EXPERIMENT 2: Recrystallization and Melting Point

Size: px
Start display at page:

Download "EXPERIMENT 2: Recrystallization and Melting Point"

Transcription

1 Recrystallization (or Crystallization) is a technique used to purify solids. This procedure relies on the fact that solubility increases as temperature increases (you can dissolve more sugar in hot water than in cold water). As a hot, saturated solution cools, it becomes supersaturated and the solute precipitates (crystallizes) out. In a recrystallization procedure, an impure (crude) solid is dissolved in a hot solvent. As this solution is cooled, the pure product crystallizes out and the impurities stay dissolved. General Recrystallization Procedure: 1) Choose an appropriate solvent(s) product is very soluble in it at high temperatures product is not soluble in it at low temperatures impurities are either soluble at all temps or insoluble at all temps (can be filtered off) 2) Dissolve impure solid weigh out crude solid and record its mass (also take a melting point for reference) add a boiling chip or boiling stick (otherwise, it may "bump" and spill) use a minimum amount of hot solvent (Add a bit, heat/swirl. Not dissolved? Add more!) NOTE: IF YOU USE TOO MUCH SOLVENT, YOU WILL GET NO CRYSTALS! 3) ONLY IF NEEDED: Decolorize most pure compounds are white and give colorless solutions (looks like water) to remove color (really trace contaminants), add activated charcoal (adsorbs the impurities) 4) ONLY IF NEEDED: Gravity filter to remove insoluble materials (including charcoal!) use fluted filter paper and a hot, stemless funnel NOTE: IF THE SOLUTION COOLS, PRODUCT WILL CRYSTALLIZE OUT & BE LOST! use a small amount of hot solvent to rinse flask, filter 5) Crystallize solute (Finally! This is the RECRYSTALLIZATION part!) cool the solution slowly: hot (boiling) room temperature 0 C (put in ice water bath) NOTE: THIS GIVES LARGE, PURE CRYSTALS & LEAVES IMPURITIES IN SOLUTION may need to scratch glass with a stirring rod or add a seed crystal to start crystallization 6) Collect the pure crystals quickest method is vacuum filtration (Büchner funnel, water aspirator and trap) the impurities will stay dissolved in the solvent that is being removed (hopefully) rinse the pure crystals with a small amount of cold solvent (don't redissolve the crystals!) OPTIONAL: a second crop of crystals can be obtained from the filtrate (mother liquor) 7) Analyze product let crystals dry thoroughly (ideally, this means overnight at room temperature or under vacuum) record mass (how much of your original solid did you recover? % recovery?) record melting point range (did you succeed in PURIFYING your solid?) 9

2 Melting Point is: a constant physical property of a solid (the temperature at which it turns to a liquid) reported in the lab as a melting point range (usually 1 2 C wide), not as a single temperature used for: 1) characterization of a compound (also IR, NMR, mass spec.) 2) identification of an unknown (compare with known mp's) 3) determination of purity If a sample of a compound contains impurities, its mp is usually depressed (lowered) and the range is broadened. Therefore, a narrow mp range (1 2 ) suggests the sample is a pure compound. How can this fact help us in the lab? 1) take a "mixed melting point" of an unknown (if you mix two samples - typically a known and an unknown - and the mp doesn't change, then the two samples are the same compound) 2) take a mp before and after a purification technique (like recrystallization, this week's lab) Method for measuring a Melting Point range: LOAD sample in a capillary (mp) tube (pack the sample down into the CLOSED end of tube) SLOWLY HEAT the sample and closely WATCH both the crystals and the temperature at the first sign of melting (crystals look wet), RECORD the temperature (first number of reported range) when the last crystal melts, RECORD the temperature (second number of reported range) for best results: use a small, well-packed sample and heat slowly to ensure even heating Using the Melting Point Apparatus: (Mel-Temp or Thomas Hoover UniMelt) uses a heating coil in oil (oil is stirred automatically) or a hot plate has a light and a magnifying glass (easy to see crystals) rate of heating is easily adjusted (voltage control) Instructions for use: check to make sure temperature is low before inserting mp tube turn unit on: various switches for light, heat and stirring adjust the voltage control to begin SLOWLY heating your sample (higher number = faster heating) turn all switches off when done; discard mp tube in glass waste container 10

