Casey s Theorem and its Applications

Size: px
Start display at page:

Download "Casey s Theorem and its Applications"

Transcription

1 Casey s Theorem and its Applications Luis González Maracaibo. Venezuela July 011 Abstract. We present a proof of the generalized Ptolemy s theorem, also known as Casey s theorem and its applications in the resolution of difficult geometry problems. 1 Casey s Theorem. Theorem 1. Two circles Γ 1 (r 1 ) and Γ (r ) are internally/externally tangent to a circle Γ(R) through A, B, respetively. The length δ 1 of the common external tangent of Γ 1, Γ is given by: δ 1 = AB R (R ± r 1 )(R ± r ) Proof. Without loss of generality assume that r 1 r and we suppose that Γ 1 and Γ are internally tangent to Γ. The remaining case will be treated analogously. A common external tangent between Γ 1 and Γ touches Γ 1, Γ at A 1, B 1 and A is the orthogonal projection of O onto O 1 A 1. (See Figure 1). By Pythagorean theorem for O 1 O A, we obtain δ 1 = (A 1 B 1 ) = (O 1 O ) (r 1 r ) Let O 1 OO = λ. By cosine law for OO 1 O, we get (O 1 O ) = (R r 1 ) + (R r ) (R r 1 )(R r ) cos λ By cosine law for the isosceles triangle OAB, we get AB = R (1 cos λ) 1

2 Figure 1: Theorem 1 Eliminating cos λ and O 1 O from the three previous expressions yields δ 1 = (R r 1 ) + (R r ) (r 1 r ) (R r 1 )(R r ) ( 1 AB R ) Subsequent simplifications give δ 1 = AB R (R r 1 )(R r ) (1) Analogously, if Γ 1, Γ are externally tangent to Γ, then we will get δ 1 = AB R (R + r 1 )(R + r ) () If Γ 1 is externally tangent to Γ and Γ is internally tangent to Γ, then a similar reasoning gives that the length of the common internal tangent between Γ 1 and Γ is given by δ 1 = AB R (R + r 1 )(R r ) (3)

3 Theorem (Casey). Given four circles Γ i, i = 1,, 3, 4, let δ ij denote the length of a common tangent (either internal or external) between Γ i and Γ j. The four circles are tangent to a fith circle Γ (or line) if and only if for appropriate choice of signs, δ 1 δ 34 ± δ 13 δ 4 ± δ 14 δ 3 = 0 The proof of the direct theorem is straightforward using Ptolemy s theorem for the quadrilateral ABCD whose vertices are the tangency points of Γ 1 (r 1 ), Γ (r ), Γ 3 (r 3 ), Γ 4 (r 4 ) with Γ(R). We susbtitute the lengths of its sides and digonals in terms of the lenghts of the tangents δ ij, by using the formulas (1), () and (3). For instance, assuming that all tangencies are external, then using (1), we get δ 1 δ 34 + δ 14 δ 3 = ( AB CD+AD BC R ) (R r 1 )(R r )(R r 3 )(R r 4 ) δ 1 δ 34 + δ 14 δ 3 = ( ) AC BD (R r R 1 )(R r 3 ) (R r )(R r 4 ) δ 1 δ 34 + δ 14 δ 3 = δ 13 δ 4. Casey established that this latter relation is sufficient condition for the existence of a fith circle Γ(R) tangent to Γ 1 (r 1 ), Γ (r ), Γ 3 (r 3 ), Γ 4 (r 4 ). Interestingly, the proof of this converse is a much tougher exercise. For a proof you may see [1]. Some Applications. I) ABC is isosceles with legs AB = AC = L. A circle ω is tangent to BC and the arc BC of the circumcircle of ABC. A tangent line from A to ω touches ω at P. Describe the locus of P as ω varies. Solution. We use Casey s theorem for the circles (A), (B), (C) (with zero radii) and ω, all internally tangent to the circumcircle of ABC. Thus, if ω touches BC at Q, we have: L CQ + L BQ = AP BC = AP = L(BQ + CQ) BC The length AP is constant, i.e. Locus of P is the circle with center A and radius AB = AC = L. = L II) (O) is a circle with diameter AB and P, Q are two points on (O) lying on different sides of AB. T is the orthogonal projection of Q onto AB. Let (O 1 ), (O ) be the circles with diameters T A, T B and P C, P D are the tangent segments from P to (O 1 ), (O ), respectively. Show that P C + P D = P Q. []. 3

