Chapter 10: Phase Transformations

Size: px
Start display at page:

Download "Chapter 10: Phase Transformations"

Transcription

1 Chapter 10: Phase Transformations ISSUES TO ADDRESS... Transforming one phase into another takes time. Fe C FCC γ (Austenite) Eutectoid transformation Fe 3 C (cementite) + α (ferrite) (BCC) How does the rate of transformation depend on time and T? How can we slow down the transformation so that we can engineering non-equilibrium structures? Are the mechanical properties of non-equilibrium structures better? Chapter 10-1

2 Phase transformation Takes time (transformation rates: kinetics). Involves movement/rearrangement of atoms. Usually involves changes in microstructure 1. Simple diffusion-dependent transformation: no change in number of compositions of phases present (e.g. solidification of pure elemental metals, allotropic transformation, recrystallization, grain growth). 2. Diffusion-dependent transformation: transformation with alteration in phase composition and, often, with changes in number of phases present (e.g. eutectoid reaction). 3. Diffusionless transformation: e.g. rapid T quenching to trap metastable phases. Chapter 10-2

3 º T R = recrystallization temperature T R Adapted from Fig. 7.22, Callister 7e. The influence of annealing T on the tensile strength and ductility of a brass alloy. º Chapter 10-3

4 Eutectoid cooling: 1600 δ T( C) α Iron-Carbon Phase Diagram γ γ+l (austenite) α+γ R B γ (0.76 wt% C) γ γ γ γ 1148 C R S L cool heat A γ+fe 3 C 727 C = Teutectoid α+fe 3 C α (0.022 wt% C) + Fe 3 C (6.7 wt% C) L+Fe 3 C S Fe 3 C (cementite) (Fe) 0.76 C eutectoid 4.30 Fe 3 C (cementite-hard) α (ferrite-soft) Adapted from Fig. 9.24,Callister 7e. C o, wt% C Chapter 10-4

5 Nucleation Phase Transformations nuclei (seeds) act as template to grow crystals for nucleus to form rate of addition of atoms to nucleus must be faster than rate of loss once nucleated, grow until reach equilibrium Driving force to nucleate increases as we increase T supercooling (eutectic, eutectoid) superheating (peritectic) Small supercooling few nuclei - large crystals Large supercooling rapid nucleation - many nuclei, small crystals Chapter 10-5

6 Solidification: Nucleation Processes Homogeneous nucleation nuclei form in the bulk of liquid metal requires supercooling (typically C max) Heterogeneous nucleation much easier since stable nucleus is already present Could be wall of mold or impurities in the liquid phase allows solidification with only ºC supercooling Chapter 10-6 Phase 1 (e.g. liquid) Nucleation of 2 nd phase Growth

7 Homogeneous Nucleation Thermodynamic parameters: Free energy G (or Gibbs free energy) Enthalpy H: internal energy of the system and the product of its volume multiplied by the pressure Entropy S: randomness or disorder of the atoms or molecules G is important---a phase transformation will occur spontaneously only when G has a negative value. Chapter 10-7

8 Homogeneous Nucleation Chapter 10-8

9 Homogeneous Nucleation & Energy Effects Surface Free Energy- destabilizes the nuclei (it takes energy to make an interface) 2 G S = 4πr γ Activation Free Energy γ = surface energy G T = Total Free Energy = G S + G V Volume (Bulk) Free Energy stabilizes the nuclei (releases energy) 4 3 G V = πr Gυ r* = critical nucleus: nuclei < r* shrink; nuclei>r* grow (to reduce energy) Adapted from Fig.10.2(b), Callister 7e. Chapter 10-9 G υ 3 volume free energy = unit volume

10 Kinetics of solid state reactions Critical nucleus size (r c ) and the activation energy ( G*) G = 4 3 πr Gv 3 + 4πr Take the derivative and set equal to zero to find max. d( G) 4 2 = π ( Gv )(3r dr 3 2γ Substitution in to overall G equation r c 2 γ = G v ) + 4πγ (2r) = 0 G * = 3 16πγ 3( ) G v 2 Chapter The volume free energy change is the driving force for the solidification transformation

11 Kinetics of solid state reactions In terms of heat of fusion H f (i.e. energy release upon solidification): G v = H f ( T T ) T With this definition, we then have: m m Tells us how G v changes with temperature Equilibrium solidification temperature T 1 > T 2 r c = 2γ H f Tm Tm T G * = 3 16πγ 3 H 2 f Tm Tm T 2 As T decreases both r c and G* become smaller Number of stable nuclei: n * G exp kt Chapter LIQUID INSTABILITY at LOWER TEMPERTURES *

12 Solidification r* = 2γTm H T S r* = critical radius γ = surface free energy T m = melting temperature H S = latent heat of solidification T = T m - T = supercooling Note: H S γ = strong function of T = weak function of T r* decreases as T increases For typical T r* ca. 100Å Chapter 10-12

13 Kinetics of solid state reactions We also need to consider diffusion: Faster diffusion leads to more collisions between atoms. More collisions means higher probability of atoms sticking to each other. Recall diffusion D Q = d Do exp kt Then, the frequency of atoms sticking together is directly related to diffusion: Frequency of attachment: v d exp Qd kt Chapter 10-13

14 Kinetics of solid state reactions Combining liquid instability and diffusion effects together: Rate of Nucleation (units: nuclei per unit volume per second) n dn dt * = Kn* v d G exp kt G * = K' exp kt * v d Q d exp kt Q d exp kt Nucleation rate Contribution from liquid instability Net rate Contribution from diffusion Liquid instability Diffusion T m T Chapter 10-14

15 Example problem: critical radius and activation energy for nucleation A) If pure liquid gold is cooled to 230 o C below its melting point, calculate the critical radius and the activation energy. Values for the latent heat of fusion and surface free energy are -1.16x10 9 J/m 3 and 0.132J/m 2, respectively. B) Calculate the number of atoms per nucleus of this critical size. Au is FCC with a = 0.413nm. Chapter 10-15

16 Rate of Phase Transformations Kinetics - measure approach to equilibrium vs. time Hold temperature constant & measure conversion vs. time How is conversion measured? X-ray diffraction have to do many samples electrical conductivity follow one sample sound waves one sample Chapter 10-16