3 EXPERIMENTAL PROCEDURE: (refer to Zubrick text for additional details) Recrystallization: Using a hot plate, dissolve approximately 1.0 g of impure benzoic acid in ml of hot water (water at or near its b.p.) in a 125 ml Erlenmeyer flask. If there is a residual amount of material that does not dissolve upon adding a small amount of additional solvent (H 2 O), do not continue to add more solvent; it is important to use a MINIMUM amount of solvent in a recrystallization. This material is probably insoluble in the hot solvent and will be separated from the hot solution by gravity filtration. If there is any such insoluble solid residue, gravity filter this hot solution through a fluted filter paper using the apparatus shown in your laboratory textbook. Since the glass funnel you have used is much cooler than the hot solution, cooling of the solution will occur, resulting in some crystallization of the benzoic acid in the stem of the funnel and in the filter paper. Preheating the funnel by running a SMALL AMOUNT of hot solvent (H 2 O) through the funnel will reduce the loss due to this crystallization. To further reduce the amount of loss of material, do not fill the funnel with solution but rather add small portions of the hot solution so a minimum amount of solution is in the funnel at once. Allow the gravity-filtered hot solution to gradually cool to room temperature. As this occurs, much of the benzoic acid will crystallize from the solvent. When the cooled solution is at or near room temperature, cool it further in an ice-water bath. Collect the resulting crystals by vacuum filtration, using a water aspirator and the apparatus shown in your laboratory textbook. Transfer the crystals from the filter paper to a tared watch glass (note weight on Data sheet) and let dry thoroughly before weighing. Never weigh filter paper along with the crystals; the filter paper will be wet. Determine the amount of benzoic acid recovered and, based upon the initial amount you started with, determine the percent recovery. Melting Point: Determine the melting point ranges of the impure benzoic acid and the crystallized benzoic acid (after it is dry). Be sure to grind each sample well before introducing it into the melting point tube (you may use a glass rod and a watch glass). Scoop a small amount of the powder into the opening of the melting point tube and gently tap the tube on the benchtop to move the sample down to the bottom (dropping the melting point tube through a long glass tube can also help you pack the sample). If you do not have at least 1 mm of sample, scoop another small portion and repeat. If the column of sample is over 3 mm, discard the melting point tube and start again. Insert the packed melting point tubes into a melting point apparatus. SLOWLY heat the sample (~ 1 C per minute) and record the temperature at the very first sign of melting. Continue to watch the sample and when the sample has melted completely, record the temperature again. EVERY MELTING POINT IS REPORTED AS A RANGE. Waste disposal: Please discard your purified benzoic acid into the container in the hood labeled: Benzoic Acid - Student Prep. Melting point tubes should be placed in the glass waste container. Your complete report for this experiment should include the data page, answers to the following questions, and a conclusion (1 page maximum. Discuss your results yield and mp. Consider: Did the recrystallization work? How can you tell? How could you have improved your yield?). These pages must be stapled. 11

4 Data Sheet Record data in INK. Name: Day/Time of Lab: Instructor: Benzoic Acid Data sample physical appearance melting point range impure pure literature value (cite source) Amount of benzoic acid used initially Tare weight of watch glass Weight of watch glass + pure crystals Amount of benzoic acid recovered Percent recovery of benzoic acid (show method; include units) Your complete report for this experiment should include the data page, answers to the following questions, and a conclusion (1 page maximum. Discuss your results yield and mp. Consider: Did the recrystallization work? How can you tell? How could you have improved your yield?). These pages must be stapled. 12

5 Questions Attach answers to these questions on a separate sheet along with Experiment 2 Report. 1. What are the important solubility characteristics for a solvent for crystallization of an organic solid which is contaminated with a small amount of impurity? Remember you want to separate the desired solid from the contaminating impurities. 2. There are many opportunities during a recrystallization to lose crystals. How could you improve your percent recovery? Explain. 3. Why is it necessary to cool a hot, supersaturated solution SLOWLY during a recrystallization? 4. A 20 g mixture containing 95% (by weight) of A and 5% of B is recrystallized in toluene (b.p. 110 C). Solubilities in g/100 ml are given below. What amount of solvent is needed to obtain pure A and how much pure A will be recovered? Show all calculations and explain your answers. Hint: the goal of a recrystallization is to keep ALL of the impurity dissolved at the low temperature. Knowing that, how much solvent is needed for this example? Temperature Solubility A 1.5 g 10.0 g (g/100 ml) B 0.5 g 8.0 g 5 Why do you need to heat the sample SLOWLY to record its melting point? Give at least two reasons. 6. How can a sample s melting point indicate the presence of an organic impurity? 13

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid

CHEM 2423 Recrystallization of Benzoic Acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid EXPERIMENT 4 - Purification - Recrystallization of Benzoic acid Purpose: a) To purify samples of organic compounds that are solids at room temperature b) To dissociate the impure sample in the minimum

More information

Recrystallization II 23

Recrystallization II 23 Recrystallization II 23 Chem 355 Jasperse RECRYSTALLIZATIN-Week 2 1. Mixed Recrystallization of Acetanilide 2. Mixed Recrystallization of Dibenzylacetone 3. Recrystallization of an Unknown Background Review:

More information

Pure Solid Compounds: Molecules held together in rigid formations by intermolecular forces.