4 Figure : Application II Solution. Let δ 1 denote the length of the common external tangent of (O 1 ), (O ). We use Casey s theorem for the circles (O 1 ), (O ), (P ), (Q), all internally tangent to (O). P C QT + P D QT = P Q δ 1 = P C + P D = P Q δ1 QT = P Q T A T B T Q = P Q. III) In ABC, let ω A, ω B, ω C be the circles tangent to BC, CA, AB through their midpoints and the arcs BC, CA, AB of its circumcircle (not containing A, B, C). If δ BC, δ CA, δ AB denote the lengths of the common external tangents between (ω B, ω C ), (ω C, ω A ) and (ω A, ω B ), respectively, then prove that δ BC = δ CA = δ AB = a + b + c 4 Solution. Let δ A, δ B, δ C denote the lengths of the tangents from A, B, C to ω A, ω B, ω C, respectively. By Casey s theorem for the circles (A), (B), (C), ω B, all tangent to the circumcircle of ABC, we get δ B b = a AE + c CE = δ B = 1 (a + c) Similarly, by Casey s theorem for (A), (B), (C), ω C we ll get δ C = 1 (a + b) 4

5 Now, by Casey s theorem for (B), (C), ω B, ω C, we get δ B δ C = δ BC a + BF BE = δ BC = δ B δ C BF BE a = (a + c)(a + b) bc 4a = a + b + c 4 By similar reasoning, we ll have δ CA = δ AB = 1 (a + b + c). 4 IV) A circle K passes through the vertices B, C of ABC and another circle ω touches AB, AC, K at P, Q, T, respectively. If M is the midpoint of the arc BT C of K, show that BC, P Q, MT concur. [3] Solution. Let R, ϱ be the radii of K and ω, respectively. Using formula (1) of Theorem 1 for ω, (B) and ω, (C). Both (B), (C) with zero radii and tangent to K through B, C, we obtain: T C = CQ R (R ϱ)(r 0) = CQ R R ϱ, T B = BP R (R ϱ)(r 0) = BP R R ϱ = T B T C = BP CQ Let P Q cut BC at U. By Menelaus theorem for ABC cut by UP Q we have UB UC = BP AP AQ CQ = BP CQ = T B T C Thus, by angle bisector theorem, U is the foot of the T-external bisector T M of BT C. V) If D, E, F denote the midpoints of the sides BC, CA, AB of ABC. Show that the incircle (I) of ABC is tangent to (DEF ). (Feuerbach theorem). Solution. We consider the circles (D), (E), (F ) with zero radii and (I). The notation δ XY stands for the length of the external tangent between the circles (X), (Y ), then δ DE = c, δ EF = a, δ F D = b, δ b c DI =, δ a c EI =, δ b a F I = For the sake of applying the converse of Casey s theorem, we shall verify if, for some combination of signs + and, we get ±c(b a)±a(b c)±b(a c) = 0, which is trivial. Therefore, there exists a circle tangent to (D), (E), (F ) and (I), i.e. (I) is internally tangent to (DEF ). We use the same reasoning to show that (DEF ) is tangent to the three excircles of ABC. VI) ABC is scalene and D, E, F are the midpoints of BC, CA, AB. The incircle (I) and 9 point circle (DEF ) of ABC are internally tangent through the Feuerbach point F e. Show that one of the segments F e D, F e E, F e F equals the sum of the other two. [4] 5

6 Solution. WLOG assume that b a c. Incircle (I, r) touches BC at M. Using formula (1) of Theorem 1 for (I) and (D) (with zero radius) tangent to the 9-point circle (N, R ), we have: F e D = DM ( R ) R ( R r)( R 0) = F (b c) ed = R r By similar reasoning, we have the expressions R (a c) R (b a) F e E =, F e F = R r R r Therefore, the addition of the latter expressions gives R F e E + F e F = R r b c = F e D VII) ABC is a triangle with AC > AB. A circle ω A is internally tangent to its circumcircle ω and AB, AC. S is the midpoint of the arc BC of ω, which does not contain A and ST is the tangent segment from S to ω A. Prove that ST SA = AC AB AC + AB [5] Solution. Let M, N be the tangency points of ω A with AC, AB. By Casey s theorem for ω A, (B), (C), (S), all tangent to the circumcircle ω, we get ST BC + CS BN = CM BS = ST BC = CS(CM BN) If U is the reflection of B across AS, then CM BN = UC = AC AB. Hence ST BC = CS(AC AB) ( ) By Ptolemy s theorem for ABSC, we get SA BC = CS(AB + AC). Together with ( ), we obtain ST SA = AC AB AC + AB 6