17 Fraction transformed, y 0.5 Rate of Phase Transformation Fixed T Avrami rate equation => y = 1- exp (-kt n ) All out of material - done maximum rate reached now amount unconverted decreases so rate slows rate increases as surface area increases t & nuclei grow 0.5 log t Adapted from Fig , Callister 7e. fraction transformed k & n fit for specific sample time By convention r = 1 / t 0.5 Chapter 10-17

18 Rate of Phase Transformations 135 C 119 C 113 C 102 C 88 C 43 C Adapted from Fig , Callister 7e. (Fig adapted from B.F. Decker and D. Harker, "Recrystallization in Rolled Copper", Trans AIME, 188, 1950, p. 888.) In general, rate increases as T r = 1/t 0.5 = A e -Q/RT R = gas constant T = temperature (K) A = preexponential factor Q = activation energy r often small: equilibrium not possible! Arrhenius expression Chapter 10-18

19 Eutectoid Transformation Rate Growth of pearlite from austenite: Austenite (γ) grain boundary Adapted from Fig. 9.15, Callister 7e. α α αα α α Recrystallization rate increases with T. γ y (% pearlite) γ cementite (Fe 3 C) Ferrite (α) 100 pearlite growth direction 600 C ( T larger) C Diffusive flow of C needed γ 675 C ( T smaller) α α α γ Adapted from Fig , Callister 7e. Course pearlite formed at higher T - softer Fine pearlite formed at low T - harder Chapter 10-19

20 Reaction rate is a result of nucleation and growth of crystals. 100 % Pearlite 50 Examples: Nucleation and Growth 0 Nucleation regime γ t 0.5 pearlite colony Growth regime Nucleation rate increases with T Growth rate increases with T log(time) γ Adapted from Fig , Callister 7e. γ T just below T E Nucleation rate low Growth rate high T moderately below T E Nucleation rate med. Growth rate med. T way below T E Nucleation rate high Growth rate low Chapter 10-20

21 Transformations & Undercooling Eutectoid transf. (Fe-C System): Can make it occur at:...727ºc (cool it slowly)...below 727ºC ( undercool it!) T( C) α ferrite 1600 δ γ γ+l (austenite) γ α + Fe 3 C 0.76 wt% C wt% C (Fe) Eutectoid: L 1148 C γ +Fe 3 C Equil. Cooling: T transf. = 727ºC T α +Fe 3 C Undercooling by T transf. < 727 C 0.76 L+Fe 3 C 727 C C o, wt%c Fe 3 C (cementite) 6.7 wt% C Adapted from Fig. 9.24,Callister 7e. (Fig adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.- in-chief), ASM International, Materials Park, OH, 1990.) Chapter 10-21

22 y, % transformed Isothermal Transformation Diagrams Fe-C system, C o = 0.76 wt% C Transformation at T = 675 C T( C) T = 675 C Austenite (unstable) 100% 50% 0%pearlite Austenite (stable) Pearlite isothermal transformation at 675 C time (s) T E (727 C) time (s) Adapted from Fig ,Callister 7e. (Fig adapted from H. Boyer (Ed.) Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, 1977, p. 369.) Chapter 10-22

23 Effect of Cooling History in Fe-C System Eutectoid composition, C o = 0.76 wt% C Begin at T > 727 C Rapidly cool to 625 C and hold isothermally. T( C) 700 Austenite (unstable) Austenite (stable) T E (727 C) 600 γ γ 500 γ 50% 0%pearlite 100% γ γ γ Pearlite Adapted from Fig ,Callister 7e. (Fig adapted from H. Boyer (Ed.) Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, 1997, p. 28.) time (s) Chapter 10-23

24 Transformations with Proeutectoid Materials T( C) A C O = 1.13 wt% C A + C A A + P P T E (727 C) Adapted from Fig , Callister 7e. time (s) α 1600 δ T( C) γ γ+l (austenite) T (Fe) L γ +Fe 3 C α+fe 3 C Adapted from Fig. 9.24, Callister 7e. L+Fe 3 C 727 C Fe 3 C (cementite) C o, wt%c Hypereutectoid composition proeutectoid cementite Chapter 10-24

25 Pearlite Coarse (quenched to higher T) Fine (quenched to lower T) Chapter 10-25

26 Non-Equilibrium Transformation Products: Fe-C Bainite: --α lathes (strips) with long rods of Fe 3 C --diffusion controlled. Isothermal Transf. Diagram 800 T( C) A Austenite (stable) A P B T E 100% pearlite pearlite/bainite boundary 100% bainite Fe 3 C (cementite) α (ferrite) 5 µm (Adapted from Fig , Callister, 7e. (Fig from Metals Handbook, 8th ed., Vol. 8, Metallography, Structures, and Phase Diagrams, American Society for Metals, Materials Park, OH, 1973.) 200 0% 50% 100% time (s) Adapted from Fig , Callister 7e. (Fig adapted from H. Boyer (Ed.) Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, 1997, p. 28.) Chapter 10-26

27 Spheroidite: Fe-C System Spheroidite: --α grains with spherical Fe 3 C --diffusion dependent. --heat bainite or pearlite for long times --reduces interfacial area (driving force) α (ferrite) Fe 3 C (cementite) 60 µm (Adapted from Fig , Callister, 7e. (Fig copyright United States Steel Corporation, 1971.) Chapter 10-27

28 Martensite: --γ(fcc) to Martensite (BCT) Isothermal Transf. Diagram Adapted from Fig , Callister 7e. Martensite: Fe-C System (involves single atom jumps) Fe atom sites 800 T( C) x 10-1 A x x x x (Adapted from Fig , Callister, 7e. Austenite (stable) A x 0% M + A M + A M + A potential C atom sites P B 50% 100% T E 0% 50% 90% time (s) 60 µm Martensite needles Austenite (Adapted from Fig , Callister, 7e. (Fig courtesy United States Steel Corporation.) γ to M transformation.. -- is rapid! -- % transf. depends on T only. Chapter 10-28

29 Martensite Formation γ (FCC) slow cooling α (BCC) + Fe 3 C quench M (BCT) tempering M = martensite is body centered tetragonal (BCT) Diffusionless transformation BCT if C > 0.15 wt% BCT few slip planes hard, brittle Chapter 10-29

30 Phase Transformations of Alloys Effect of adding other elements Change transition temp. Cr, Ni, Mo, Si, Mn retard γ α + Fe 3 C transformation Adapted from Fig , Callister 7e. Chapter 10-30

