasers Single Mode Fiber Lasers for Industrial and Scientific Applications T h e P o w e r t o T r a n s f o r m T M IPG s Single Mode Fiber Lasers Advantages IPG's YLR-SM Series represents a break-through generation

More information

P5.8.5.5. Helium Neon Laser 4747104 EN

P5.8.5.5. Helium Neon Laser 4747104 EN P5.8.5.5 Helium Neon Laser 474704 EN Table of Contents.0 INTRODUCTION 4.0 FUNDAMENTALS 4. He-Ne energy- level diagram 4. Amplification 6.3 Resonators 8.4 Laser tubes and Brewster s windows 9.5 Wavelength

More information

CLASS 1 VS. CLASS 2 BAR CODE LASER SCANNERS

CLASS 1 VS. CLASS 2 BAR CODE LASER SCANNERS Copyright 2001 Socket Communications. All rights reserved. CLASS 1 VS. CLASS 2 BAR CODE LASER SCANNERS A technology brief on bar code laser scanners By Jack Brandon Product Marketing Manager, Scanner Products

More information

Cathode Ray Tube. Introduction. Functional principle

Cathode Ray Tube. Introduction. Functional principle Introduction The Cathode Ray Tube or Braun s Tube was invented by the German physicist Karl Ferdinand Braun in 897 and is today used in computer monitors, TV sets and oscilloscope tubes. The path of the

More information

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

More information

Displays. Cathode Ray Tube. Semiconductor Elements. Basic applications. Oscilloscope TV Old monitors. 2009, Associate Professor PhD. T.

Displays. Cathode Ray Tube. Semiconductor Elements. Basic applications. Oscilloscope TV Old monitors. 2009, Associate Professor PhD. T. Displays Semiconductor Elements 1 Cathode Ray Tube Basic applications Oscilloscope TV Old monitors 2 1 Idea of Electrostatic Deflection 3 Inside an Electrostatic Deflection Cathode Ray Tube Gun creates

More information

Lab 9: The Acousto-Optic Effect

Lab 9: The Acousto-Optic Effect Lab 9: The Acousto-Optic Effect Incoming Laser Beam Travelling Acoustic Wave (longitudinal wave) O A 1st order diffracted laser beam A 1 Introduction qb d O 2qb rarefractions compressions Refer to Appendix

More information

MEMS mirror for low cost laser scanners. Ulrich Hofmann

MEMS mirror for low cost laser scanners. Ulrich Hofmann MEMS mirror for low cost laser scanners Ulrich Hofmann Outline Introduction Optical concept of the LIDAR laser scanner MEMS mirror requirements MEMS mirror concept, simulation and design fabrication process

More information

Interference. Physics 102 Workshop #3. General Instructions

Interference. Physics 102 Workshop #3. General Instructions Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by

More information

It has long been a goal to achieve higher spatial resolution in optical imaging and

It has long been a goal to achieve higher spatial resolution in optical imaging and Nano-optical Imaging using Scattering Scanning Near-field Optical Microscopy Fehmi Yasin, Advisor: Dr. Markus Raschke, Post-doc: Dr. Gregory Andreev, Graduate Student: Benjamin Pollard Department of Physics,

More information

TOF FUNDAMENTALS TUTORIAL

TOF FUNDAMENTALS TUTORIAL TOF FUNDAMENTALS TUTORIAL Presented By: JORDAN TOF PRODUCTS, INC. 990 Golden Gate Terrace Grass Valley, CA 95945 530-272-4580 / 530-272-2955 [fax] www.rmjordan.com [web] info@rmjordan.com [e-mail] This

More information

Introduction to Fourier Transform Infrared Spectrometry

Introduction to Fourier Transform Infrared Spectrometry Introduction to Fourier Transform Infrared Spectrometry What is FT-IR? I N T R O D U C T I O N FT-IR stands for Fourier Transform InfraRed, the preferred method of infrared spectroscopy. In infrared spectroscopy,