Pure Solid Compounds: Molecules held together in rigid formations by intermolecular forces. Recrystallization: Purification of Solid Compounds Pure Solid Compounds: Molecules held together in rigid formations by intermolecular forces. Types of Intermolecular Forces? 1. Van der Waal s forces London

More information

Experiment 2: Recrystallization & Melting Point

Experiment 2: Recrystallization & Melting Point Experiment 2: Recrystallization & Melting Point Part A: Choosing a Solvent Part B: Purification of Phenacetin Reading: Mohrig, Hammond & Schatz Ch. 15 pgs 183-197 Ch. 10 pgs 104-113 Ch. 14 pgs 174-182

More information

Experiment 8 Synthesis of Aspirin

Experiment 8 Synthesis of Aspirin Experiment 8 Synthesis of Aspirin Aspirin is an effective analgesic (pain reliever), antipyretic (fever reducer) and anti-inflammatory agent and is one of the most widely used non-prescription drugs. The

More information

Determination of Melting Points

Determination of Melting Points Determination of Melting Points This experiment consists of three parts. In the first part, you will determine the melting point range of three known compounds. This part is mostly for practice, to make

More information

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration. 81 experiment5 LECTURE AND LAB SKILLS EMPHASIZED Synthesizing an organic substance. Understanding and applying the concept of limiting reagents. Determining percent yield. Learning how to perform a vacuum

More information

EXPERIMENT 9 (Organic Chemistry II) Pahlavan - Cherif Synthesis of Aspirin - Esterification

EXPERIMENT 9 (Organic Chemistry II) Pahlavan - Cherif Synthesis of Aspirin - Esterification EXPERIMENT 9 (rganic hemistry II) Pahlavan - herif Materials Hot plate 125-mL Erlenmeyer flask Melting point capillaries Melting point apparatus Büchner funnel 400-mL beaker Stirring rod hemicals Salicylic

More information

ISOLATION OF CAFFEINE FROM TEA

ISOLATION OF CAFFEINE FROM TEA ISLATIN F CAFFEINE FRM TEA Introduction In this experiment, caffeine is isolated from tealeaves. The chief problem with the isolation is that caffeine does not exist alone in the tealeaves, but other natural

More information

Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance

Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance 1 Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance Read pp 142-155, 161-162, Chapter 10 and pp 163-173, Chapter 11, in LTOC. View the videos: 4.2 Extraction (Macroscale);

More information

EXPERIMENT 1 (Organic Chemistry I)

EXPERIMENT 1 (Organic Chemistry I) EXPERIMENT 1 (Organic Chemistry I) Melting Point Determination Purpose a) Determine the purity of a substance using melting point as physical property b) Identify an unknown compound using its melting

More information

PURIFICATION TECHNIQUES

PURIFICATION TECHNIQUES DETERMINACIÓN DE ESTRUCTURAS ORGÁNICAS (ORGANIC SPECTROSCOPY) PURIFICATION TECHNIQUES Hermenegildo García Gómez Departamento de Química Instituto de Tecnología Química Universidad Politécnica de Valencia

More information

Hands-On Labs SM-1 Lab Manual

Hands-On Labs SM-1 Lab Manual EXPERIMENT 4: Separation of a Mixture of Solids Read the entire experiment and organize time, materials, and work space before beginning. Remember to review the safety sections and wear goggles when appropriate.

More information

Physical Properties of a Pure Substance, Water

Physical Properties of a Pure Substance, Water Physical Properties of a Pure Substance, Water The chemical and physical properties of a substance characterize it as a unique substance, and the determination of these properties can often allow one to

More information

Page 1 of 5. Purification of Cholesterol An Oxidative Addition-Reductive Elimination Sequence

Page 1 of 5. Purification of Cholesterol An Oxidative Addition-Reductive Elimination Sequence Page 1 of 5 Purification of Cholesterol An Oxidative Addition-Reductive Elimination Sequence From your lectures sessions in CEM 2010 you have learned that elimination reactions may occur when alkyl halides

More information

Acid-Base Extraction.

Acid-Base Extraction. Acid-Base Extraction. Extraction involves dissolving a compound or compounds either (1) from a solid into a solvent or (2) from a solution into another solvent. A familiar example of the first case is

More information

Melting Point, Boiling Point, and Index of Refraction

Melting Point, Boiling Point, and Index of Refraction Melting Point, Boiling Point, and Index of Refraction Melting points, boiling points, and index of refractions are easily measured physical properties of organic compounds useful in product characterization

More information

Experiment 5: Column Chromatography

Experiment 5: Column Chromatography Experiment 5: Column Chromatography Separation of Ferrocene & Acetylferrocene by Column Chromatography Reading: Mohrig, Hammond & Schatz Ch. 18 pgs 235-253 watch the technique video on the course website!

More information

To remove solvent: 1. You must have ebullation to concentrate at atmospheric pressure--use a boiling stone, a capillary tube, or agitation.

To remove solvent: 1. You must have ebullation to concentrate at atmospheric pressure--use a boiling stone, a capillary tube, or agitation. Crystallization is used to purify a solid. The process requires a suitable solvent. A suitable solvent is one which readily dissolves the solid (solute) when the solvent is hot but not when it is cold.