31 Cooling Curve plot temp vs. time Adapted from Fig , Callister 7e. Chapter 10-31

32 Dynamic Phase Transformations On the isothermal transformation diagram for 0.45 wt% C Fe-C alloy, sketch and label the time-temperature paths to produce the following microstructures: a) 42% proeutectoid ferrite and 58% coarse pearlite b) 50% fine pearlite and 50% bainite c) 100% martensite d) 50% martensite and 50% austenite Chapter 10-32

33 Example Problem for C o = 0.45 wt% a) 42% proeutectoid ferrite and 58% coarse pearlite first make ferrite then pearlite course pearlite higher T T ( C) A A M (start) M (50%) M (90%) A + α P B A + P A + B 50% Adapted from Fig , Callister 5e time (s) Chapter 10-33

34 Example Problem for C o = 0.45 wt% b) 50% fine pearlite and 50% bainite first make pearlite then bainite fine pearlite lower T T ( C) A A M (start) M (50%) M (90%) A + α P B A + P A + B 50% Adapted from Fig , Callister 5e time (s) Chapter 10-34

35 Example Problem for C o = 0.45 wt% c) 100 % martensite quench = rapid cool d) 50 % martensite and 50 % austenite T ( C) A A M (start) M (50%) M (90%) A + α P B A + P A + B 50% d) Adapted from Fig , Callister 5e. 0 c) time (s) Chapter 10-35

36 Adapted from Fig. 9.30,Callister 7e. (Fig courtesy Republic Steel Corporation.) Mechanical Prop: Fe-C System (1) Effect of wt% C Pearlite (med) ferrite (soft) TS(MPa) 1100 YS(MPa) Hypo C o < 0.76 wt% C Hypoeutectoid Hyper hardness %EL 100 C o > 0.76 wt% C Hypereutectoid Pearlite (med) Cementite (hard) wt% C wt% C More wt% C: TS and YS increase, %EL decreases. 50 Hypo Adapted from Fig. 9.33,Callister 7e. (Fig copyright 1971 by United States Steel Corporation.) Hyper Impact energy (Izod, ft-lb) Adapted from Fig , Callister 7e. (Fig based on data from Metals Handbook: Heat Treating, Vol. 4, 9th ed., V. Masseria (Managing Ed.), American Society for Metals, 1981, p. 9.) Chapter 10-36

37 Mechanical Prop: Fe-C System (2) Fine vs coarse pearlite vs spheroidite Brinell hardness Hardness: %RA: Hypo fine pearlite Hyper coarse pearlite spheroidite wt%c Ductility (%AR) fine > coarse > spheroidite fine < coarse < spheroidite Hypo Hyper spheroidite 30 coarse pearlite fine pearlite wt%c Adapted from Fig , Callister 7e. (Fig based on data from Metals Handbook: Heat Treating, Vol. 4, 9th ed., V. Masseria (Managing Ed.), American Society for Metals, 1981, pp. 9 and 17.) Chapter 10-37

38 Mechanical Prop: Fe-C System (3) Fine Pearlite vs Martensite: Hypo Hyper Brinell hardness martensite fine pearlite wt% C Hardness: fine pearlite << martensite. Adapted from Fig , Callister 7e. (Fig adapted from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 36; and R.A. Grange, C.R. Hribal, and L.F. Porter, Metall. Trans. A, Vol. 8A, p ) Chapter 10-38

39 Tempering Martensite reduces brittleness of martensite, reduces internal stress caused by quenching. TS(MPa) YS(MPa) 1800 Adapted from Fig , Callister 7e. (Fig adapted from Fig. furnished courtesy of Republic Steel Corporation.) YS %RA TS %RA Tempering T( C) 9 µm Adapted from Fig , Callister 7e. (Fig copyright by United States Steel Corporation, 1971.) produces extremely small Fe 3 C particles surrounded by α. decreases TS, YS but increases %RA Chapter 10-39

40 Summary: Processing Options slow cool Austenite (γ) moderate cool rapid quench Adapted from Fig , Callister 7e. Pearlite (α + Fe 3 C layers + a proeutectoid phase) Strength Bainite (α + Fe 3 C plates/needles) Martensite T Martensite bainite fine pearlite coarse pearlite spheroidite General Trends Ductility Martensite (BCT phase diffusionless transformation) reheat Tempered Martensite (α + very fine Fe 3 C particles) Chapter 10-40

Iron-Carbon Phase Diagram (a review) see Callister Chapter 9

Iron-Carbon Phase Diagram (a review) see Callister Chapter 9 Iron-Carbon Phase Diagram (a review) see Callister Chapter 9 University of Tennessee, Dept. of Materials Science and Engineering 1 The Iron Iron Carbide (Fe Fe 3 C) Phase Diagram In their simplest form,

More information

Chapter Outline: Phase Transformations in Metals

Chapter Outline: Phase Transformations in Metals Chapter Outline: Phase Transformations in Metals Heat Treatment (time and temperature) Microstructure Mechanical Properties Kinetics of phase transformations Multiphase Transformations Phase transformations

More information

Introduction to Materials Science, Chapter 9, Phase Diagrams. Phase Diagrams. University of Tennessee, Dept. of Materials Science and Engineering 1

Introduction to Materials Science, Chapter 9, Phase Diagrams. Phase Diagrams. University of Tennessee, Dept. of Materials Science and Engineering 1 Phase Diagrams University of Tennessee, Dept. of Materials Science and Engineering 1 Chapter Outline: Phase Diagrams Microstructure and Phase Transformations in Multicomponent Systems Definitions and basic

More information

Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular

Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular Lecture 19: Eutectoid Transformation in Steels: a typical case of Cellular Precipitation Today s topics Understanding of Cellular transformation (or precipitation): when applied to phase transformation

More information

Module 34. Heat Treatment of steel IV. Lecture 34. Heat Treatment of steel IV

Module 34. Heat Treatment of steel IV. Lecture 34. Heat Treatment of steel IV Module 34 Heat reatment of steel IV Lecture 34 Heat reatment of steel IV 1 Keywords : Austenitization of hypo & hyper eutectoid steel, austenization temperature, effect of heat treatment on structure &

More information

Phase Transformations in Metals and Alloys

Phase Transformations in Metals and Alloys Phase Transformations in Metals and Alloys THIRD EDITION DAVID A. PORTER, KENNETH E. EASTERLING, and MOHAMED Y. SHERIF ( г йс) CRC Press ^ ^ ) Taylor & Francis Group Boca Raton London New York CRC Press

