1. Multimedia presentation (PowerPoint or video) 2.

Size: px
Start display at page:

Download "1. Multimedia presentation (PowerPoint or video) 2."

Transcription

1 UC Irvine FOCUS! 5 E Lesson Plan Title: Density is a Periodic Property Grade Level and Course: 8 th grade physical science, 10 th and 11 th grade chemistry Materials: Lead Shot, Pb g Silicon lumps, Si, 8-10 g Tin Shot, Sn, g Water Paper Towel Balance, Centigram (0.0l g precision) Beakers, 50-ml, or small cups, 3 Forceps or Tongs Graduated cylinder, 25-ml Instructional Resources Used: (concept maps, websites, think-pair-share, video clips, random selection of students etc.) 1. Multimedia presentation (PowerPoint or video) Think-pair-share - The think/pair/share strategy gives all students the opportunity to practice English by explaining science concepts. Provide students with time to write a response to a thought provoking question, then additional time to discuss it with their neighbor before sharing their conclusion with the class. The think/pair/share technique increases student participation and involvement, and is a particularly effective way of encouraging English language learners to express science concepts in English. Using the following questions for Think/Pair/Share activity: Why are the levels of these substances arranged in this particular order? What has kept the seven levels from mixing together to form a mixture? California State Standards: (written out) Grade 8: 5. Chemical reactions are processes in which atoms are rearranged into different combinations of molecules. As a basis for understanding this concept: a. Students know reactant atoms and molecules interact to form products with different chemical properties. 8. All objects experience a buoyant force when immersed in a fluid. As a basis for understanding this concept: a. Students know density is mass per unit volume.

2 b. Students know how to calculate the density of substances (regular and irregular solids and liquids) from measurements of mass and volume. Investigation and Experimentation: 9. Scientific progress is made by asking meaningful questions and conducting careful investigations. As a basis for understanding this concept and addressing the content in the other three strands, students should develop their own questions and perform investigations. Students will: a. Plan and conduct a scientific investigation to test a hypothesis. b. Evaluate the accuracy and reproducibility of data f. Apply simple mathematic relationships to determine a missing quantity in a mathematic expression, given the two remaining terms (including speed = distance/time, density = mass/volume, force = pressure x area, volume = area x height). Grades 9-12 Chemistry: Chemical Bonds 2a. Biological, chemical, and physical properties of matter result from the ability of atoms to form bonds from electrostatic forces between electrons and protons and between atoms and molecules. As a basis for understanding this concept: 2e. Students know how to draw Lewis dot structures Common Core State Standards: (written out) Lesson Objectives: 1. To determine the volume of an irregular object using water displacement. 2. To determine the density of an irregular object using mass and volume measurements. Differentiation Strategies to meet the needs of diverse learners: English Learners: 1. Students will locate the position of the elements silicon, tin, and lead on the periodic table. They will then draw, label and color the group 14 from the periodic table onto a separate sheet of paper. This will show them the position of the missing element germanium, the gap that Mendeleev s periodic table revealed in Within their lab groups, students can also benefit from the assistance of a peer tutor. Special Education: 1. The strategies outlined for English Learners are also appropriate for Special Education students as well. 2. Place students into mixed ability groupings to allow for peer tutoring and to promote deeper understanding of the content. GATE: 1. Students will research and study Mendeleev s version of the periodic table. Using information gained from this version, compare and contrast with the present day periodic table. Students will share their information with the class.

3 ENGAGE Describe how the teacher will capture the students interest. What kind of questions should the students ask themselves after the engagement? Using a seven level density column as a visual, as the students to discuss the following questions with a partner (Think Pair Share). After students have discussed in their small groups, they will participate in a whole class share out of ideas. 1. Why are the levels of these substances arranged in this particular order? 2. What has kept the seven levels from mixing together to form a mixture? EXPLORE Describe the hands-on laboratory activity that the students will be doing. List the big idea conceptual questions that the teacher will ask to focus the student exploration. Hands-on laboratory activity: Students will measure the mass and volume for silicon, tin and lead. Using this data, they will calculate the density for each element, and then use the results to predict the density of germanium, Mendeleev s undiscovered element in the Group IV family of elements. The volume of the element will be measured by water displacement. Big idea conceptual questions: What properties do Sn, Tin, and Si have in common? How can their properties be used to discover an unknown element? How can knowing the properties of various elements help us to determine the properties of others that are yet unknown and undiscovered? EXPLAIN What is the big idea concept that students should have internalized from doing the exploration? o Mendeleev arranged the known elements in a calendar-like table of rows and columns, in order of increasing atomic mass and repeating chemical properties. Based upon this arrangement, he discovered that there existed gaps of missing elements in the list of known elements. This knowledge may be applied to the present day to potentially identify the properties of additional, still unknown elements.