More information

PHYSICAL SEPARATION TECHNIQUES. Introduction

PHYSICAL SEPARATION TECHNIQUES. Introduction PHYSICAL SEPARATION TECHNIQUES Lab #2 Introduction When two or more substances, that do not react chemically, are blended together, the result is a mixture in which each component retains its individual

More information

Taking Apart the Pieces

Taking Apart the Pieces Lab 4 Taking Apart the Pieces How does starting your morning out right relate to relief from a headache? I t is a lazy Saturday morning and you ve just awakened to your favorite cereal Morning Trails and

More information

Isolation of Caffeine from Tea

Isolation of Caffeine from Tea Isolation of Caffeine from Tea Introduction A number of interesting, biologically active compounds have been isolated from plants. Isolating some of these natural products, as they are called, can require

More information

PREPARATION AND PROPERTIES OF A SOAP

PREPARATION AND PROPERTIES OF A SOAP (adapted from Blackburn et al., Laboratory Manual to Accompany World of Chemistry, 2 nd ed., (1996) Saunders College Publishing: Fort Worth) Purpose: To prepare a sample of soap and to examine its properties.

More information

Experiment #10: Liquids, Liquid Mixtures and Solutions

Experiment #10: Liquids, Liquid Mixtures and Solutions Experiment #10: Liquids, Liquid Mixtures and Solutions Objectives: This experiment is a broad survey of the physical properties of liquids. We will investigate solvent/solute mixtures. We will study and

More information

Determination of a Chemical Formula

Determination of a Chemical Formula 1 Determination of a Chemical Formula Introduction Molar Ratios Elements combine in fixed ratios to form compounds. For example, consider the compound TiCl 4 (titanium chloride). Each molecule of TiCl

More information

Experiment 5 Preparation of Cyclohexene

Experiment 5 Preparation of Cyclohexene Experiment 5 Preparation of yclohexene In this experiment we will prepare cyclohexene from cyclohexanol using an acid catalyzed dehydration reaction. We will use the cyclohexanol that we purified in our

More information

Extraction: Separation of Acidic Substances

Extraction: Separation of Acidic Substances Extraction: Separation of Acidic Substances Chemists frequently find it necessary to separate a mixture of compounds by moving a component from one solution or mixture to another. The process most often

More information

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate Pahlavan/Cherif Purpose a) Study electrophilic aromatic substitution reaction (EAS) b) Study regioselectivity

More information

Physical and Chemical Properties and Changes

Physical and Chemical Properties and Changes Physical and Chemical Properties and Changes An understanding of material things requires an understanding of the physical and chemical characteristics of matter. A few planned experiments can help you

More information

Mixtures and Pure Substances

Mixtures and Pure Substances Unit 2 Mixtures and Pure Substances Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances. They

More information

Preparation of an Alum

Preparation of an Alum Preparation of an Alum Pages 75 84 Pre-lab = pages 81 to 82, all questions No lab questions, a lab report is required by the start of the next lab What is an alum? They are white crystalline double sulfates

More information

oxidize 4-Cholesten-3-one

oxidize 4-Cholesten-3-one Isolation of Cholesterol from Egg Yolk Preparation: Bring a hard-boiled egg yolk to lab! Cholesterol (1) is a major component of cell membranes. An egg yolk contains about 200 milligrams of cholesterol,

More information

Apparatus error for each piece of equipment = 100 x margin of error quantity measured

Apparatus error for each piece of equipment = 100 x margin of error quantity measured 1) Error Analysis Apparatus Errors (uncertainty) Every time you make a measurement with a piece of apparatus, there is a small margin of error (i.e. uncertainty) in that measurement due to the apparatus

More information

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER Chemistry 111 Lab: Synthesis of a Copper Complex Page H-1 SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER In this experiment you will synthesize a compound by adding NH 3 to a concentrated

More information

Experiment 12- Classification of Matter Experiment

Experiment 12- Classification of Matter Experiment Experiment 12- Classification of Matter Experiment Matter can be classified into two groups: mixtures and pure substances. Mixtures are the most common form of matter and consist of mixtures of pure substances.

More information

8.9 - Flash Column Chromatography Guide

8.9 - Flash Column Chromatography Guide 8.9 - Flash Column Chromatography Guide Overview: Flash column chromatography is a quick and (usually) easy way to separate complex mixtures of compounds. We will be performing relatively large scale separations

More information

Melting Range 1 Experiment 2

Melting Range 1 Experiment 2 Melting Range 1 Experiment 2 Background Information The melting range of a pure organic solid is the temperature range at which the solid is in equilibrium with its liquid. As heat is added to a solid,

More information

SEPARATION OF A MIXTURE OF SUBSTANCES LAB

SEPARATION OF A MIXTURE OF SUBSTANCES LAB SEPARATION OF A MIXTURE OF SUBSTANCES LAB Purpose: Every chemical has a set of defined physical properties, and when combined they present a unique fingerprint for that chemical. When chemicals are present

More information

Experiment 1: Colligative Properties

Experiment 1: Colligative Properties Experiment 1: Colligative Properties Determination of the Molar Mass of a Compound by Freezing Point Depression. Objective: The objective of this experiment is to determine the molar mass of an unknown

More information

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point..