7 VIII) Two congruent circles (S 1 ), (S ) meet at two points. A line l cuts (S ) at A, C and (S 1 ) at B, D (A, B, C, D are collinear in this order). Two distinct circles ω 1, ω touch the line l and the circles (S 1 ), (S ) externally and internally respectively. If ω 1, ω are externally tangent, show that AB = CD. [6] Solution. Let P ω 1 ω and M, N be the tangency points of ω 1 and ω with an external tangent. Inversion with center P and power P B P D takes (S 1 ) and the line l into themselves. The circles ω 1 and ω go to two parallel lines k 1 and k tangent to (S 1 ) and the circle (S ) goes to another circle (S ) tangent to k 1, k. Hence, (S ) is congruent to its inverse (S ). Further, (S ), (S ) are symmetrical about P = P C P A = P B P D. By Casey s theorem for ω 1, ω, (D), (B), (S 1 ) and ω 1, ω, (A), (C), (S ) we get: DB = P B P D MN, AC = P A P C MN Since P C P A = P B P D = AC = BD = AB = CD. IX) ABC is equilateral with side length L. Let (O, r) and (O, R) be the incircle and circumcircle of ABC. P is a point on (O, r) and P 1, P, P 3 are the projections of P onto BC, CA, AB. Circles T 1, T and T 3 touch BC, CA, AB through P 1, P, P and (O, R) (internally), their centers lie on different sides of BC, CA, AB with respect to A, B, C. Prove that the sum of the lengths of the common external tangents of T 1, T and T 3 is a constant value. Solution. Let δ 1 denote the tangent segment from A to T 1. By Casey s theorem for (A), (B), (C), T 1, all tangent to (O, R), we have L BP 1 + L CP 1 = δ 1 L = δ 1 = L. Similarly, we have δ = δ 3 = L. By Euler s theorem for the pedal triangle P 1 P P 3 of P, we get: [P 1 P P 3 ] = p(p, (O)) [ABC] = R r [ABC] = 3 4R 4R 16 [ABC] Therefore, we obtain AP AP 3 + BP 3 BP 1 + CP 1 CP = sin 60 ([ABC] [P 1P P 3 ]) = L. ( ) By Casey s theorem for (B), (C), T, T 3, all tangent to (O, R), we get δ δ 3 = L = BC δ 3 + CP BP 3 = L δ 3 + (L AP 1 )(L AP ) By cyclic exchange, we have the expressions: L = L δ 31 + (L BP 3 )(L BP 1 ), L = L δ 1 + (L CP 1 )(L CP ) 7

8 Figure 3: Application VII Adding the three latter equations yields 3L = L(δ 3 + δ 31 + δ 1 ) + 3L 3L + AP 3 AP + BP 3 BP 1 + CP 1 CP Hence, combining with ( ) gives δ 3 + δ 31 + δ 1 = 3L L = L 3 Proposed Problems. 1) Purser s theorem: ABC is a triangle with circumcircle (O) and ω is a circle in its plane. AX, BY, CZ are the tangent segments from A, B, C to ω. Show that ω is tangent to (O), if and only if ±AX BC ± BY CA ± CZ AB = 0 8