4 EVALUATE EXTEND List the higher order questions that the teacher will ask to solicit student explanations for their laboratory outcomes, and justify their explanations. 1. Explain how the periodic nature of the periodic table can tell us about yet another undiscovered element. 2. Knowing what you know about the physical properties of elements on the periodic table, would Mendeleev be pleased with the present day periodic table? Explain your answer. How will the student demonstrate their new understanding and/or skill? o Students will calculate the density of silicon, tin and lead, and accurately fill these values into their data tables. What learning product for the lesson? o Using a computer or graph paper, students will plot the period number of Si, Sn, and Pb. They will utilize correct procedure, plotting period number on the x-axis, and average density on the y-axis. Explain how students will develop a more sophisticated understanding of the concept. o How do the actual and predicted density values compare? Use the following equation to calculate the percent error between the predicted and actual values for the density lead, silicon, and tin. (Using this formula ) Percent = (actual Predicted) X 100% Actual How is this knowledge applied in our daily lives? o Density becomes important anytime someone wants to build something where weight and distribution of weight are critical. Ships require a ballast to stay upright in the water, while airplanes use counterweights to ensure they fly correctly. In either case, during the initial design, engineers must account for how much weight they need, and how much space must be allotted for it. To determine how much space they need, they must know the density of the materials they plan on using. Background Knowledge for the Teacher: At the time Mendeleev proposed the periodic law, the foundation of the modern periodic table or the classification of elements, 63 elements were known. Their physical and chemical properties had been studied and their atomic masses measured. Mendeleev arranged the known elements in a calendar-like table of rows and columns in order of increasing atomic mass and repeating chemical properties. It is at this point, however, that Mendeleev made a giant leap of discovery in which he suggested that there were some gaps or missing elements in the list of known elements. Sources: Flinn ChemTopic Labs The Periodic Table Volume 4, Science Framework for California Public Schools, for Kindergarten through Grade 12

5 Student pages are attached.

6 Density is a Periodic Property Lesson Objectives: To measure the mass and volume for silicon, tin and lead; To calculate the density for each element, and then use the results to predict the density of germanium, Mendeleev s undiscovered element in the Group IV family of elements. Materials: Lead Shot, Pb g Silicon lumps, Si, 8-10 g Tin Shot, Sn, g Water Paper Towel Balance, Centigram (0.0l g precision) Beakers, 50-ml, or small cups, 3 Forceps or Tongs Graduated cylinder, 25-ml Procedure: 1. Label three 50-ml beakers or small containers Si (silicon), Sn (tin) and Pb (lead). 2. Obtain approximately 8 g of silicon in the appropriately labeled beaker. Measure the combined mass of the beaker plus solid to the nearest 0.0lg and record the value in the Data Table. (Note: This value is the initial mass for sample 1.) 3. Fill a 25-mL graduated cylinder half-full with water. Measure the initial volume of water and record the value to the nearest 0.1mL in the Data Table. 4. Using forceps or tongs, carefully add about one-third of the silicon lumps to the graduated cylinder (enough to raise the water level in the cylinder by at least 1.0 ml). Add the solid slowly, so as to avoid splashing or breaking the glass cylinder. 5. Measure and record the new (final) volume of water plus in the graduated cylinder. 6. Measure and record the combined mass of the labeled beaker and remaining solid in the Data Table. (Note: This value is the final mass for sample 1.) 7. Repeat steps 4-6 twice with the remaining amount of solid in the beaker. Record all initial and final mass and volume data in the Data Table. There should be a total of three sets of mass and volume data (sample 1-3).

7 8. Empty the water from the graduated cylinder and carefully pour the silicon chunks onto a paper towel and allow them to dry. Do not allow any of the solid to go down the drain. 9. Rinse the graduated cylinder with water to make sure that all of the solid has been removed. 10. Obtain approximately 25 g of tin shot in the appropriately labeled beaker. Measure the initial mass of the container plus solid to the nearest 0.01 g and record the value in the Data Table. 11. Repeat steps 3-9 using tin. Record all initial and final mass and volume data in the Data Table. 12. Obtain approximately 35 g of lead shot in the appropriately labeled beaker. Measure the initial mass of the contained plus solid to the nearest 0.01 g and record the value in the Data Table. 13. Repeat steps 3-9 using lead. Record all initial and final mass and volume data in the Data Table. 14. Return the correctly labeled solids to your instructor for reuse. Data Table: Element Sample Initial Mass (g) Final Mass (g) Mass of Solid (g) Initial Volume (ml) Final Volume (ml) Volume Of Solid (ml) Silicon Tin Lead 1 2 3

8 Post-Lab Calculations and Analysis: (Use a separate sheet of paper to answer these questions) 1. Complete the Data Table: Calculate both the mass (initial mass final mass) and volume (final volume initial volume) of each sample 1-3 for all three elements, silicon, tin and lead. Record these result in the Data Table. 2. Using the mass and volume data, calculate the density of each sample 1-3 for all three elements. Construct a Results Table to summarize the results. Note: The density of a solid is usually reported in unit of g/cm 3. Recall that 1 ml = 1cm 3. Results Table Element Density (1) g/cm 3 Density (2) g/cm 3 Density (3) g/cm 3 Average Density g/cm 3 Silicon Tin Lead 3. Calculate the average value (mean) for the density calculation 1-3 for each element, silicon, tin and lead. Record all results in the Results Table. Use the range of density values for each element to estimate plus or minus (+ ) error for teach average (e.g., g/cm 3 ). 4. On a graph, plot the period number of Si, Sn, and Pb on the x-axis versus the average density of each element on the y-axis. Using a ruler or straightedge, draw a best-fit straight line through the data points. Use this best-fit straight line to predict the density of germanium. 5. Look up the actual density of germanium in a reference source and calculate the percent error between the predicted and actual values (see PreLab Question #3). 6. Explain how the periodic nature of the periodic table can tell us about yet another undiscovered element.