More information

9.11 Upon heating a lead-tin alloy of composition 30 wt% Sn-70 wt% Pb from 150 C and utilizing Figure

9.11 Upon heating a lead-tin alloy of composition 30 wt% Sn-70 wt% Pb from 150 C and utilizing Figure 9-13 9.8: 9.11 Upon heating a lead-tin alloy of composition 30 wt% Sn-70 wt% Pb from 150 C and utilizing Figure (a) The first liquid forms at the temperature at which a vertical line at this composition

More information

Heat Treatment of Steels : Spheroidize annealing. Heat Treatment of Steels : Normalizing

Heat Treatment of Steels : Spheroidize annealing. Heat Treatment of Steels : Normalizing Heat Treatment of Steels :Recrystallization annealing The carbon and alloy steels were treated at a temperature of about 700 C, which is about 20 C below the eutectoid temperature. The holding time should

More information

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R 3.5 Show that the atomic packing factor for BCC is 0.68. The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C Since there are two spheres associated

More information

BINARY SYSTEMS. Definition of Composition: Atomic (molar) fraction. Atomic percent. Mass fraction. Mass percent (weight percent)

BINARY SYSTEMS. Definition of Composition: Atomic (molar) fraction. Atomic percent. Mass fraction. Mass percent (weight percent) BINARY SYSTEMS Definition of Composition: Atomic (molar) fraction Atomic percent Mass fraction Mass percent (weight percent) na =, x i n = A i i i Weight percent mainly in industry! x at % A = x 100 A

More information

LABORATORY EXPERIMENTS TESTING OF MATERIALS

LABORATORY EXPERIMENTS TESTING OF MATERIALS LABORATORY EXPERIMENTS TESTING OF MATERIALS 1. TENSION TEST: INTRODUCTION & THEORY The tension test is the most commonly used method to evaluate the mechanical properties of metals. Its main objective

More information

Experiment: Heat Treatment - Quenching & Tempering

Experiment: Heat Treatment - Quenching & Tempering Experiment: Heat Treatment - Quenching & Tempering Objectives 1) To investigate the conventional heat treatment procedures, such as quenching and annealing, used to alter the properties of steels. SAE

More information

Heat Treatment of Steel

Heat Treatment of Steel Heat Treatment of Steel Steels can be heat treated to produce a great variety of microstructures and properties. Generally, heat treatment uses phase transformation during heating and cooling to change

More information

Alloys & Their Phase Diagrams

Alloys & Their Phase Diagrams Alloys & Their Phase Diagrams Objectives of the class Gibbs phase rule Introduction to phase diagram Practice phase diagram Lever rule Important Observation: One question in the midterm Consider the Earth

More information

Chapter 8. Phase Diagrams

Chapter 8. Phase Diagrams Phase Diagrams A phase in a material is a region that differ in its microstructure and or composition from another region Al Al 2 CuMg H 2 O(solid, ice) in H 2 O (liquid) 2 phases homogeneous in crystal

More information

Kinetics of Phase Transformations: Nucleation & Growth

Kinetics of Phase Transformations: Nucleation & Growth Kinetics of Phase Transformations: Nucleation & Growth Radhika Barua Department of Chemical Engineering Northeastern University Boston, MA USA Thermodynamics of Phase Transformation Northeastern University

More information

SOLIDIFICATION. (a)formation of stable nuclei. Growth of a stable nucleus. (c) Grain structure

SOLIDIFICATION. (a)formation of stable nuclei. Growth of a stable nucleus. (c) Grain structure SOLIDIFICATION Most metals are melted and then cast into semifinished or finished shape. Solidification of a metal can be divided into the following steps: Formation of a stable nucleus Growth of a stable

More information

Binary phase diagrams

Binary phase diagrams inary phase diagrams inary phase diagrams and ibbs free energy curves inary solutions with unlimited solubility Relative proportion of phases (tie lines and the lever principle) Development of microstructure

More information

Lecture: 33. Solidification of Weld Metal

Lecture: 33. Solidification of Weld Metal Lecture: 33 Solidification of Weld Metal This chapter presents common solidification mechanisms observed in weld metal and different modes of solidification. Influence of welding speed and heat input on

More information

Phase Equilibria & Phase Diagrams

Phase Equilibria & Phase Diagrams Phase Equilibria & Phase Diagrams Week7 Material Sciences and Engineering MatE271 1 Motivation Phase diagram (Ch 9) Temperature Time Kinematics (Ch 10) New structure, concentration (mixing level) (at what

More information

The mechanical properties of metal affected by heat treatment are:

The mechanical properties of metal affected by heat treatment are: Training Objective After watching this video and reviewing the printed material, the student/trainee will learn the basic concepts of the heat treating processes as they pertain to carbon and alloy steels.

More information

Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139

Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139 Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139 2.002 Mechanics and Materials II Spring 2004 Laboratory Module No. 5 Heat Treatment of Plain Carbon and Low

More information

Continuous Cooling Transformation (CCT) Diagrams

Continuous Cooling Transformation (CCT) Diagrams Continuous Cooling Transformation (CCT) Diagrams R. Manna Assistant Professor Centre of Advanced Study Department of Metallurgical Engineering Institute of Technology, Banaras Hindu University Varanasi-221

More information

Chapter 5: Diffusion. 5.1 Steady-State Diffusion

Chapter 5: Diffusion. 5.1 Steady-State Diffusion : Diffusion Diffusion: the movement of particles in a solid from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance Diffusion is process

More information

Lecture 18 Strain Hardening And Recrystallization

Lecture 18 Strain Hardening And Recrystallization -138- Lecture 18 Strain Hardening And Recrystallization Strain Hardening We have previously seen that the flow stress (the stress necessary to produce a certain plastic strain rate) increases with increasing

More information

Chapter Outline. Diffusion - how do atoms move through solids?