9 ) Circle ω touches the sides AB, AC of ABC at P, Q and its circumcircle (O). Show that the midpoint of P Q is either the incenter of ABC or the A-excenter of ABC, according to whether (O), ω are internally tangent or externally tangent. 3) ABC is A-right with circumcircle (O). Circle Ω B is tangent to the segments OB, OA and the arc AB of (O). Circle Ω C is tangent to the segments OC, OA and the arc AC of (O). Ω B, Ω C touch OA at P, Q, respectively. Show that: AB AC = AP AQ 4) Gumma, We are given a cirle (O, r) in the interior of a square ABCD with side length L. Let (O i, r i ) i = 1,, 3, 4 be the circles tangent to two sides of the square and (O, r) (externally). Find L as a fuction of r 1, r, r 3, r 4. 5) Two parallel lines τ 1, τ touch a circle Γ(R). Circle k 1 (r 1 ) touches Γ, τ 1 and a third circle k (r ) touches Γ, τ, k 1. We assume that all tangencies are external. Prove that R = r 1 r. 6)Victor Thébault ABC has incircle (I, r) and circumcircle (O). D is a point on AB. Circle Γ 1 (r 1 ) touches the segments DA, DC and the arc CA of (O). Circle Γ (r ) touches the segments DB, DC and the arc CB of (O). If ADC = ϕ, show that: r 1 cos ϕ + r sin ϕ = r References [1] I. Shariguin, Problemas de Geometrié (Planimetrié), Ed. Mir, Moscu, [] Vittasko, Sum of two tangents, equal to the distance of two points, AoPS, [3] My name is math, Tangent circles concurrent lines, AoPs, [4] Mathquark, Point [Feuerbach point of a triangle; FY + FZ = FX], AoPS, [5] Virgil Nicula, ABC and circle tangent to AB, AC and circumcircle, AoPS, [6] Shoki, Iran(3rd round)009, AoPS,

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle. DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

More information

Projective Geometry - Part 2

Projective Geometry - Part 2 Projective Geometry - Part 2 Alexander Remorov alexanderrem@gmail.com Review Four collinear points A, B, C, D form a harmonic bundle (A, C; B, D) when CA : DA CB DB = 1. A pencil P (A, B, C, D) is the

More information

Collinearity and concurrence

Collinearity and concurrence Collinearity and concurrence Po-Shen Loh 23 June 2008 1 Warm-up 1. Let I be the incenter of ABC. Let A be the midpoint of the arc BC of the circumcircle of ABC which does not contain A. Prove that the

More information

San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS

San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS Recall that the bisector of an angle is the ray that divides the angle into two congruent angles. The most important results about angle bisectors

More information

Exercise Set 3. Similar triangles. Parallel lines

Exercise Set 3. Similar triangles. Parallel lines Exercise Set 3. Similar triangles Parallel lines Note: The exercises marked with are more difficult and go beyond the course/examination requirements. (1) Let ABC be a triangle with AB = AC. Let D be an

More information

Inversion. Chapter 7. 7.1 Constructing The Inverse of a Point: If P is inside the circle of inversion: (See Figure 7.1)

Inversion. Chapter 7. 7.1 Constructing The Inverse of a Point: If P is inside the circle of inversion: (See Figure 7.1) Chapter 7 Inversion Goal: In this chapter we define inversion, give constructions for inverses of points both inside and outside the circle of inversion, and show how inversion could be done using Geometer

More information

Solutions to Practice Problems

Solutions to Practice Problems Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles

More information

Chapter 6 Notes: Circles

Chapter 6 Notes: Circles Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment

More information

Chapters 6 and 7 Notes: Circles, Locus and Concurrence

Chapters 6 and 7 Notes: Circles, Locus and Concurrence Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of

More information

IMO Geomety Problems. (IMO 1999/1) Determine all finite sets S of at least three points in the plane which satisfy the following condition:

IMO Geomety Problems. (IMO 1999/1) Determine all finite sets S of at least three points in the plane which satisfy the following condition: IMO Geomety Problems (IMO 1999/1) Determine all finite sets S of at least three points in the plane which satisfy the following condition: for any two distinct points A and B in S, the perpendicular bisector

More information

Chapter 3. Inversion and Applications to Ptolemy and Euler

Chapter 3. Inversion and Applications to Ptolemy and Euler Chapter 3. Inversion and Applications to Ptolemy and Euler 2 Power of a point with respect to a circle Let A be a point and C a circle (Figure 1). If A is outside C and T is a point of contact of a tangent

More information

1. Find the length of BC in the following triangles. It will help to first find the length of the segment marked X.

1. Find the length of BC in the following triangles. It will help to first find the length of the segment marked X. 1 Find the length of BC in the following triangles It will help to first find the length of the segment marked X a: b: Given: the diagonals of parallelogram ABCD meet at point O The altitude OE divides

More information

Advanced Euclidean Geometry

Advanced Euclidean Geometry dvanced Euclidean Geometry What is the center of a triangle? ut what if the triangle is not equilateral?? Circumcenter Equally far from the vertices? P P Points are on the perpendicular bisector of a line

More information

Math 531, Exam 1 Information.