DETERMINING THE DENSITY OF LIQUIDS & SOLIDS

DETERMINING THE DENSITY OF LIQUIDS & SOLIDS DETERMINING THE DENSITY OF LIQUIDS & SOLIDS 17 Density, like color, odor, melting point, and boiling point, is a physical property of matter. Therefore, density may be used in identifying matter. Density

More information

Three Methods for Calculating the Buoyant Force Gleue: Physics

Three Methods for Calculating the Buoyant Force Gleue: Physics Three Methods for Calculating the Buoyant Force Gleue: Physics Name Hr. The Buoyant Force (F b ) is the apparent loss of weight for an object submerged in a fluid. For example if you have an object immersed

More information

5 E Lesson Plan. Title: Modeling Photosynthesis Grade Level and Course: 7 th grade, Life Science 10 th grade, Biology

5 E Lesson Plan. Title: Modeling Photosynthesis Grade Level and Course: 7 th grade, Life Science 10 th grade, Biology 5 E Lesson Plan Title: Modeling Photosynthesis Grade Level and Course: 7 th grade, Life Science 10 th grade, Biology Materials: a. aluminum tray b. waxed paper c. 6 green marshmallows d. 12 pink marshmallows

More information

Buoyant Force and Archimedes Principle

Buoyant Force and Archimedes Principle Buoyant Force and Archimedes Principle Predict the behavior of fluids as a result of properties including viscosity and density Demonstrate why objects sink or float Apply Archimedes Principle by measuring

More information

LAB #3: MEASURING SPECIFIC GRAVITY AND DENSITY. Set-up and Materials for Experiment

LAB #3: MEASURING SPECIFIC GRAVITY AND DENSITY. Set-up and Materials for Experiment Set-up and Materials for Experiment 1 OVERVIEW The mass density of a substance is a measure of the mass that that substance contains in a given volume. Mathematically is written: ρ = m V ( Density = Volume

More information

Experiment 1: Measurement and Density

Experiment 1: Measurement and Density Experiment 1: Measurement and Density Chemistry 140 Learning Objectives Become familiar with laboratory equipment and glassware Begin to see the link between measurement and chemical knowledge Begin to

More information

Measurement and Calibration

Measurement and Calibration Adapted from: H. A. Neidig and J. N. Spencer Modular Laboratory Program in Chemistry Thompson Learning;, University of Pittsburgh Chemistry 0110 Laboratory Manual, 1998. Purpose To gain an understanding

More information

Teacher Information Lesson Title: Density labs

Teacher Information Lesson Title: Density labs Teacher Information Lesson Title: Density labs Lesson Description: These labs are hands on exercises that will allow the students to measure and calculate the densities of different types of objects. The

More information

How Much Water Fits on a Penny? 6

How Much Water Fits on a Penny? 6 6 Students conduct an experiment to determine how many drops of water will fit on a penny and apply their knowledge of the properties of water and chemical bonds to explain the phenomenon. Suggested Grade

More information

To determine the equivalence points of two titrations from plots of ph versus ml of titrant added.

To determine the equivalence points of two titrations from plots of ph versus ml of titrant added. Titration Curves PURPOSE To determine the equivalence points of two titrations from plots of ph versus ml of titrant added. GOALS 1 To gain experience performing acid-base titrations with a ph meter. 2

More information

Archimedes Principle. Biological Systems

Archimedes Principle. Biological Systems Archimedes Principle Introduction Many of the substances we encounter in our every day lives do not have rigid structure or form. Such substances are called fluids and can be divided into two categories:

More information

Target Mole Lab. Mole Relationships and the Balanced Equation. For each student group Hydrochloric acid solution, HCl, 3 M, 30 ml

Target Mole Lab. Mole Relationships and the Balanced Equation. For each student group Hydrochloric acid solution, HCl, 3 M, 30 ml elearning 2009 Introduction Target Mole Lab Mole Relationships and the Balanced Equation Publication No. A common chemical reaction used in chemistry class is zinc and hydrochloric In this lab, students

More information

Experiment 9 Electrochemistry I Galvanic Cell

Experiment 9 Electrochemistry I Galvanic Cell 9-1 Experiment 9 Electrochemistry I Galvanic Cell Introduction: Chemical reactions involving the transfer of electrons from one reactant to another are called oxidation-reduction reactions or redox reactions.

More information

Physical Properties of a Pure Substance, Water

Physical Properties of a Pure Substance, Water Physical Properties of a Pure Substance, Water The chemical and physical properties of a substance characterize it as a unique substance, and the determination of these properties can often allow one to

More information

Chapter Test B. Chapter: Measurements and Calculations

Chapter Test B. Chapter: Measurements and Calculations Assessment Chapter Test B Chapter: Measurements and Calculations PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1.