More information

Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm

Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, 3 359 Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Yoshito Sonoda, Takashi Samatsu, and

More information

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block. 1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown

More information

GRID AND PRISM SPECTROMETERS

GRID AND PRISM SPECTROMETERS FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing

More information

Polarization of Light

Polarization of Light Polarization of Light References Halliday/Resnick/Walker Fundamentals of Physics, Chapter 33, 7 th ed. Wiley 005 PASCO EX997A and EX999 guide sheets (written by Ann Hanks) weight Exercises and weights

More information

ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems

ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems Page 1 of 6 ULTRAFAST LASERS: Free electron lasers thrive from synergy with ultrafast laser systems Free electron lasers support unique time-resolved experiments over a wide range of x-ray wavelengths,

More information

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD

The Fundamentals of Infrared Spectroscopy. Joe Van Gompel, PhD TN-100 The Fundamentals of Infrared Spectroscopy The Principles of Infrared Spectroscopy Joe Van Gompel, PhD Spectroscopy is the study of the interaction of electromagnetic radiation with matter. The electromagnetic

More information

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours) INSURANCE SCAM OPTICS - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as

More information

To effectively manage and control a factory, we need information. How do we collect it?

To effectively manage and control a factory, we need information. How do we collect it? Auto-ID 321 Auto-ID Data-collection needs: What is our WIP? What is productivity or assignment of employees? What is utilization of machines? What is progress of orders? What is our inventory? What must

More information

Raman Spectroscopy Basics

Raman Spectroscopy Basics Raman Spectroscopy Basics Introduction Raman spectroscopy is a spectroscopic technique based on inelastic scattering of monochromatic light, usually from a laser source. Inelastic scattering means that

More information

Towards large dynamic range beam diagnostics and beam dynamics studies. Pavel Evtushenko

Towards large dynamic range beam diagnostics and beam dynamics studies. Pavel Evtushenko Towards large dynamic range beam diagnostics and beam dynamics studies Pavel Evtushenko Motivation Linacs with average current 1-2 ma and energy 1-2.5 GeV are envisioned as drivers for next generation

More information

Understanding Laser Beam Parameters Leads to Better System Performance and Can Save Money

Understanding Laser Beam Parameters Leads to Better System Performance and Can Save Money Understanding Laser Beam Parameters Leads to Better System Performance and Can Save Money Lasers became the first choice of energy source for a steadily increasing number of applications in science, medicine

More information

FIFTH GRADE TECHNOLOGY

FIFTH GRADE TECHNOLOGY FIFTH GRADE TECHNOLOGY 3 WEEKS LESSON PLANS AND ACTIVITIES SCIENCE AND MATH OVERVIEW OF FIFTH GRADE SCIENCE AND MATH WEEK 1. PRE: Interpreting data from a graph. LAB: Estimating data and comparing results

More information

Defense & Security Symposium 2004, Kigre Er:glass Publication #144. Eye-Safe Erbium Glass Laser Transmitter Study Q-Switched with Cobalt Spinel

Defense & Security Symposium 2004, Kigre Er:glass Publication #144. Eye-Safe Erbium Glass Laser Transmitter Study Q-Switched with Cobalt Spinel Eye-Safe Erbium Glass Laser Transmitter Study Q-Switched with Cobalt Spinel Ruikun Wu, TaoLue Chen, J.D. Myers, M.J. Myers, Chris R. Hardy, John K. Driver Kigre, Inc. 1 Marshland Road, Hilton Head Island,

More information

Various Technics of Liquids and Solids Level Measurements. (Part 3)

Various Technics of Liquids and Solids Level Measurements. (Part 3) (Part 3) In part one of this series of articles, level measurement using a floating system was discusses and the instruments were recommended for each application. In the second part of these articles,

More information

Robot Sensors. Outline. The Robot Structure. Robots and Sensors. Henrik I Christensen