Math 531, Exam 1 Information. Math 531, Exam 1 Information. 9/21/11, LC 310, 9:05-9:55. Exam 1 will be based on: Sections 1A - 1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)

More information

CIRCLE COORDINATE GEOMETRY

CIRCLE COORDINATE GEOMETRY CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle

More information

CSU Fresno Problem Solving Session. Geometry, 17 March 2012

CSU Fresno Problem Solving Session. Geometry, 17 March 2012 CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news

More information

Geometry Regents Review

Geometry Regents Review Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest

More information

Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18

Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18 Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,

More information

www.pioneermathematics.com

www.pioneermathematics.com Problems and Solutions: INMO-2012 1. Let ABCD be a quadrilateral inscribed in a circle. Suppose AB = 2+ 2 and AB subtends 135 at the centre of the circle. Find the maximum possible area of ABCD. Solution:

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name: GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of

More information

Conjectures. Chapter 2. Chapter 3

Conjectures. Chapter 2. Chapter 3 Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

More information

1 Solution of Homework

1 Solution of Homework Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases,

More information

Three Lemmas in Geometry

Three Lemmas in Geometry Winter amp 2010 Three Lemmas in Geometry Yufei Zhao Three Lemmas in Geometry Yufei Zhao Massachusetts Institute of Technology yufei.zhao@gmail.com 1 iameter of incircle T Lemma 1. Let the incircle of triangle

More information

Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles...

Contents. 2 Lines and Circles 3 2.1 Cartesian Coordinates... 3 2.2 Distance and Midpoint Formulas... 3 2.3 Lines... 3 2.4 Circles... Contents Lines and Circles 3.1 Cartesian Coordinates.......................... 3. Distance and Midpoint Formulas.................... 3.3 Lines.................................. 3.4 Circles..................................

More information

Circle Name: Radius: Diameter: Chord: Secant:

Circle Name: Radius: Diameter: Chord: Secant: 12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane

More information

The Euler Line in Hyperbolic Geometry

The Euler Line in Hyperbolic Geometry The Euler Line in Hyperbolic Geometry Jeffrey R. Klus Abstract- In Euclidean geometry, the most commonly known system of geometry, a very interesting property has been proven to be common among all triangles.

More information

Triangle Centers MOP 2007, Black Group

Triangle Centers MOP 2007, Black Group Triangle Centers MOP 2007, Black Group Zachary Abel June 21, 2007 1 A Few Useful Centers 1.1 Symmedian / Lemmoine Point The Symmedian point K is defined as the isogonal conjugate of the centroid G. Problem

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

More information

IMO Training 2008 Circles Yufei Zhao. Circles. Yufei Zhao.

IMO Training 2008 Circles Yufei Zhao. Circles. Yufei Zhao. ircles Yufei Zhao yufeiz@mit.edu 1 Warm up problems 1. Let and be two segments, and let lines and meet at X. Let the circumcircles of X and X meet again at O. Prove that triangles O and O are similar.

More information

Chapter 1. The Medial Triangle

Chapter 1. The Medial Triangle Chapter 1. The Medial Triangle 2 The triangle formed by joining the midpoints of the sides of a given triangle is called the medial triangle. Let A 1 B 1 C 1 be the medial triangle of the triangle ABC

More information

Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents

Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Name Chords and Circles: A chord is a segment that joins two points of the circle. A diameter is a chord that contains the center of the circle.

More information

THREE DIMENSIONAL GEOMETRY

THREE DIMENSIONAL GEOMETRY Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

More information

Definitions, Postulates and Theorems

Definitions, Postulates and Theorems Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

More information

CHAPTER 8 QUADRILATERALS. 8.1 Introduction

CHAPTER 8 QUADRILATERALS. 8.1 Introduction CHAPTER 8 QUADRILATERALS 8.1 Introduction You have studied many properties of a triangle in Chapters 6 and 7 and you know that on joining three non-collinear points in pairs, the figure so obtained is

More information

Test on Circle Geometry (Chapter 15)

Test on Circle Geometry (Chapter 15) Test on Circle Geometry (Chapter 15) Chord Properties of Circles A chord of a circle is any interval that joins two points on the curve. The largest chord of a circle is its diameter. 1. Chords of equal

More information

A Nice Theorem on Mixtilinear Incircles

A Nice Theorem on Mixtilinear Incircles A Nice Theorem on Mixtilinear Incircles Khakimboy Egamberganov Abstract There are three mixtilinear incircles and three mixtilinear excircles in an arbitrary triangle. In this paper, we will present many