More information

Chapter 3 Student Reading

Chapter 3 Student Reading Chapter 3 Student Reading If you hold a solid piece of lead or iron in your hand, it feels heavy for its size. If you hold the same size piece of balsa wood or plastic, it feels light for its size. The

More information

Surface Tension: Liquids Stick Together Teacher Version

Surface Tension: Liquids Stick Together Teacher Version Surface Tension: Liquids Stick Together Teacher Version In this lab you will learn about properties of liquids, specifically cohesion, adhesion, and surface tension. These principles will be demonstrated

More information

Electrochemical Half Cells and Reactions

Electrochemical Half Cells and Reactions Suggested reading: Chang text pages 81 89 Cautions Heavy metals, such as lead, and solutions of heavy metals may be toxic and an irritant. Purpose To determine the cell potential (E cell ) for various

More information

Maintaining an Oil Spill Disaster: Free Volume, Solubility and Crosslinking Explained

Maintaining an Oil Spill Disaster: Free Volume, Solubility and Crosslinking Explained Maintaining an Oil Spill Disaster: Free Volume, Solubility and Crosslinking Explained Created by Maliha Syed 2012-13 GK-12 Program, Connections in the Classroom: Molecules to Muscles, Award# 0947944 National

More information

Understanding Analytical Chemistry (Weighing, Mixing, Measuring and Evaluating)

Understanding Analytical Chemistry (Weighing, Mixing, Measuring and Evaluating) Name: Date: Understanding Analytical Chemistry (Weighing, Mixing, Measuring and Evaluating) High School Environmental Science AP Module 1 Environmental Lab NGSSS Big Ideas: This module is a laboratory-based

More information

Density. mass m volume V

Density. mass m volume V Density Readin assinment: Chan, Chemistry 10 th edition, pp. 18-19. Goals The purpose of this experiment is to become familiar with the concept of density. We will determine the density of water and of

More information

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid

Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Chemistry 112 Laboratory Experiment 6: The Reaction of Aluminum and Zinc with Hydrochloric Acid Introduction Many metals react with acids to form hydrogen gas. In this experiment, you will use the reactions

More information

The Composition of Metals and Alloys

The Composition of Metals and Alloys 1 The Composition of Metals and Alloys Metals are shiny, malleable substances that conduct heat and electricity. They comprise the larest class of elements in the Periodic Table. All metals except mercury

More information

Mixing Warm and Cold Water

Mixing Warm and Cold Water Mixing Warm and Cold Water A Continuing Investigation of Thermal Pollution By Kevin White 1 Context: This lesson is intended for students conducting an ongoing study of thermal pollution. Perhaps, students

More information

The Molar Mass of a Gas

The Molar Mass of a Gas The Molar Mass of a Gas Goals The purpose of this experiment is to determine the number of grams per mole of a gas by measuring the pressure, volume, temperature, and mass of a sample. Terms to Know Molar

More information

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version

Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing Point Depression: Why Don t Oceans Freeze? Teacher Advanced Version Freezing point depression describes the process where the temperature at which a liquid freezes is lowered by adding another

More information

Experiment #4 Sugar in Soft Drinks and Fruit Juices. Laboratory Overview CHEM 1361. August 2010

Experiment #4 Sugar in Soft Drinks and Fruit Juices. Laboratory Overview CHEM 1361. August 2010 Experiment #4 Sugar in Soft Drinks and Fruit Juices Laboratory Overview CHEM 1361 August 2010 Gary S. Buckley, Ph.D. Department of Physical Sciences Cameron University Learning Objectives Relate density

More information

Buoyant Force. Goals and Introduction

Buoyant Force. Goals and Introduction Buoyant Force Goals and Introduction When an object is placed in a fluid, it either floats or sinks. While the downward gravitational force, F g, still acts on the object, an object in a fluid is also

More information

Test Bank - Chapter 3 Multiple Choice

Test Bank - Chapter 3 Multiple Choice Test Bank - Chapter 3 The questions in the test bank cover the concepts from the lessons in Chapter 3. Select questions from any of the categories that match the content you covered with students. The

More information

Density Determinations

Density Determinations CHEM 121L General Chemistry Laboratory Revision 3.1 Density Determinations To learn about intensive physical properties. To learn how to measure the density of substances. To learn how to characterize

More information

Enzyme Activity Measuring the Effect of Enzyme Concentration

Enzyme Activity Measuring the Effect of Enzyme Concentration 6 Measuring the Effect of Enzyme Concentration Enzymes are proteins that serve as biological catalysts in a wide variety of life sustaining chemical reactions that take place in cells. As catalysts, enzymes

More information

Catalytic Activity of Enzymes

Catalytic Activity of Enzymes Catalytic Activity of Enzymes Introduction Enzymes are biological molecules that catalyze (speed up) chemical reactions. You could call enzymes the Builders and Do-ers in the cell; without them, life could

More information

THE LABORATORY NOTEBOOK

THE LABORATORY NOTEBOOK THE LABORATORY NOTEBOOK In scientific work keeping a permanent record of all raw data, observations, calculations, et cetera obtained during an experiment is important. Therefore, a student must become

More information

EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride.