Robot Sensors. Outline. The Robot Structure. Robots and Sensors. Henrik I Christensen Robot Sensors Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0760 hic@cc.gatech.edu Henrik I Christensen (RIM@GT) Sensors 1 / 38 Outline 1

More information

Fundamentals of modern UV-visible spectroscopy. Presentation Materials

Fundamentals of modern UV-visible spectroscopy. Presentation Materials Fundamentals of modern UV-visible spectroscopy Presentation Materials The Electromagnetic Spectrum E = hν ν = c / λ 1 Electronic Transitions in Formaldehyde 2 Electronic Transitions and Spectra of Atoms

More information

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu)

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) Introduction Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) The scattering of light may be thought of as the redirection

More information

Quasi-Continuous Wave (CW) UV Laser Xcyte Series

Quasi-Continuous Wave (CW) UV Laser Xcyte Series COMMERCIAL LASERS Quasi-Continuous Wave (CW) UV Laser Xcyte Series Key Features 355 nm outputs available Quasi-CW UV output Field-proven Direct-Coupled Pump (DCP ) TEM00 mode quality Light-regulated output

More information

8.1 Radio Emission from Solar System objects

8.1 Radio Emission from Solar System objects 8.1 Radio Emission from Solar System objects 8.1.1 Moon and Terrestrial planets At visible wavelengths all the emission seen from these objects is due to light reflected from the sun. However at radio

More information

RAY TRACING UNIFIED FIELD TRACING

RAY TRACING UNIFIED FIELD TRACING RAY TRACING Start to investigate the performance of your optical system using 3D ray distributions, dot diagrams of ray positions and directions, and optical path length. GEOMETRIC FIELD TRACING Switch

More information

Review Vocabulary spectrum: a range of values or properties

Review Vocabulary spectrum: a range of values or properties Standards 7.3.19: Explain that human eyes respond to a narrow range of wavelengths of the electromagnetic spectrum. 7.3.20: Describe that something can be seen when light waves emitted or reflected by

More information

E190Q Lecture 5 Autonomous Robot Navigation

E190Q Lecture 5 Autonomous Robot Navigation E190Q Lecture 5 Autonomous Robot Navigation Instructor: Chris Clark Semester: Spring 2014 1 Figures courtesy of Siegwart & Nourbakhsh Control Structures Planning Based Control Prior Knowledge Operator

More information

A Practical Guide to Free Energy Devices

A Practical Guide to Free Energy Devices A Practical Guide to Free Energy Devices Electrolysis Patents No. 16: Last updated: 30th September 2006 Author: Patrick J. Kelly The major difficulty in using Stan s low-current Water Fuel Cell (recently

More information

L-LAS-TB-CL serie. laser light curtains for inline measuring tasks

L-LAS-TB-CL serie. laser light curtains for inline measuring tasks L-LAS-TB-CL serie laser light curtains for inline measuring tasks Maximum distance 2.000 mm Measurement range 6 up to 98 mm Resolution up to 4 µm up to 1,5 khz scan rate 0-10 V or 4-20 ma analogue output

More information

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or

More information

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

More information

3 - Atomic Absorption Spectroscopy

3 - Atomic Absorption Spectroscopy 3 - Atomic Absorption Spectroscopy Introduction Atomic-absorption (AA) spectroscopy uses the absorption of light to measure the concentration of gas-phase atoms. Since samples are usually liquids or solids,

More information

Ti:Sapphire Lasers. Tyler Bowman. April 23, 2015

Ti:Sapphire Lasers. Tyler Bowman. April 23, 2015 Ti:Sapphire Lasers Tyler Bowman April 23, 2015 Introduction Ti:Sapphire lasers are a solid state laser group based on using titanium-doped sapphire (Ti:Al 2O 3) plates as a gain medium. These lasers are