In this experiment, we will use three properties to identify a liquid substance: solubility, density and boiling point.. Identification of a Substance by Physical Properties 2009 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included Every substance has a unique set

More information

Chapter 3: Separating Mixtures (pg. 54 81)

Chapter 3: Separating Mixtures (pg. 54 81) Chapter 3: Separating Mixtures (pg. 54 81) 3.2: Separating Mechanical Mixtures (PB Pg. 40 5 & TB Pg. 58 61): Name: Date: Check Your Understanding & Learning (PB pg. 40 & TB pg. 61): 1. What are four methods

More information

Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation

Experiment 8 Preparation of Cyclohexanone by Hypochlorite Oxidation Experiment 8 Preparation of Cyclohexanone by ypochlorite xidation In this experiment we will prepare cyclohexanone from cyclohexanol using hypochlorite oxidation. We will use common household bleach that

More information

Enantiomers: Synthesis, characterization, and resolution of tris(ethylenediamine)cobalt(iii) chloride Introduction:

Enantiomers: Synthesis, characterization, and resolution of tris(ethylenediamine)cobalt(iii) chloride Introduction: Enantiomers: Synthesis, characterization, and resolution of tris(ethylenediamine)cobalt(iii) chloride Introduction: The development of coordination chemistry prior to 1950 involved the synthesis and characterization

More information

1. The Determination of Boiling Point

1. The Determination of Boiling Point 1. The Determination of Boiling Point Objective In this experiment, you will first check your thermometer for errors by determining the temperature of two stable equilibrium systems. You will then use

More information

Recovery of Elemental Copper from Copper (II) Nitrate

Recovery of Elemental Copper from Copper (II) Nitrate Recovery of Elemental Copper from Copper (II) Nitrate Objectives: Challenge: Students should be able to - recognize evidence(s) of a chemical change - convert word equations into formula equations - perform

More information

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB Purpose: Most ionic compounds are considered by chemists to be salts and many of these are water soluble. In this lab, you will determine the solubility,

More information

Distillation Experiment

Distillation Experiment Distillation Experiment CHM226 Background The distillation process is a very important technique used to separate compounds based on their boiling points. A substance will boil only when the vapor pressure

More information

Separation by Solvent Extraction

Separation by Solvent Extraction Experiment 3 Separation by Solvent Extraction Objectives To separate a mixture consisting of a carboxylic acid and a neutral compound by using solvent extraction techniques. Introduction Frequently, organic

More information

Classification of Chemical Substances

Classification of Chemical Substances Classification of Chemical Substances INTRODUCTION: Depending on the kind of bonding present in a chemical substance, the substance may be called ionic, molecular or metallic. In a solid ionic compound

More information

CH204 Experiment 2. Experiment 1 Post-Game Show. Experiment 1 Post-Game Show continued... Dr. Brian Anderson Fall 2008

CH204 Experiment 2. Experiment 1 Post-Game Show. Experiment 1 Post-Game Show continued... Dr. Brian Anderson Fall 2008 CH204 Experiment 2 Dr. Brian Anderson Fall 2008 Experiment 1 Post-Game Show pipette and burette intensive and extensive properties interpolation determining random experimental error What about gross error

More information

Synthesis of Aspirin and Oil of Wintergreen

Synthesis of Aspirin and Oil of Wintergreen Austin Peay State University Department of hemistry hem 1121 autions Purpose Introduction Acetic Anhydride corrosive and a lachrymator all transfers should be done in the vented fume hood Methanol, Ethanol

More information

Green Principles Atom Economy Solventless Reactions Catalysis

Green Principles Atom Economy Solventless Reactions Catalysis Lab 5: The Aldol Reaction Solventless vs Traditional Reactions: (Melting Point Study & Recrystallization) (adapted from Doxsee, K.M. and Hutchison, J.E., Green Organic Chemistry and John Thompson; Lane

More information

EXPERIMENT Aspirin: Synthesis and NMR Analysis

EXPERIMENT Aspirin: Synthesis and NMR Analysis EXPERIMENT Aspirin: Synthesis and NMR Analysis Introduction: When salicylic acid reacts with acetic anhydride in the presence of an acid catalyst, acetylsalicylic acid, or aspirin, is produced according

More information

Liquid/liquid Extraction 63 LIQUID/LIQUID SEPARATION: EXTRACTION OF ACIDS OR BASES FROM NEUTRAL ORGANICS

Liquid/liquid Extraction 63 LIQUID/LIQUID SEPARATION: EXTRACTION OF ACIDS OR BASES FROM NEUTRAL ORGANICS Liquid/liquid Extraction 63 LIQUID/LIQUID SEPARATION: EXTRACTION OF ACIDS OR BASES FROM NEUTRAL ORGANICS Background Extraction is one of humankind s oldest chemical operations. The preparation of a cup

More information

To measure the solubility of a salt in water over a range of temperatures and to construct a graph representing the salt solubility.

To measure the solubility of a salt in water over a range of temperatures and to construct a graph representing the salt solubility. THE SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES 2007, 1995, 1991 by David A. Katz. All rights reserved. Permission for academic use provided the original copyright is included. OBJECTIVE To measure

More information

ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION

ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION Chem 306 Section (Circle) M Tu W Th Name Partners Date ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION Materials: prepared acetylsalicylic acid (aspirin), stockroom samples

More information

Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap

Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap Organic Chemistry Lab Experiment 4 Preparation and Properties of Soap Introduction A soap is the sodium or potassium salt of a long-chain fatty acid. The fatty acid usually contains 12 to 18 carbon atoms.