Chapter Outline. Diffusion - how do atoms move through solids? Chapter Outline iffusion - how do atoms move through solids? iffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities The mathematics of diffusion Steady-state diffusion (Fick s first law)

More information

HEAT TREATMENT OF STEEL

HEAT TREATMENT OF STEEL HEAT TREATMENT OF STEEL Heat Treatment of Steel Most heat treating operations begin with heating the alloy into the austenitic phase field to dissolve the carbide in the iron. Steel heat treating practice

More information

MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY

MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY MSE 528 - PRECIPITATION HARDENING IN 7075 ALUMINUM ALLOY Objective To study the time and temperature variations in the hardness and electrical conductivity of Al-Zn-Mg-Cu high strength alloy on isothermal

More information

8. Technical Heat Treatment

8. Technical Heat Treatment 8. Technical Heat Treatment 8. Technical Heat Treatment 95 6 cm 4 2 0-2 -4 C 400 C C -6-14 -12-10 -8-6 -4-2 0 2 cm 6 723 C temperature C 1750 750 250 When welding a workpiece, not only the weld itself,

More information

HIGH STRENGTH DUCTILE IRON PRODUCED BY THE ENGINEERED COOLING: PROCESS CONCEPT

HIGH STRENGTH DUCTILE IRON PRODUCED BY THE ENGINEERED COOLING: PROCESS CONCEPT IJMC14-244-2 HIGH STRENGTH DUCTILE IRON PRODUCED BY THE ENGINEERED COOLING: PROCESS CONCEPT Copyright 215 American Foundry Society Abstract Simon N. Lekakh Missouri University of Science and Technology,

More information

Time Temperature Transformation (TTT) Diagrams

Time Temperature Transformation (TTT) Diagrams Tata Steel-TRAERF Faculty Fellowship Visiting Scholar Department of Materials Science and Metallurgy University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ rm659@cam.ac.uk Time Temperature Transformation

More information

THREE MAIN SOLIDIFICATION REACTIONS OF VANADIUM MODIFIED T1 TUNGSTEN HIGH SPEED TOOL STEEL. Hossam Halfa

THREE MAIN SOLIDIFICATION REACTIONS OF VANADIUM MODIFIED T1 TUNGSTEN HIGH SPEED TOOL STEEL. Hossam Halfa THREE MAIN SOLIDIFICATION REACTIONS OF VANADIUM MODIFIED T1 TUNGSTEN HIGH SPEED TOOL STEEL Hossam Halfa Steel Technology Department, Central Metallurgical R&D Institute (CMRDI), Helwan, Egypt, hossamhalfa@cmrdi.sci.eg;

More information

Martensite in Steels

Martensite in Steels Materials Science & Metallurgy http://www.msm.cam.ac.uk/phase-trans/2002/martensite.html H. K. D. H. Bhadeshia Martensite in Steels The name martensite is after the German scientist Martens. It was used

More information

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS 7-1 CHAPTER 7 DISLOCATIONS AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS Basic Concepts of Dislocations Characteristics of Dislocations 7.1 The dislocation density is just the total dislocation length

More information

X15TN TM. A high hardness, corrosion and fatigue resistance martensitic grade CONTINUOUS INNOVATION RESEARCH SERVICE.

X15TN TM. A high hardness, corrosion and fatigue resistance martensitic grade CONTINUOUS INNOVATION RESEARCH SERVICE. TM A high hardness, corrosion and fatigue resistance martensitic grade CONTINUOUS METALLURGICAL SPECIAL STEELS INNOVATION RESEARCH SERVICE DEVELOPMENT Enhancing your performance THE INDUSTRIAL ENVIRONMENT

More information

Phase. Gibbs Phase rule

Phase. Gibbs Phase rule Phase diagrams Phase A phase can be defined as a physically distinct and chemically homogeneous portion of a system that has a particular chemical composition and structure. Water in liquid or vapor state

More information

Solidification, Crystallization & Glass Transition

Solidification, Crystallization & Glass Transition Solidification, Crystallization & Glass Transition Cooling the Melt solidification Crystallization versus Formation of Glass Parameters related to the formaton of glass Effect of cooling rate Glass transition

More information

Fundamentals of the Heat Treating of Steel

Fundamentals of the Heat Treating of Steel CHAPTER 2 Fundamentals of the Heat Treating of Steel BEFORE CONSIDERATION can be given to the heat treatment of steel or other iron-base alloys, it is helpful to explain what steel is. The common dictionary

More information

Materials Issues in Fatigue and Fracture

Materials Issues in Fatigue and Fracture Materials Issues in Fatigue and Fracture 5.1 Fundamental Concepts 5.2 Ensuring Infinite Life 5.3 Finite Life 5.4 Summary FCP 1 5.1 Fundamental Concepts Structural metals Process of fatigue A simple view

More information

INFLUENCE OF Cr, Mn AND Mo ON STRUCTURE AND PROPERTIES OF V MICROALLOYED MEDIUM CARBON FORGING STEELS

INFLUENCE OF Cr, Mn AND Mo ON STRUCTURE AND PROPERTIES OF V MICROALLOYED MEDIUM CARBON FORGING STEELS Association of Metallurgical Engineers of Serbia AMES Scientific paper UDC: 669.15'26'74'28-194 INFLUENCE OF Cr, Mn AND Mo ON STRUCTURE AND PROPERTIES OF V MICROALLOYED MEDIUM CARBON FORGING STEELS Nenad

More information

Lecture 4: Thermodynamics of Diffusion: Spinodals

Lecture 4: Thermodynamics of Diffusion: Spinodals Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP6, Kinetics and Microstructure Modelling, H. K. D. H. Bhadeshia Lecture 4: Thermodynamics of Diffusion: Spinodals Fick

More information

Lecture 22: Spinodal Decomposition: Part 1: general description and

Lecture 22: Spinodal Decomposition: Part 1: general description and Lecture 22: Spinodal Decomposition: Part 1: general description and practical implications Today s topics basics and unique features of spinodal decomposition and its practical implications. The relationship

More information

Simulations of the Effect of Section Size and Cooling on Sigma Phase Formation in Duplex Stainless Steels

Simulations of the Effect of Section Size and Cooling on Sigma Phase Formation in Duplex Stainless Steels Simulations of the Effect of Section Size and Cooling on Sigma Phase Formation in Duplex Stainless Steels Richard A. Hardin and Christoph Beckermann Department of Mechanical and Industrial Engineering

More information

Full Density Properties of Low Alloy Steels

Full Density Properties of Low Alloy Steels Full Density Properties of Low Alloy Steels Michael L. Marucci & Arthur J. Rawlings Hoeganaes Corporation, Cinnaminson, NJ Presented at PM 2 TEC2005 International Conference on Powder Metallurgy and Particulate

More information

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige

Ch. 4: Imperfections in Solids Part 1. Dr. Feras Fraige Ch. 4: Imperfections in Solids Part 1 Dr. Feras Fraige Outline Defects in Solids 0D, Point defects vacancies Interstitials impurities, weight and atomic composition 1D, Dislocations edge screw 2D, Grain