EXPERIMENT 2 THE HYDROLYSIS OF t-butyl CHLORIDE. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride. PURPOSE: To verify a proposed mechanism for the hydrolysis of t-butyl Chloride. PRINCIPLES: Once the Rate Law for a reaction has been experimentally established the next step is its explanation in terms

More information

Truth is ever to be found in the simplicity, and not in the multiplicity and confusion of things.

Truth is ever to be found in the simplicity, and not in the multiplicity and confusion of things. UNIT 6 Periodic Trends What are the Patterns in the Chemical and Physical Properties of Elements? Truth is ever to be found in the simplicity, and not in the multiplicity and confusion of things. Isaac

More information

Chapter 3, Lesson 4: Density: Sink and Float for Solids

Chapter 3, Lesson 4: Density: Sink and Float for Solids Chapter 3, Lesson 4: Density: Sink and Float for Solids Key Concepts The density of an object determines whether it will float or sink in another substance. An object will float if it is less dense than

More information

The volume of a penny will be calculated from its mass and density.

The volume of a penny will be calculated from its mass and density. Measurement and Density In science a key concern is the quantities involved in chemical processes. These amounts can be directly measured or calculated from other measurements. A measurement consists of

More information

Building Electrochemical Cells

Building Electrochemical Cells Cautions Heavy metals, such as lead, and solutions of heavy metals may be toxic and an irritant. Purpose To determine the cell potential (E cell ) for various voltaic cells and compare the data with the

More information

Paper Chromatography: Separation and Identification of Five Metal Cations

Paper Chromatography: Separation and Identification of Five Metal Cations Paper Chromatography: Separation and Identification of Five Metal Cations Objectives Known and unknown solutions of the metal ions Ag +, Fe 3+, Co 2+, Cu 2+ and Hg 2+ will be analyzed using paper chromatography.

More information

WHAT IS THE SCIENTIFIC METHOD?

WHAT IS THE SCIENTIFIC METHOD? WHAT IS THE SCIENTIFIC METHOD? A lesson to introduce the application of the Scientific Method to High School Chemistry Students Karen Balbierer CCMR RET I August 15, 2003 Lesson Plan Summary Lesson Subject:

More information

Buoyant Force and Archimedes' Principle

Buoyant Force and Archimedes' Principle Buoyant Force and Archimedes' Principle Introduction: Buoyant forces keep Supertankers from sinking and party balloons floating. An object that is more dense than a liquid will sink in that liquid. If

More information

Written By Kelly Lundstrom & Kennda Lynch January 31, 2012 Milk Dye ACTIVITY PLAN

Written By Kelly Lundstrom & Kennda Lynch January 31, 2012 Milk Dye ACTIVITY PLAN Milk Dye ACTIVITY PLAN Objective: Students will use the scientific method to test the difference between using whole milk and skim milk in this milk and food dye experiment. Students will explore ideas

More information

Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle

Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle Physics 181- Summer 2011 - Experiment #8 1 Experiment #8, Measurement of Density and Archimedes' Principle 1 Purpose 1. To determine the density of a fluid, such as water, by measurement of its mass when

More information

Pressure in Fluids. Introduction

Pressure in Fluids. Introduction Pressure in Fluids Introduction In this laboratory we begin to study another important physical quantity associated with fluids: pressure. For the time being we will concentrate on static pressure: pressure

More information

Acid Base Titration: ph Titration Curve

Acid Base Titration: ph Titration Curve Acid Base Titration: ph Titration Curve OVERVIEW In this experiment, you will perform a ph-monitored titration of acetic acid and of an unknown acid. From the ph titration of the acetic acid, you will

More information

Limiting Reagent (using an analogy and a learning cycle approach)

Limiting Reagent (using an analogy and a learning cycle approach) Limiting Reagent (using an analogy and a learning cycle approach) Welcome: This is the fourth of a four- experiment sequence, covering four important aspects of chemistry, and utilizing a learning cycle

More information

Key. Name: OBJECTIVES

Key. Name: OBJECTIVES Name: Key OBJECTIVES Correctly define: observation, inference, classification, percent deviation, density, rate of change, cyclic change, dynamic equilibrium, interface, mass, volume GRAPHICAL RELATIONSHIPS

More information

Bubbling Tablets. Objective: Investigate the effects of surface area on reaction rates.

Bubbling Tablets. Objective: Investigate the effects of surface area on reaction rates. Bubbling Tablets Objective: Investigate the effects of surface area on reaction rates. Key concepts Increasing the surface area of a reactant results in a faster reaction. Things on the nanoscale have

More information

EXPERIMENT 9 Evaluation of the Universal Gas Constant, R

EXPERIMENT 9 Evaluation of the Universal Gas Constant, R Outcomes EXPERIMENT 9 Evaluation of the Universal Gas Constant, R After completing this experiment, the student should be able to: 1. Determine universal gas constant using reaction of an acid with a metal.