More information

LASER ENGRAVING REFLECTIVE METALS TO CREATE SCANNER READABLE BARCODES Paper P516

LASER ENGRAVING REFLECTIVE METALS TO CREATE SCANNER READABLE BARCODES Paper P516 LASER ENGRAVING REFLECTIVE METALS TO CREATE SCANNER READABLE BARCODES Paper P516 Paul M Harrison, Jozef Wendland, Matthew Henry Powerlase Ltd, Imperial House, Link 10, Napier Way, Crawley, West Sussex,

More information

Physics 441/2: Transmission Electron Microscope

Physics 441/2: Transmission Electron Microscope Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This

More information

COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION

COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION 2011(2): WAVES Doppler radar can determine the speed and direction of a moving car. Pulses of extremely high frequency radio waves are sent out in a narrow

More information

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Fourth Edition. With 195 Figures and 17 Tables. Springer

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Fourth Edition. With 195 Figures and 17 Tables. Springer Robert G. Hunsperger Integrated Optics Theory and Technology Fourth Edition With 195 Figures and 17 Tables Springer Contents 1. Introduction 1 1.1 Advantages of Integrated Optics 2 1.1.1 Comparison of

More information

THE BOHR QUANTUM MODEL

THE BOHR QUANTUM MODEL THE BOHR QUANTUM MODEL INTRODUCTION When light from a low-pressure gas is subject to an electric discharge, a discrete line spectrum is emitted. When light from such a low-pressure gas is examined with

More information

Blackbody radiation derivation of Planck s radiation low

Blackbody radiation derivation of Planck s radiation low Blackbody radiation derivation of Planck s radiation low 1 Classical theories of Lorentz and Debye: Lorentz (oscillator model): Electrons and ions of matter were treated as a simple harmonic oscillators

More information

Short overview of TEUFEL-project

Short overview of TEUFEL-project Short overview of TEUFEL-project ELAN-meeting may 2004 Frascati (I) Contents Overview of TEUFEL project at Twente Photo cathode research Recent experience Outlook Overview FEL Drive laser Photo cathode

More information

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent

More information

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

More information

Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

More information

Infrared Viewers. Manual

Infrared Viewers. Manual Infrared Viewers Manual Contents Introduction 3 How it works 3 IR viewer in comparison with a CCD camera 4 Visualization of infrared laser beam in mid-air 4 Power Density 5 Spectral sensitivity 6 Operation

More information

1. Basics of LASER Physics

1. Basics of LASER Physics 1. Basics of LASER Physics Dr. Sebastian Domsch (Dipl.-Phys.) Computer Assisted Clinical Medicine Medical Faculty Mannheim Heidelberg University Theodor-Kutzer-Ufer 1-3 D-68167 Mannheim, Germany sebastian.domsch@medma.uni-heidelberg.de

More information

A Guide to Acousto-Optic Modulators

A Guide to Acousto-Optic Modulators A Guide to Acousto-Optic Modulators D. J. McCarron December 7, 2007 1 Introduction Acousto-optic modulators (AOMs) are useful devices which allow the frequency, intensity and direction of a laser beam

More information

Physics 1230: Light and Color

Physics 1230: Light and Color Physics 1230: Light and Color Instructor: Joseph Maclennan TOPIC 3 - Resonance and the Generation of Light http://www.colorado.edu/physics/phys1230 How do we generate light? How do we detect light? Concept

More information

AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE

AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE AMPLIFIED HIGH SPEED FIBER PHOTODETECTOR USER S GUIDE Thank you for purchasing your Amplified High Speed Fiber Photodetector. This user s guide will help answer any questions you may have regarding the

More information

Biaxial tripod MEMS mirror and omnidirectional lens for a low cost wide angle laser range sensor

Biaxial tripod MEMS mirror and omnidirectional lens for a low cost wide angle laser range sensor Biaxial tripod MEMS mirror and omnidirectional lens for a low cost wide angle laser range sensor U. Hofmann, Fraunhofer ISIT Itzehoe M. Aikio, VTT Finland Abstract Low cost laser scanners for environment