More information

CONCEPT CHECK QUESTIONS AND ANSWERS. Chapter 2 Atomic Structure and Interatomic Bonding

CONCEPT CHECK QUESTIONS AND ANSWERS. Chapter 2 Atomic Structure and Interatomic Bonding CONCEPT CHECK QUESTIONS AND ANSWERS Chapter 2 Atomic Structure and Interatomic Bonding Concept Check 2.1 Question: Why are the atomic weights of the elements generally not integers? Cite two reasons. Answer:

More information

Defects Introduction. Bonding + Structure + Defects. Properties

Defects Introduction. Bonding + Structure + Defects. Properties Defects Introduction Bonding + Structure + Defects Properties The processing determines the defects Composition Bonding type Structure of Crystalline Processing factors Defects Microstructure Types of

More information

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5

Introduction To Materials Science FOR ENGINEERS, Ch. 5. Diffusion. MSE 201 Callister Chapter 5 Diffusion MSE 21 Callister Chapter 5 1 Goals: Diffusion - how do atoms move through solids? Fundamental concepts and language Diffusion mechanisms Vacancy diffusion Interstitial diffusion Impurities Diffusion

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

Chapter Outline Dislocations and Strengthening Mechanisms

Chapter Outline Dislocations and Strengthening Mechanisms Chapter Outline Dislocations and Strengthening Mechanisms What is happening in material during plastic deformation? Dislocations and Plastic Deformation Motion of dislocations in response to stress Slip

More information

Thermodynamics. Thermodynamics 1

Thermodynamics. Thermodynamics 1 Thermodynamics 1 Thermodynamics Some Important Topics First Law of Thermodynamics Internal Energy U ( or E) Enthalpy H Second Law of Thermodynamics Entropy S Third law of Thermodynamics Absolute Entropy

More information

INFLUENCE OF THERMOMECHANICAL TREATMENT ON THE STEEL C45 FATIGUE PROPERTIES

INFLUENCE OF THERMOMECHANICAL TREATMENT ON THE STEEL C45 FATIGUE PROPERTIES CO-MAT-TECH 2005 TRNAVA, 20-21 October 2005 INFLUENCE OF THERMOMECHANICAL TREATMENT ON THE STEEL C45 FATIGUE PROPERTIES Jiří MALINA 1+2, Hana STANKOVÁ 1+2, Jaroslav DRNEK 3, Zbyšek NOVÝ 3, Bohuslav MAŠEK

More information

FATIGUE BEHAVIOUR ANALYSIS OF DIFFERENTLY HEAT TREATED MEDIUM CARBON STEEL. Master of Technology (Res.) Metallurgical and Materials Engineering

FATIGUE BEHAVIOUR ANALYSIS OF DIFFERENTLY HEAT TREATED MEDIUM CARBON STEEL. Master of Technology (Res.) Metallurgical and Materials Engineering FATIGUE BEHAVIOUR ANALYSIS OF DIFFERENTLY HEAT TREATED MEDIUM CARBON STEEL A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Technology (Res.) in Metallurgical and

More information

EUTECTIC TRANSFORMATION IN DUCTILE CAST IRON. PART I THEORETICAL BACKGROUND

EUTECTIC TRANSFORMATION IN DUCTILE CAST IRON. PART I THEORETICAL BACKGROUND METALLURGY AND FOUNDRY ENGINEERING Vol. 31, 005, No. Edward Fraœ *, Marcin Górny **, Hugo F. López *** EUTECTIC TRANSFORMATION IN DUCTILE CAST IRON. PART I THEORETICAL BACKGROUND SYMBOLS Symbols Meaning

More information

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states. Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite

More information

Thermo-kinetics based materials modeling with MatCalc Functionality and integration

Thermo-kinetics based materials modeling with MatCalc Functionality and integration http://matcalc.at Thermo-kinetics based materials modeling with MatCalc Functionality and integration E. Kozeschnik Outline General information Thermodynamic engine Equilibrium and non-equilibrium thermodynamics

More information

x100 A o Percent cold work = %CW = A o A d Yield Stress Work Hardening Why? Cell Structures Pattern Formation

x100 A o Percent cold work = %CW = A o A d Yield Stress Work Hardening Why? Cell Structures Pattern Formation Work Hardening Dislocations interact with each other and assume configurations that restrict the movement of other dislocations. As the dislocation density increases there is an increase in the flow stress

More information

DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment

DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment DIFFUSION IN SOLIDS WHY STUDY DIFFUSION? Materials often heat treated to improve properties Atomic diffusion occurs during heat treatment Depending on situation higher or lower diffusion rates desired

More information

14:635:407:02 Homework III Solutions

14:635:407:02 Homework III Solutions 14:635:407:0 Homework III Solutions 4.1 Calculate the fraction of atom sites that are vacant for lead at its melting temperature of 37 C (600 K). Assume an energy for vacancy formation of 0.55 ev/atom.

More information

Solution for Homework #1

Solution for Homework #1 Solution for Homework #1 Chapter 2: Multiple Choice Questions (2.5, 2.6, 2.8, 2.11) 2.5 Which of the following bond types are classified as primary bonds (more than one)? (a) covalent bonding, (b) hydrogen

More information

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = 2 10-3 m. Thus,

In order to solve this problem it is first necessary to use Equation 5.5: x 2 Dt. = 1 erf. = 1.30, and x = 2 mm = 2 10-3 m. Thus, 5.3 (a) Compare interstitial and vacancy atomic mechanisms for diffusion. (b) Cite two reasons why interstitial diffusion is normally more rapid than vacancy diffusion. Solution (a) With vacancy diffusion,

More information

Define the notations you are using properly. Present your arguments in details. Good luck!