More information

Eighth Grade, Density To Float or Not to Float? 2004 Colorado Unit Writing Project 1

Eighth Grade, Density To Float or Not to Float? 2004 Colorado Unit Writing Project 1 Density To Float or Not to Float? That is the Question! Grade Level or Special Area: Eighth Grade Science Written by: Aida Peterson, Clear Lake Middle School, Denver, Colorado Length of Unit: Twelve lessons

More information

The Empirical Formula of a Compound

The Empirical Formula of a Compound The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,

More information

Chemistry 119: Experiment 7. Potentiometric Titration of Ascorbic Acid in Vitamin C Tablets

Chemistry 119: Experiment 7. Potentiometric Titration of Ascorbic Acid in Vitamin C Tablets Chemistry 119: Experiment 7 Potentiometric Titration of Ascorbic Acid in Vitamin C Tablets Vitamin C is another name for ascorbic acid (C 6 H 8 O 6, see below ), a weak acid that can be determined by titration

More information

RET Lesson Plan. Title: Identifying Mystery Powders. Primary Subject Area: 8 th Grade Physical Science

RET Lesson Plan. Title: Identifying Mystery Powders. Primary Subject Area: 8 th Grade Physical Science Title: Identifying Mystery Powders RET Lesson Plan Primary Subject Area: 8 th Grade Physical Science RET Teacher: Brenda Neagle School: Nichols Middle School District: Middleboro, MA Overview of lesson:

More information

Reaction in a Bag. Scientific Method Demonstrations

Reaction in a Bag. Scientific Method Demonstrations elearning 2009 Introduction Reaction in a Bag Scientific Method Demonstrations Publication No. 91419 Careful observation is the foundation of science, leading to questions about what we have observed how,

More information

Experiment #2: Determining Sugar Content of a Drink. Objective. Introduction

Experiment #2: Determining Sugar Content of a Drink. Objective. Introduction Experiment #2: Determining Sugar Content of a Drink Objective How much sugar is there in your drink? In this experiment, you will measure the amount of sugar dissolved in a soft drink by using two different

More information

Greatest Discoveries With Bill Nye: Chemistry Teacher s Guide

Greatest Discoveries With Bill Nye: Chemistry Teacher s Guide Teacher s Guide Grade Level: 6 8 Curriculum Focus: Physical Science Lesson Duration: Two class periods Program Oxygen and Atoms Explore atomic and molecular structure and see how oxygen was first isolated.

More information

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?

Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus? Name: Date: 1. Which of the following best describes an atom? A. protons and electrons grouped together in a random pattern B. protons and electrons grouped together in an alternating pattern C. a core

More information

Bay Area Scientists in Schools Presentation Plan

Bay Area Scientists in Schools Presentation Plan Bay Area Scientists in Schools Presentation Plan Lesson Name Presenter(s) Grade Level 5th The Chemical Workout/Blow it Up Chemistry Graduate Students from the Maimone Group at UC Berkeley Standards Connection(s):

More information

Introduction to Chemistry. Course Description

Introduction to Chemistry. Course Description CHM 1025 & CHM 1025L Introduction to Chemistry Course Description CHM 1025 Introduction to Chemistry (3) P CHM 1025L Introduction to Chemistry Laboratory (1) P This introductory course is intended to introduce

More information

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston Chemistry 118 Laboratory University of Massachusetts, Boston STOICHIOMETRY - LIMITING REAGENT --------------------------------------------------------------------------------------------------------------------------------------------

More information

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed:

Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Chemicals Needed: Reaction of Magnesium with Hydrochloric Acid (Gas Laws) Your Name: Date: Partner(s) Names: Objectives: React magnesium metal with hydrochloric acid, collecting the hydrogen over water. Calculate the grams

More information

Chapter 1: Chemistry: Measurements and Methods

Chapter 1: Chemistry: Measurements and Methods Chapter 1: Chemistry: Measurements and Methods 1.1 The Discovery Process o Chemistry - The study of matter o Matter - Anything that has mass and occupies space, the stuff that things are made of. This

More information

DIFFUSION (HYPERTONIC, HYPOTONIC, & ISOTONIC SOLUTIONS) THE GUMMY BEAR LAB PASS

DIFFUSION (HYPERTONIC, HYPOTONIC, & ISOTONIC SOLUTIONS) THE GUMMY BEAR LAB PASS DIFFUSION (HYPERTONIC, HYPOTONIC, & ISOTONIC SOLUTIONS) THE GUMMY BEAR LAB PASS Have you ever wondered why your fingers have wrinkles after soaking in a bath tub? Your students have probably wondered the

More information

15. Acid-Base Titration. Discover the concentration of an unknown acid solution using acid-base titration.

15. Acid-Base Titration. Discover the concentration of an unknown acid solution using acid-base titration. S HIFT INTO NEUTRAL 15. Acid-Base Titration Shift into Neutral Student Instruction Sheet Challenge Discover the concentration of an unknown acid solution using acid-base titration. Equipment and Materials

More information

The Structure of Water Introductory Lesson

The Structure of Water Introductory Lesson Dana V. Middlemiss Fall 2002 The Structure of Water Introductory Lesson Abstract: This is an introduction to the chemical nature of water and its interactions. In particular, this lesson will explore evaporation,

More information

Separation of Amino Acids by Paper Chromatography

Separation of Amino Acids by Paper Chromatography Separation of Amino Acids by Paper Chromatography Chromatography is a common technique for separating chemical substances. The prefix chroma, which suggests color, comes from the fact that some of the