More information

Survival Laser SL-001BB Laser Parts Bundle Assembly & Operation Instructions

Survival Laser SL-001BB Laser Parts Bundle Assembly & Operation Instructions Survival Laser SL-001BB Laser Parts Bundle Assembly & Operation Instructions WARNING: READ ALL INSTRUCTIONS AND THE ENCLOSED SAFETY PRECAUTIONS BEFORE ASSEMBLY AND USE Assemble and use these parts ONLY

More information

Using Lasers With Your Robots

Using Lasers With Your Robots Tune in each month for a heads-up on where to get all of your robotics resources for the best prices! Using Lasers With Your Robots hen I was growing up, two technologies captivated both science and science

More information

Oxford University Chemistry Practical Course. X.3 Kinetics

Oxford University Chemistry Practical Course. X.3 Kinetics xford University Chemistry Practical Course 1 st year physical chemistry X.3 Kinetics Introduction Kinetics, the study of the rates of chemical reactions, is one of the most important areas of chemistry.

More information

LASER DIAGRAM TABLE OF CONTENTS. SKY Technologies Inc. www.skytechlasers.com. Laser Diagram. Technical Specifications. Laser Operation.

LASER DIAGRAM TABLE OF CONTENTS. SKY Technologies Inc. www.skytechlasers.com. Laser Diagram. Technical Specifications. Laser Operation. TABLE OF CONTENTS LASER DIAGRAM Laser Diagram 1 Technical Specifications 2 Laser Operation 3 Laser Safety 5 Maintanence 6 Limitation of Liability 7 Warranty 8 Laser Pointer Series Operations Manual Page

More information

Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998)

Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998) Holographically corrected microscope with a large working distance (as appears in Applied Optics, Vol. 37, No. 10, 1849-1853, 1 April 1998) Geoff Andersen and R. J. Knize Laser and Optics Research Center

More information

PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER

PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER PIPELINE LEAKAGE DETECTION USING FIBER-OPTIC DISTRIBUTED STRAIN AND TEMPERATURE SENSORS WHITE PAPER Lufan Zou and Taha Landolsi OZ Optics Limited, 219 Westbrook Road, Ottawa, ON, Canada, K0A 1L0 E-mail:

More information

Laserlyte-Flex Alignment System

Laserlyte-Flex Alignment System Laserlyte-Flex Alignment System LaserLyte-Flex The LaserLyte-Flex Alignment System is a unique, interchangeable, low cost plug and play laser system. Designed specifically for aligning and positioning

More information

Laser drilling up to15,000 holes/sec in silicon wafer for PV solar cells

Laser drilling up to15,000 holes/sec in silicon wafer for PV solar cells Laser drilling up to15,000 holes/sec in silicon wafer for PV solar cells Rahul Patwa* a, Hans Herfurth a, Guenther Mueller b and Khan Bui b a Fraunhofer Center for Laser Technology, 48170 Port Street,

More information

Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering. " scattered. " incident

Raman Spectroscopy. 1. Introduction. 2. More on Raman Scattering.  scattered.  incident February 15, 2006 Advanced Physics Laboratory Raman Spectroscopy 1. Introduction When light is scattered from a molecule or crystal, most photons are elastically scattered. The scattered photons have the

More information

THE IMPOSSIBLE DOSE HOW CAN SOMETHING SIMPLE BE SO COMPLEX? Lars Hode

THE IMPOSSIBLE DOSE HOW CAN SOMETHING SIMPLE BE SO COMPLEX? Lars Hode THE IMPOSSIBLE DOSE HOW CAN SOMETHING SIMPLE BE SO COMPLEX? Lars Hode Swedish Laser-Medical Society The dose is the most important parameter in laser phototherapy. At a first glance, the dose seem very

More information