Define the notations you are using properly. Present your arguments in details. Good luck! Umeå Universitet, Fysik Vitaly Bychkov Prov i fysik, Thermodynamics, 0-0-4, kl 9.00-5.00 jälpmedel: Students may use any book(s) including the textbook Thermal physics. Minor notes in the books are also

More information

Thermodynamic database of the phase diagrams in copper base alloy systems

Thermodynamic database of the phase diagrams in copper base alloy systems Journal of Physics and Chemistry of Solids 66 (2005) 256 260 www.elsevier.com/locate/jpcs Thermodynamic database of the phase diagrams in copper base alloy systems C.P. Wang a, X.J. Liu b, M. Jiang b,

More information

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy

More information

WJM Technologies excellence in material joining

WJM Technologies excellence in material joining Girish P. Kelkar, Ph.D. (562) 743-7576 girish@welding-consultant.com www.welding-consultant.com Weld Cracks An Engineer s Worst Nightmare There are a variety of physical defects such as undercut, insufficient

More information

Experiment: Crystal Structure Analysis in Engineering Materials

Experiment: Crystal Structure Analysis in Engineering Materials Experiment: Crystal Structure Analysis in Engineering Materials Objective The purpose of this experiment is to introduce students to the use of X-ray diffraction techniques for investigating various types

More information

LOW CARBON MICROALLOYED COLD ROLLED, HOT DIP GALVANIZED DUAL PHASE STEEL FOR LARGER CROSS-SECTIONAL AREAS WITH IMPROVED PROPERTIES

LOW CARBON MICROALLOYED COLD ROLLED, HOT DIP GALVANIZED DUAL PHASE STEEL FOR LARGER CROSS-SECTIONAL AREAS WITH IMPROVED PROPERTIES LOW CARBON MICROALLOYED COLD ROLLED, HOT DIP GALVANIZED DUAL PHASE STEEL FOR LARGER CROSS-SECTIONAL AREAS WITH IMPROVED PROPERTIES Hardy Mohrbacher NiobelCon bvba, Schilde, Belgium Thomas Schulz Salzgitter-Mannesmann

More information

Concepts of Stress and Strain

Concepts of Stress and Strain CHAPTER 6 MECHANICAL PROPERTIES OF METALS PROBLEM SOLUTIONS Concepts of Stress and Strain 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original

More information

Formation of solids from solutions and melts

Formation of solids from solutions and melts Formation of solids from solutions and melts Solids from a liquid phase. 1. The liquid has the same composition as the solid. Formed from the melt without any chemical transformation. Crystallization and

More information

Each grain is a single crystal with a specific orientation. Imperfections

Each grain is a single crystal with a specific orientation. Imperfections Crystal Structure / Imperfections Almost all materials crystallize when they solidify; i.e., the atoms are arranged in an ordered, repeating, 3-dimensional pattern. These structures are called crystals

More information

KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

More information

CHAPTER 8. Phase Diagrams 8-1

CHAPTER 8. Phase Diagrams 8-1 CHAPTER 8 Phase Diagrams 8-1 Introducción Fase: Una region en un material que difiere en estructura y función de otra región. Diagramas de fase : Representan las fases presentes en el metal a diferentes

More information

RAPIDLY SOLIDIFIED COPPER ALLOYS RIBBONS

RAPIDLY SOLIDIFIED COPPER ALLOYS RIBBONS Association of Metallurgical Engineers of Serbia AMES Scientific paper UDC:669.35-153.881-412.2=20 RAPIDLY SOLIDIFIED COPPER ALLOYS RIBBONS M. ŠULER 1, L. KOSEC 1, A. C. KNEISSL 2, M. BIZJAK 1, K. RAIĆ

More information

The Effect of Heat Treatment Atmosphere on Hardening of Surface Region of H13 Tool Steel. Dominique AU

The Effect of Heat Treatment Atmosphere on Hardening of Surface Region of H13 Tool Steel. Dominique AU The Effect of Heat Treatment Atmosphere on Hardening of Surface Region of H13 Tool Steel Dominique AU Report submitted in partial fulfilment of the degree of Postgraduate diploma in Research Auckland University

More information

Lecture 14. Chapter 8-1

Lecture 14. Chapter 8-1 Lecture 14 Fatigue & Creep in Engineering Materials (Chapter 8) Chapter 8-1 Fatigue Fatigue = failure under applied cyclic stress. specimen compression on top bearing bearing motor counter flex coupling

More information

CHROMIUM STEEL POWDERS FOR COMPONENTS. JEANETTE LEWENHAGEN Höganäs AB, Sweden

CHROMIUM STEEL POWDERS FOR COMPONENTS. JEANETTE LEWENHAGEN Höganäs AB, Sweden CHROMIUM STEEL POWDERS FOR COMPONENTS JEANETTE LEWENHAGEN Höganäs AB, Sweden KEYWORDS Pre-alloyed steel powder, chromium, PM ABSTRACT Chromium as an alloying element is of great interest due to its low

More information

Development of a High Performance Nickel-Free P/M Steel. Bruce Lindsley. Senior Materials Engineer, Hoeganaes Corporation, Cinnaminson, NJ 08077, USA

Development of a High Performance Nickel-Free P/M Steel. Bruce Lindsley. Senior Materials Engineer, Hoeganaes Corporation, Cinnaminson, NJ 08077, USA Development of a High Performance Nickel-Free P/M Steel Bruce Lindsley Senior Materials Engineer, Hoeganaes Corporation, Cinnaminson, NJ 08077, USA Abstract A developmental nickel-free P/M steel containing

More information

Martensite transformation, microsegregation, and creep strength of. 9 Cr-1 Mo-V steel weld metal

Martensite transformation, microsegregation, and creep strength of. 9 Cr-1 Mo-V steel weld metal Martensite transformation, microsegregation, and creep strength of 9 Cr-1 Mo-V steel weld metal M. L. Santella¹, R. W. Swindeman¹, R. W. Reed¹, and J. M. Tanzosh² ¹ Oak Ridge National Laboratory, Oak Ridge,

More information

Phase Diagrams & Thermodynamics

Phase Diagrams & Thermodynamics Phase Diagrams & Thermodynamics A phase diagram is a graphical representation of the equilibrium state of a system using the intensive variables T and i while p is kept constant. The equilibrium may be

More information

Test Review # 9. Chemistry R: Form TR9.13A

Test Review # 9. Chemistry R: Form TR9.13A Chemistry R: Form TR9.13A TEST 9 REVIEW Name Date Period Test Review # 9 Collision theory. In order for a reaction to occur, particles of the reactant must collide. Not all collisions cause reactions.

More information

Effect of Temperature and Aging Time on 2024 Aluminum Behavior

Effect of Temperature and Aging Time on 2024 Aluminum Behavior Proceedings of the XIth International Congress and Exposition June 2-5, 2008 Orlando, Florida USA 2008 Society for Experimental Mechanics Inc. Effect of Temperature and Aging Time on 2024 Aluminum Behavior

More information

Politecnico di Torino. Porto Institutional Repository

Politecnico di Torino. Porto Institutional Repository Politecnico di Torino Porto Institutional Repository [Other] Advanced high-strength steels for car-body manufacturing Original Citation: D. Firrao, G. Scavino, P. Matteis, M. De Sanctis, R. Valentini,

More information

We will study the temperature-pressure diagram of nitrogen, in particular the triple point.