More information

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB

SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB SOLUBILITY OF A SALT IN WATER AT VARIOUS TEMPERATURES LAB Purpose: Most ionic compounds are considered by chemists to be salts and many of these are water soluble. In this lab, you will determine the solubility,

More information

EXPERIMENT 7 Electrochemical Cells: A Discovery Exercise 1. Introduction. Discussion

EXPERIMENT 7 Electrochemical Cells: A Discovery Exercise 1. Introduction. Discussion EXPERIMENT 7 Electrochemical Cells: A Discovery Exercise 1 Introduction This lab is designed for you to discover the properties of electrochemical cells. It requires little previous knowledge of electrochemical

More information

Molar Mass of Butane

Molar Mass of Butane Cautions Butane is toxic and flammable. No OPEN Flames should be used in this experiment. Purpose The purpose of this experiment is to determine the molar mass of butane using Dalton s Law of Partial Pressures

More information

Students will be able to identify popping corn as a physical change.

Students will be able to identify popping corn as a physical change. TO POP OR NOT TO POP THAT IS THE QUESTION. Written by Amy Rowley and Jeremy Peacock Annotation In this laboratory exercise, students will demonstrate science process skills as they use moisture content

More information

Physics 42 Lab 4 Fall 2012 Cathode Ray Tube (CRT)

Physics 42 Lab 4 Fall 2012 Cathode Ray Tube (CRT) Physics 42 Lab 4 Fall 202 Cathode Ray Tube (CRT) PRE-LAB Read the background information in the lab below and then derive this formula for the deflection. D = LPV defl 2 SV accel () Redraw the diagram

More information

Density Determinations and Various Methods to Measure

Density Determinations and Various Methods to Measure Density Determinations and Various Methods to Measure Volume GOAL AND OVERVIEW This lab provides an introduction to the concept and applications of density measurements. The densities of brass and aluminum

More information

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration.

experiment5 Understanding and applying the concept of limiting reagents. Learning how to perform a vacuum filtration. 81 experiment5 LECTURE AND LAB SKILLS EMPHASIZED Synthesizing an organic substance. Understanding and applying the concept of limiting reagents. Determining percent yield. Learning how to perform a vacuum

More information

Reaction Stoichiometry and the Formation of a Metal Ion Complex

Reaction Stoichiometry and the Formation of a Metal Ion Complex Reaction Stoichiometry and the Formation of a Metal Ion Complex Objectives The objectives of this laboratory are as follows: To use the method of continuous variation to determine the reaction stoichiometry

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

More information

Chemical Changes. Measuring a Chemical Reaction. Name(s)

Chemical Changes. Measuring a Chemical Reaction. Name(s) Chemical Changes Name(s) In the particle model of matter, individual atoms can be bound tightly to other atoms to form molecules. For example, water molecules are made up of two hydrogen atoms bound to

More information

Because the slope is, a slope of 5 would mean that for every 1cm increase in diameter, the circumference would increase by 5cm.

Because the slope is, a slope of 5 would mean that for every 1cm increase in diameter, the circumference would increase by 5cm. Measurement Lab You will be graphing circumference (cm) vs. diameter (cm) for several different circular objects, and finding the slope of the line of best fit using the CapStone program. Write out or

More information

Micro Mole Rockets Hydrogen and Oxygen Mole Ratio As adapted from Flinn ChemTopic- Labs - Molar Relationships & Stoichiometry

Micro Mole Rockets Hydrogen and Oxygen Mole Ratio As adapted from Flinn ChemTopic- Labs - Molar Relationships & Stoichiometry Micro Mole Rockets Hydrogen and Oxygen Mole Ratio As adapted from Flinn ChemTopic- Labs - Molar Relationships & Stoichiometry Introduction The combustion reaction of hydrogen and oxygen is used to produce

More information

Recovery of Elemental Copper from Copper (II) Nitrate

Recovery of Elemental Copper from Copper (II) Nitrate Recovery of Elemental Copper from Copper (II) Nitrate Objectives: Challenge: Students should be able to - recognize evidence(s) of a chemical change - convert word equations into formula equations - perform

More information

Experiment 6 Coffee-cup Calorimetry

Experiment 6 Coffee-cup Calorimetry 6-1 Experiment 6 Coffee-cup Calorimetry Introduction: Chemical reactions involve the release or consumption of energy, usually in the form of heat. Heat is measured in the energy units, Joules (J), defined

More information

Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40

Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Note: there is a second document that goes with this one! 2046 - Absorbance Spectrophotometry - Calibration Curve Procedure. The second document

More information

Writing learning objectives

Writing learning objectives Writing learning objectives This material was excerpted and adapted from the following web site: http://www.utexas.edu/academic/diia/assessment/iar/students/plan/objectives/ What is a learning objective?