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

More information

Geometry Module 4 Unit 2 Practice Exam

Geometry Module 4 Unit 2 Practice Exam Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning

More information

SIMSON S THEOREM MARY RIEGEL

SIMSON S THEOREM MARY RIEGEL SIMSON S THEOREM MARY RIEGEL Abstract. This paper is a presentation and discussion of several proofs of Simson s Theorem. Simson s Theorem is a statement about a specific type of line as related to a given

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

More information

3.1 Triangles, Congruence Relations, SAS Hypothesis

3.1 Triangles, Congruence Relations, SAS Hypothesis Chapter 3 Foundations of Geometry 2 3.1 Triangles, Congruence Relations, SAS Hypothesis Definition 3.1 A triangle is the union of three segments ( called its side), whose end points (called its vertices)

More information

Conjectures for Geometry for Math 70 By I. L. Tse

Conjectures for Geometry for Math 70 By I. L. Tse Conjectures for Geometry for Math 70 By I. L. Tse Chapter Conjectures 1. Linear Pair Conjecture: If two angles form a linear pair, then the measure of the angles add up to 180. Vertical Angle Conjecture:

More information

The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations

The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations Dynamic geometry technology should be used to maximize student learning in geometry. Such technology

More information

QUADRILATERALS CHAPTER 8. (A) Main Concepts and Results

QUADRILATERALS CHAPTER 8. (A) Main Concepts and Results CHAPTER 8 QUADRILATERALS (A) Main Concepts and Results Sides, Angles and diagonals of a quadrilateral; Different types of quadrilaterals: Trapezium, parallelogram, rectangle, rhombus and square. Sum of

More information

Selected practice exam solutions (part 5, item 2) (MAT 360)

Selected practice exam solutions (part 5, item 2) (MAT 360) Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

More information

Class-10 th (X) Mathematics Chapter: Tangents to Circles

Class-10 th (X) Mathematics Chapter: Tangents to Circles Class-10 th (X) Mathematics Chapter: Tangents to Circles 1. Q. AB is line segment of length 24 cm. C is its midpoint. On AB, AC and BC semicircles are described. Find the radius of the circle which touches

More information

Additional Topics in Math

Additional Topics in Math Chapter Additional Topics in Math In addition to the questions in Heart of Algebra, Problem Solving and Data Analysis, and Passport to Advanced Math, the SAT Math Test includes several questions that are

More information

Blue Pelican Geometry Theorem Proofs

Blue Pelican Geometry Theorem Proofs Blue Pelican Geometry Theorem Proofs Copyright 2013 by Charles E. Cook; Refugio, Tx (All rights reserved) Table of contents Geometry Theorem Proofs The theorems listed here are but a few of the total in

More information

4. How many integers between 2004 and 4002 are perfect squares?

4. How many integers between 2004 and 4002 are perfect squares? 5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started

More information

The common ratio in (ii) is called the scaled-factor. An example of two similar triangles is shown in Figure 47.1. Figure 47.1

The common ratio in (ii) is called the scaled-factor. An example of two similar triangles is shown in Figure 47.1. Figure 47.1 47 Similar Triangles An overhead projector forms an image on the screen which has the same shape as the image on the transparency but with the size altered. Two figures that have the same shape but not

More information

Cevians, Symmedians, and Excircles. MA 341 Topics in Geometry Lecture 16

Cevians, Symmedians, and Excircles. MA 341 Topics in Geometry Lecture 16 Cevians, Symmedians, and Excircles MA 341 Topics in Geometry Lecture 16 Cevian A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension). B cevian

More information

C relative to O being abc,, respectively, then b a c.

C relative to O being abc,, respectively, then b a c. 2 EP-Program - Strisuksa School - Roi-et Math : Vectors Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 200 :Wattana Toutip wattou@kku.ac.th http://home.kku.ac.th/wattou 2. Vectors A

More information

Baltic Way 1995. Västerås (Sweden), November 12, 1995. Problems and solutions

Baltic Way 1995. Västerås (Sweden), November 12, 1995. Problems and solutions Baltic Way 995 Västerås (Sweden), November, 995 Problems and solutions. Find all triples (x, y, z) of positive integers satisfying the system of equations { x = (y + z) x 6 = y 6 + z 6 + 3(y + z ). Solution.