More information

4026 Synthesis of 2-chloro-2-methylpropane (tert-butyl chloride) from tert-butanol

4026 Synthesis of 2-chloro-2-methylpropane (tert-butyl chloride) from tert-butanol 4026 Synthesis of 2-chloro-2-methylpropane (tert-butyl chloride) from tert-butanol OH + HCl Cl + H 2 O C 4 H 10 O C 4 H 9 Cl (74.1) (36.5) (92.6) Classification Reaction types and substance classes nucleophilic

More information

THIN LAYER CHROMATOGRAPHY AND MELTING POINT DETERMINATION: DETECTION OF CAFFEINE IN VARIOUS SAMPLES

THIN LAYER CHROMATOGRAPHY AND MELTING POINT DETERMINATION: DETECTION OF CAFFEINE IN VARIOUS SAMPLES EXPERIMENT 3 THIN LAYER CHROMATOGRAPHY AND MELTING POINT DETERMINATION: DETECTION OF CAFFEINE IN VARIOUS SAMPLES Additional Resources http://orgchem.colorado.edu/hndbksupport/tlc/tlc.html http://coffeefaq.com/caffaq.html

More information

The most common active ingredient used in deodorants is aluminium chlorohydrate. But not all deodorants contain aluminium chlorohydrate:

The most common active ingredient used in deodorants is aluminium chlorohydrate. But not all deodorants contain aluminium chlorohydrate: Engineeringfragrance make a deodorant practical activity 2 student instructions page 1 of 5 chemical compounds The most common active ingredient used in deodorants is aluminium chlorohydrate. But not all

More information

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY

CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD KEY CHEMICAL REACTIONS OF COPPER AND PERCENT YIELD Objective To gain familiarity with basic laboratory procedures, some chemistry of a typical transition element, and the concept of percent yield. Apparatus

More information

How to Grow Single Crystals for X-ray Analysis by Solution Crystallisation

How to Grow Single Crystals for X-ray Analysis by Solution Crystallisation (This is a part of the booklet. If you would like to have a complete booklet, which also includes crystallisation from a drop and by vapour diffusion, please, contact the author on enod45@gmail.com) How

More information

PREPARATION FOR CHEMISTRY LAB: COMBUSTION

PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1 Name: Lab Instructor: PREPARATION FOR CHEMISTRY LAB: COMBUSTION 1. What is a hydrocarbon? 2. What products form in the complete combustion of a hydrocarbon? 3. Combustion is an exothermic reaction. What

More information

14 Friedel-Crafts Alkylation

14 Friedel-Crafts Alkylation 14 Friedel-Crafts Alkylation 14.1 Introduction Friedel-Crafts alkylation and acylation reactions are a special class of electrophilic aromatic substitution (EAS) reactions in which the electrophile is

More information

Paper Chromatography: Separation and Identification of Five Metal Cations

Paper Chromatography: Separation and Identification of Five Metal Cations Paper Chromatography: Separation and Identification of Five Metal Cations Objectives Known and unknown solutions of the metal ions Ag +, Fe 3+, Co 2+, Cu 2+ and Hg 2+ will be analyzed using paper chromatography.

More information

Laboratory 28: Properties of Lipids

Laboratory 28: Properties of Lipids Introduction Lipids are naturally occuring substances that are arbitrarily grouped together on the basis of their insolubility in water (a polar solvent) and solubility in nonpolar solvents. Lipids include

More information

ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS

ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS 1 ATOMIC ABSORTION SPECTROSCOPY: rev. 4/2011 ANALYSIS OF COPPER IN FOOD AND VITAMINS Buck Scientific Atomic Absorption Spectrophotometer, Model 200 Atomic absorption spectroscopy (AAS) has for many years

More information

The Synthesis of trans-dichlorobis(ethylenediamine)cobalt(iii) Chloride

The Synthesis of trans-dichlorobis(ethylenediamine)cobalt(iii) Chloride CHEM 122L General Chemistry Laboratory Revision 2.0 The Synthesis of trans-dichlorobis(ethylenediamine)cobalt(iii) Chloride To learn about Coordination Compounds and Complex Ions. To learn about Isomerism.

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

Pre-Lab Notebook Content: Your notebook should include the title, date, purpose, procedure; data tables.

Pre-Lab Notebook Content: Your notebook should include the title, date, purpose, procedure; data tables. Determination of Molar Mass by Freezing Point Depression M. Burkart & M. Kim Experimental Notes: Students work in pairs. Safety: Goggles and closed shoes must be worn. Dispose of all chemical in the plastic

More information

Organic Lab 1 Make-up Experiment. Extraction of Caffeine from Beverages. Introduction

Organic Lab 1 Make-up Experiment. Extraction of Caffeine from Beverages. Introduction Organic Lab 1 Make-up Experiment Extraction of Caffeine from Beverages Introduction Few compounds consumed by Americans are surrounded by as much controversy as caffeine. One article tells us that caffeine

More information

For Chromatography, you must remember Polar Dissolves More, not like dissolves like.