More information

SEPARATION OF A MIXTURE OF SUBSTANCES LAB

SEPARATION OF A MIXTURE OF SUBSTANCES LAB SEPARATION OF A MIXTURE OF SUBSTANCES LAB Purpose: Every chemical has a set of defined physical properties, and when combined they present a unique fingerprint for that chemical. When chemicals are present

More information

COMMON LABORATORY APPARATUS

COMMON LABORATORY APPARATUS COMMON LABORATORY APPARATUS Beakers are useful as a reaction container or to hold liquid or solid samples. They are also used to catch liquids from titrations and filtrates from filtering operations. Bunsen

More information

Heat and Temperature: Teacher s Guide

Heat and Temperature: Teacher s Guide Heat and Temperature: Teacher s Guide Grade Level: 6-8 Curriculum Focus: Physical Science Lesson Duration: Two class periods Program Description Humans have always been feverish about temperature. But

More information

A Novel Way to Measure the Density of a Solid. By David Chandler, Porterville College. David@DavidChandler.com

A Novel Way to Measure the Density of a Solid. By David Chandler, Porterville College. David@DavidChandler.com A Novel Way to Measure the Density of a Solid By David Chandler, Porterville College David@DavidChandler.com I was recently explaining to a middle school teacher how to measure the density of a solid object

More information

Lesson Plan: The Building Blocks of Photosynthesis

Lesson Plan: The Building Blocks of Photosynthesis Lesson Plan: The Building Blocks of Photosynthesis Summary In this lesson, students will use colored blocks to represent the elements in photosynthesis and illustrate how they are broken down and reassembled

More information

The introduction of your report should be written on the on the topic of the role of indicators on acid base titrations.

The introduction of your report should be written on the on the topic of the role of indicators on acid base titrations. Experiment # 13A TITRATIONS INTRODUCTION: This experiment will be written as a formal report and has several parts: Experiment 13 A: Basic methods (accuracy and precision) (a) To standardize a base (~

More information

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston

Stoichiometry Limiting Reagent Laboratory. Chemistry 118 Laboratory University of Massachusetts, Boston Chemistry 118 Laboratory University of Massachusetts, Boston STOICHIOMETRY - LIMITING REAGENT -----------------------------------------------------------------------------------------------------------------------------

More information

Chemical reactions allow living things to grow, develop, reproduce, and adapt.

Chemical reactions allow living things to grow, develop, reproduce, and adapt. Section 2: Chemical reactions allow living things to grow, develop, reproduce, and adapt. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the parts of a chemical reaction?

More information

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER Chemistry 111 Lab: Synthesis of a Copper Complex Page H-1 SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER In this experiment you will synthesize a compound by adding NH 3 to a concentrated

More information

Colorimetric Determination of Iron in Vitamin Tablets

Colorimetric Determination of Iron in Vitamin Tablets Cautions: 6 M hydrochloric acid is corrosive. Purpose: To colorimetrically determine the mass of iron present in commercial vitamin tablets using a prepared calibration curve. Introduction: Iron is considered

More information

Perimeter, Area and Volume What Do Units Tell You About What Is Being Measured? Overview

Perimeter, Area and Volume What Do Units Tell You About What Is Being Measured? Overview Perimeter, Area and Volume What Do Units Tell You About What Is Being Measured? Overview Summary of Lessons: This set of lessons was designed to develop conceptual understanding of the unique attributes

More information

Determination of a Chemical Formula

Determination of a Chemical Formula 1 Determination of a Chemical Formula Introduction Molar Ratios Elements combine in fixed ratios to form compounds. For example, consider the compound TiCl 4 (titanium chloride). Each molecule of TiCl

More information

ph units constitute a scale which allows scientists to determine the acid or base content of a substance or solution. The ph 0

ph units constitute a scale which allows scientists to determine the acid or base content of a substance or solution. The ph 0 ACID-BASE TITRATION LAB PH 2.PALM INTRODUCTION Acids and bases represent a major class of chemical substances. We encounter them every day as we eat, clean our homes and ourselves, and perform many other

More information

Osmosis. Evaluation copy

Osmosis. Evaluation copy Osmosis Computer 5 In order to survive, all organisms need to move molecules in and out of their cells. Molecules such as gases (e.g., O 2, CO 2 ), water, food, and wastes pass across the cell membrane.

More information

RANGER COLLEGE CREDIT HOURS: 3 HRS/WK LECTURE & 3 HRS/WK LAB. LEC/LAB/HRS/WK COMBINATION: 4 credit hours total

RANGER COLLEGE CREDIT HOURS: 3 HRS/WK LECTURE & 3 HRS/WK LAB. LEC/LAB/HRS/WK COMBINATION: 4 credit hours total RANGER COLLEGE COURSE NUMBER AND TITLE: Chemistry 1411 General Chemistry I CREDIT HOURS: 3 HRS/WK LECTURE & 3 HRS/WK LAB LEC/LAB/HRS/WK COMBINATION: 4 credit hours total INSTRUCTOR: Kimberlea M. Adams

More information

Determining the Identity of an Unknown Weak Acid

Determining the Identity of an Unknown Weak Acid Purpose The purpose of this experiment is to observe and measure a weak acid neutralization and determine the identity of an unknown acid by titration. Introduction The purpose of this exercise is to identify

More information

Enzyme Pre-Lab. Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab.

Enzyme Pre-Lab. Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab. Enzyme Pre-Lab Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab. Background: In this investigation, you will study several

More information