More information

11 th Annual Harvard-MIT Mathematics Tournament

11 th Annual Harvard-MIT Mathematics Tournament 11 th nnual Harvard-MIT Mathematics Tournament Saturday February 008 Individual Round: Geometry Test 1. [] How many different values can take, where,, are distinct vertices of a cube? nswer: 5. In a unit

More information

Name Date Class. Lines and Segments That Intersect Circles. AB and CD are chords. Tangent Circles. Theorem Hypothesis Conclusion

Name Date Class. Lines and Segments That Intersect Circles. AB and CD are chords. Tangent Circles. Theorem Hypothesis Conclusion Section. Lines That Intersect Circles Lines and Segments That Intersect Circles A chord is a segment whose endpoints lie on a circle. A secant is a line that intersects a circle at two points. A tangent

More information

The Inversion Transformation

The Inversion Transformation The Inversion Transformation A non-linear transformation The transformations of the Euclidean plane that we have studied so far have all had the property that lines have been mapped to lines. Transformations

More information

Visualizing Triangle Centers Using Geogebra

Visualizing Triangle Centers Using Geogebra Visualizing Triangle Centers Using Geogebra Sanjay Gulati Shri Shankaracharya Vidyalaya, Hudco, Bhilai India http://mathematicsbhilai.blogspot.com/ sanjaybhil@gmail.com ABSTRACT. In this paper, we will

More information

Lecture 24: Saccheri Quadrilaterals

Lecture 24: Saccheri Quadrilaterals Lecture 24: Saccheri Quadrilaterals 24.1 Saccheri Quadrilaterals Definition In a protractor geometry, we call a quadrilateral ABCD a Saccheri quadrilateral, denoted S ABCD, if A and D are right angles

More information

Three Lemmas in Geometry Solutions Yufei Zhao Massachusetts Institute of Technology

Three Lemmas in Geometry Solutions Yufei Zhao Massachusetts Institute of Technology Three Lemmas in Geometry Solutions Yufei Zhao Massachusetts Institute of Technology yufei.zhao@gmail.com 1 Diameter of incircle 1. (IMO 1992) In the plane let C be a circle, l a line tangent to the circle

More information

5.1 Midsegment Theorem and Coordinate Proof

5.1 Midsegment Theorem and Coordinate Proof 5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects

More information

Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math. Semester 1 Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

More information

Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades. Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

More information

Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids

Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Algebra III Lesson 33 Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Quadrilaterals What is a quadrilateral? Quad means? 4 Lateral means?

More information

On Mixtilinear Incircles and Excircles

On Mixtilinear Incircles and Excircles Forum Geometricorum Volume 6 (2006) 1 16. FORUM GEOM ISSN 1534-1178 On Mixtilinear Incircles and Excircles Khoa Lu Nguyen and Juan arlos Salazar bstract. mixtilinear incircle (respectively excircle) of

More information

The Geometry of Piles of Salt Thinking Deeply About Simple Things

The Geometry of Piles of Salt Thinking Deeply About Simple Things The Geometry of Piles of Salt Thinking Deeply About Simple Things PCMI SSTP Tuesday, July 15 th, 2008 By Troy Jones Willowcreek Middle School Important Terms (the word line may be replaced by the word

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

More information

Mathematics (Project Maths Phase 3)

Mathematics (Project Maths Phase 3) 2014. M328 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination 2014 Mathematics (Project Maths Phase 3) Paper 2 Ordinary Level Monday 9 June Morning 9:30 12:00 300

More information

USA Mathematical Talent Search Solutions to Problem 5/2/16

USA Mathematical Talent Search Solutions to Problem 5/2/16 5/2/16. Two circles of equal radius can tightly fit inside right triangle A, which has A = 13, = 12, and A = 5, in the three positions illustrated below. Determine the radii of the circles in each case.