For Chromatography, you must remember Polar Dissolves More, not like dissolves like. Chromatography In General Separation of compounds based on the polarity of the compounds being separated Two potential phases for a compound to eist in: mobile (liquid or gas) and stationary Partitioning

More information

EXPERIMENT 2 (Organic Chemistry II) Pahlavan/Cherif Diels-Alder Reaction Preparation of ENDO-NORBORNENE-5, 6-CIS-CARBOXYLIC ANHYDRIDE

EXPERIMENT 2 (Organic Chemistry II) Pahlavan/Cherif Diels-Alder Reaction Preparation of ENDO-NORBORNENE-5, 6-CIS-CARBOXYLIC ANHYDRIDE EXPERIMENT 2 (rganic Chemistry II) Pahlavan/Cherif Diels-Alder Reaction Preparation of END-NRBRNENE-5, 6-CIS-CARBXYLIC ANYDRIDE Purpose a) Study conjugated dienes b) Study diene and dienophile c) Study

More information

Solubility Curve of Sugar in Water

Solubility Curve of Sugar in Water Solubility Curve of Sugar in Water INTRODUCTION Solutions are homogeneous mixtures of solvents (the larger volume of the mixture) and solutes (the smaller volume of the mixture). For example, a hot chocolate

More information

Laboratory 22: Properties of Alcohols

Laboratory 22: Properties of Alcohols Introduction Alcohols represent and important class of organic molecules. In this experiment you will study the physical and chemical properties of alcohols. Solubility in water, and organic solvents,

More information

Laboratory Exercise: Calibration of a Thermometer

Laboratory Exercise: Calibration of a Thermometer CHEM 109 Introduction themistry Revision 3.1 Laboratory Exercise: Calibration of a Thermometer In this exercise we will calibrate a stem-type thermometer and then use it to correctly measure the Air temperature

More information

Experiment 13: Determination of Molecular Weight by Freezing Point Depression

Experiment 13: Determination of Molecular Weight by Freezing Point Depression 1 Experiment 13: Determination of Molecular Weight by Freezing Point Depression Objective: In this experiment, you will determine the molecular weight of a compound by measuring the freezing point of a

More information

CH243: Lab 4 Synthesis of Artificial Flavorings by Fischer Esterification

CH243: Lab 4 Synthesis of Artificial Flavorings by Fischer Esterification H243: Lab 4 Synthesis of Artificial Flavorings by Fischer Esterification PURPSE: To prepare esters by reaction of carboxylic acids and alcohols. To modify a known procedure to prepare an unknown. DISUSSIN:

More information

CHM220 Nucleophilic Substitution Lab. Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon*

CHM220 Nucleophilic Substitution Lab. Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon* CHM220 Nucleophilic Substitution Lab Studying S N 1 and S N 2 Reactions: Nucloephilic Substitution at Saturated Carbon* Purpose: To convert a primary alcohol to an alkyl bromide using an S N 2 reaction

More information

ORGANIC LABORATORY TECHNIQUES 10 10.1. NEVER distill the distillation flask to dryness as there is a risk of explosion and fire.

ORGANIC LABORATORY TECHNIQUES 10 10.1. NEVER distill the distillation flask to dryness as there is a risk of explosion and fire. ORGANIC LABORATORY TECHNIQUES 10 10.1 DISTILLATION NEVER distill the distillation flask to dryness as there is a risk of explosion and fire. The most common methods of distillation are simple distillation

More information

The Molar Mass of a Gas

The Molar Mass of a Gas The Molar Mass of a Gas Goals The purpose of this experiment is to determine the number of grams per mole of a gas by measuring the pressure, volume, temperature, and mass of a sample. Terms to Know Molar

More information

Solids, Volatile Dissolved and Fixed Dissolved

Solids, Volatile Dissolved and Fixed Dissolved , 8277 Solids, Volatile Dissolved and Fixed Dissolved Gravimetric Method 1 Scope and Application: For wastewater. 1 Adapted from Standard Methods for the Examination of Water and Wastewater DOC316.53.001206

More information

Amino Acids, Peptides, and Proteins

Amino Acids, Peptides, and Proteins 1 Amino Acids, Peptides, and Proteins Introduction Amino Acids Amino acids are the building blocks of proteins. In class you learned the structures of the 20 common amino acids that make up proteins. All

More information

Chem 100 Lab Experiment #9 - ACID/BASE INDICATORS

Chem 100 Lab Experiment #9 - ACID/BASE INDICATORS Lab #9 Chem 100 Lab Experiment #9 - ACID/BASE INDICATORS Name: Purpose: In this laboratory we will investigate how indicators can be used to test for the presence of acids or bases in a number of common

More information

Phase Diagram of tert-butyl Alcohol

Phase Diagram of tert-butyl Alcohol Phase Diagram of tert-butyl Alcohol Bill Ponder Department of Chemistry Collin College Phase diagrams are plots illustrating the relationship of temperature and pressure relative to the phase (or state

More information

MOISTURE (Karl Fischer, Buffered)

MOISTURE (Karl Fischer, Buffered) MOIST.03-1 MOISTURE (Karl Fischer, Buffered) PRINCIPLE SCOPE The sample is dissolved in a mixture of methanol and formamide (50:50 v/v) and then titrated with standardized Karl Fischer reagent. The titration