We will study the temperature-pressure diagram of nitrogen, in particular the triple point. K4. Triple Point of Nitrogen I. OBJECTIVE OF THE EXPERIMENT We will study the temperature-pressure diagram of nitrogen, in particular the triple point. II. BAKGROUND THOERY States of matter Matter is made

More information

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

More information

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume 59 2014 Issue 3 DOI: 10.2478/amm-2014-0165

A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume 59 2014 Issue 3 DOI: 10.2478/amm-2014-0165 A R C H I V E S O F M E T A L L U R G Y A N D M A T E R I A L S Volume 59 2014 Issue 3 DOI: 10.2478/amm-2014-0165 I. OLEJARCZYK-WOŻEŃSKA, H. ADRIAN, B. MRZYGŁÓD MATHEMATICAL MODEL OF THE PROCESS OF PEARLITE

More information

Topic 3b: Kinetic Theory

Topic 3b: Kinetic Theory Topic 3b: Kinetic Theory What is temperature? We have developed some statistical language to simplify describing measurements on physical systems. When we measure the temperature of a system, what underlying

More information

Strengthening. Mechanisms of strengthening in single-phase metals: grain-size reduction solid-solution alloying strain hardening

Strengthening. Mechanisms of strengthening in single-phase metals: grain-size reduction solid-solution alloying strain hardening Strengthening The ability of a metal to deform depends on the ability of dislocations to move Restricting dislocation motion makes the material stronger Mechanisms of strengthening in single-phase metals:

More information

LN 10. 3.091 Introduction to Solid State Chemistry. Lecture Notes No. 10 PHASE EQUILIBRIA AND PHASE DIAGRAMS

LN 10. 3.091 Introduction to Solid State Chemistry. Lecture Notes No. 10 PHASE EQUILIBRIA AND PHASE DIAGRAMS 3.091 Introduction to Solid State Chemistry Lecture Notes No. 10 PHASE EQUILIBRIA AND PHASE DIAGRAMS * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Sources

More information

Influence of Solder Reaction Across Solder Joints

Influence of Solder Reaction Across Solder Joints Influence of Solder Reaction Across Solder Joints Kejun Zeng FC BGA Packaging Development Semiconductor Packaging Development Texas Instruments, Inc. 6 th TRC Oct. 27-28, 2003 Austin, TX 1 Outline Introduction

More information

Thermo-Calc Software. Data Organization and Knowledge Discovery. Paul Mason Thermo-Calc Software, Inc. Thermo-Chemistry to Phase Diagrams and More

Thermo-Calc Software. Data Organization and Knowledge Discovery. Paul Mason Thermo-Calc Software, Inc. Thermo-Chemistry to Phase Diagrams and More Thermo-Calc Software Data Organization and Knowledge Discovery Thermo-Chemistry to Phase Diagrams and More Paul Mason Thermo-Calc Software, Inc. http://www.thermocalc.com Tel: (724) 731 0074 E-mail: paul@thermo-calc.com

More information

Phase Diagrams and Phase Separation. MF Ashby and DA Jones, Engineering Materials Vol 2, Pergamon. G Strobl, The Physics of Polymers, Springer

Phase Diagrams and Phase Separation. MF Ashby and DA Jones, Engineering Materials Vol 2, Pergamon. G Strobl, The Physics of Polymers, Springer and Phase Separation Books MF Ashby and DA Jones, Engineering Materials Vol 2, Pergamon P Haasen, Physical Metallurgy, G Strobl, The Physics of Polymers, Springer Introduction Mixing two (or more) components

More information

Séminarie du groupe de travail Méthodes Numériques du Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie, Paris 6

Séminarie du groupe de travail Méthodes Numériques du Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie, Paris 6 Séminarie du groupe de travail Méthodes Numériques du Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie, Paris 6 MODÉLISATION ET SIMULATION NUMÉRIQUE DU DURCISSEMENT INDUSTRIEL DE L ACIER

More information

Corrosion-induced cracking of model train zincaluminium

Corrosion-induced cracking of model train zincaluminium Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR Corrosion-induced cracking of model train zincaluminium die castings R.J.H. Wanhill and T. Hattenberg This report may be cited

More information

A Study of the Properties of a High Temperature Binary Nitinol Alloy Above and Below its Martensite to Austenite Transformation Temperature

A Study of the Properties of a High Temperature Binary Nitinol Alloy Above and Below its Martensite to Austenite Transformation Temperature A Study of the Properties of a High Temperature Binary Nitinol Alloy Above and Below its Martensite to Austenite Transformation Temperature Dennis W. Norwich, P.E. SAES Memry Corporation, Bethel, CT Abstract

More information

Austenitic Stainless Steels

Austenitic Stainless Steels Copyright 2008 ASM International. All rights reserved. Stainless Steels for Design Engineers (#05231G) www.asminternational.org CHAPTER 6 Austenitic Stainless Steels Summary AUSTENITIC STAINLESS STEELS

More information

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work. The first law: transformation of energy into heat and work Chemical reactions can be used to provide heat and for doing work. Compare fuel value of different compounds. What drives these reactions to proceed

More information

The study about as cast microstructure and solidification

The study about as cast microstructure and solidification The study about as cast microstructure and solidification process of Al-Mg-Si alloys Introduction High-strength and high formability aluminum alloys are the highly demanded alloy in automobile industry,

More information

EFFECT OF COPPER ALLOY ADDITION METHOD ON THE DIMENSIONAL RESPONSE OF SINTERED FE-CU-C STEELS

EFFECT OF COPPER ALLOY ADDITION METHOD ON THE DIMENSIONAL RESPONSE OF SINTERED FE-CU-C STEELS EFFECT OF COPPER ALLOY ADDITION METHOD ON THE DIMENSIONAL RESPONSE OF SINTERED FE-CU-C STEELS Michael L. Marucci and Francis G. Hanejko Hoeganaes Corporation Cinnaminson, NJ 08077 - USA Abstract Fe-Cu-C

More information

Lösungen Übung Verformung

Lösungen Übung Verformung Lösungen Übung Verformung 1. (a) What is the meaning of T G? (b) To which materials does it apply? (c) What effect does it have on the toughness and on the stress- strain diagram? 2. Name the four main

More information