More information

COMMON LABORATORY APPARATUS

COMMON LABORATORY APPARATUS COMMON LABORATORY APPARATUS Beakers are useful as a reaction container or to hold liquid or solid samples. They are also used to catch liquids from titrations and filtrates from filtering operations. Bunsen

More information

Distillation of Alcohol

Distillation of Alcohol CHEM 121L General Chemistry Laboratory Revision 1.6 Distillation of Alcohol To learn about the separation of substances. To learn about the separation technique of distillation. To learn how to characterize

More information

Unit 1 - Pure Substances and Mixtures Chapter 2: Solutions

Unit 1 - Pure Substances and Mixtures Chapter 2: Solutions 2.1 Solutes & Solvents Vocabulary: Unit 1 - Pure Substances and Mixtures Chapter 2: Solutions solvent the larger part of a solution - the part of a solution into which the solutes dissolve solute the smaller

More information

Separation of Amino Acids by Paper Chromatography

Separation of Amino Acids by Paper Chromatography Separation of Amino Acids by Paper Chromatography Chromatography is a common technique for separating chemical substances. The prefix chroma, which suggests color, comes from the fact that some of the

More information

PREPARATION OF ACETYLSALICYLIC ACID (ASPIRIN)

PREPARATION OF ACETYLSALICYLIC ACID (ASPIRIN) PREPARATIN F ACETYLSALICYLIC ACID (ASPIRIN) BACKGRUND ne of the most widely used nonprescription drugs is aspirin. In the United States, more than 15,000 pounds are sold each year. This is not surprising

More information

Online edition for students of organic chemistry lab courses at the University of Colorado, Boulder, Dept of Chem and Biochem.

Online edition for students of organic chemistry lab courses at the University of Colorado, Boulder, Dept of Chem and Biochem. u Experiment 9 Aromatic Chemistry: Synthesis of o-nitroaniline and p-nitroaniline via a Multi-Step Sequence Reading: Introduction to rganic Chemistry by Streitwieser, Heathcock, and Kosower, pp. 695-696

More information

Distillation vaporization sublimation. vapor pressure normal boiling point.

Distillation vaporization sublimation. vapor pressure normal boiling point. Distillation Distillation is an important commercial process that is used in the purification of a large variety of materials. However, before we begin a discussion of distillation, it would probably be

More information

Determination of Molar Mass by Freezing-Point Depression

Determination of Molar Mass by Freezing-Point Depression DETERMINATION OF MOLAR MASS BY FREEZING-POINT DEPRESSION 141 Determination of Molar Mass by Freezing-Point Depression OBJECTIVES: Gain familiarity with colligative properties of nonelectrolyte solutions

More information

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston Chemistry 118 Laboratory University of Massachusetts, Boston STOICHIOMETRY - LIMITING REAGENT --------------------------------------------------------------------------------------------------------------------------------------------

More information

EDTA Titrations 1: Standardization of EDTA and Analysis of Zinc in a Supplement Tablet. by Professor David Cash. September, 2008

EDTA Titrations 1: Standardization of EDTA and Analysis of Zinc in a Supplement Tablet. by Professor David Cash. September, 2008 CHEMICAL, ENVIRONMENTAL, AND BIOTECHNOLOGY DEPARTMENT EDTA Titrations 1: Standardization of EDTA and Analysis of Zinc in a Supplement Tablet by Professor David Cash September, 2008 Mohawk College is the

More information

Consider next the behavior of a mixture of two liquid compounds. The example shown below is for a 1:1 mixture of cyclohexane (C) and toluene (T).

Consider next the behavior of a mixture of two liquid compounds. The example shown below is for a 1:1 mixture of cyclohexane (C) and toluene (T). Distillation Distillation is a commonly used method for purifying liquids and separating mixtures of liquids into their individual components. Familiar examples include the distillation of crude fermentation

More information

CHEMISTRY 338 THE SYNTHESIS OF LIDOCAINE

CHEMISTRY 338 THE SYNTHESIS OF LIDOCAINE CHEMISTRY 338 THE SYTHESIS F LIDCAIE Lidocaine (1) is the common name of an important member of a category of drugs widely used as local anesthetics. Trade names for this substance include Xylocaine, Isocaine,

More information

TITRATION OF VITAMIN C

TITRATION OF VITAMIN C TITRATION OF VITAMIN C Introduction: In this lab, we will be performing two different types of titrations on ascorbic acid, more commonly known as Vitamin C. The first will be an acid-base titration in

More information

PET Recycling. Nicholas Robusto Maggie Ifarraguerri Nathaniel Lawton Isabel Hefner

PET Recycling. Nicholas Robusto Maggie Ifarraguerri Nathaniel Lawton Isabel Hefner PET Recycling Nicholas Robusto Maggie Ifarraguerri Nathaniel Lawton Isabel Hefner OBJECTIVES Hydrolyze a sample of Polyethylene Terephthalate (PET) obtained from used soda bottles, and synthesize a dimer

More information