More information

Ceva s Theorem. Ceva s Theorem. Ceva s Theorem 9/20/2011. MA 341 Topics in Geometry Lecture 11

Ceva s Theorem. Ceva s Theorem. Ceva s Theorem 9/20/2011. MA 341 Topics in Geometry Lecture 11 MA 341 Topics in Geometry Lecture 11 The three lines containing the vertices A, B, and C of ABC and intersecting opposite sides at points L, M, and N, respectively, are concurrent if and only if 2 3 1

More information

CHAPTER 1. LINES AND PLANES IN SPACE

CHAPTER 1. LINES AND PLANES IN SPACE CHAPTER 1. LINES AND PLANES IN SPACE 1. Angles and distances between skew lines 1.1. Given cube ABCDA 1 B 1 C 1 D 1 with side a. Find the angle and the distance between lines A 1 B and AC 1. 1.2. Given

More information

Most popular response to

Most popular response to Class #33 Most popular response to What did the students want to prove? The angle bisectors of a square meet at a point. A square is a convex quadrilateral in which all sides are congruent and all angles

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXMINTION GEOMETRY Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name: GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, June 17, 2010 1:15 to 4:15 p.m., only Student Name: School Name: Print your name and the name of your

More information

Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t.

Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t. . The given line has equations Section 8.8 x + t( ) + 0t, y + t( + ) + t, z 7 + t( 8 7) 7 t. The line meets the plane y 0 in the point (x, 0, z), where 0 + t, or t /. The corresponding values for x and

More information

Circle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about.

Circle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about. Circle s circle is a set of points in a plane that are a given distance from a given point, called the center. The center is often used to name the circle. T This circle shown is described an OT. s always,

More information

Mathematics Notes for Class 12 chapter 10. Vector Algebra

Mathematics Notes for Class 12 chapter 10. Vector Algebra 1 P a g e Mathematics Notes for Class 12 chapter 10. Vector Algebra A vector has direction and magnitude both but scalar has only magnitude. Magnitude of a vector a is denoted by a or a. It is non-negative

More information

Algebraic Properties and Proofs

Algebraic Properties and Proofs Algebraic Properties and Proofs Name You have solved algebraic equations for a couple years now, but now it is time to justify the steps you have practiced and now take without thinking and acting without

More information

www.sakshieducation.com

www.sakshieducation.com LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c

More information

GEOMETRY CONCEPT MAP. Suggested Sequence:

GEOMETRY CONCEPT MAP. Suggested Sequence: CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

More information

Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1

Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1 Chapter H2 Equation of a Line The Gradient of a Line The gradient of a line is simpl a measure of how steep the line is. It is defined as follows :- gradient = vertical horizontal horizontal A B vertical

More information

Practice Test Answer and Alignment Document Mathematics: Geometry Performance Based Assessment - Paper

Practice Test Answer and Alignment Document Mathematics: Geometry Performance Based Assessment - Paper The following pages include the answer key for all machine-scored items, followed by the rubrics for the hand-scored items. - The rubrics show sample student responses. Other valid methods for solving

More information

High School Geometry Test Sampler Math Common Core Sampler Test

High School Geometry Test Sampler Math Common Core Sampler Test High School Geometry Test Sampler Math Common Core Sampler Test Our High School Geometry sampler covers the twenty most common questions that we see targeted for this level. For complete tests and break

More information

Angles in a Circle and Cyclic Quadrilateral

Angles in a Circle and Cyclic Quadrilateral 130 Mathematics 19 Angles in a Circle and Cyclic Quadrilateral 19.1 INTRODUCTION You must have measured the angles between two straight lines, let us now study the angles made by arcs and chords in a circle

More information

http://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4

http://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4 of 9 1/28/2013 8:32 PM Teacher: Mr. Sime Name: 2 What is the slope of the graph of the equation y = 2x? 5. 2 If the ratio of the measures of corresponding sides of two similar triangles is 4:9, then the

More information

12. Parallels. Then there exists a line through P parallel to l.

12. Parallels. Then there exists a line through P parallel to l. 12. Parallels Given one rail of a railroad track, is there always a second rail whose (perpendicular) distance from the first rail is exactly the width across the tires of a train, so that the two rails

More information

Warm-up Theorems about triangles. Geometry. Theorems about triangles. Misha Lavrov. ARML Practice 12/15/2013

Warm-up Theorems about triangles. Geometry. Theorems about triangles. Misha Lavrov. ARML Practice 12/15/2013 ARML Practice 12/15/2013 Problem Solution Warm-up problem Lunes of Hippocrates In the diagram below, the blue triangle is a right triangle with side lengths 3, 4, and 5. What is the total area of the green

More information

Unit 2 - Triangles. Equilateral Triangles

Unit 2 - Triangles. Equilateral Triangles Equilateral Triangles Unit 2 - Triangles Equilateral Triangles Overview: Objective: In this activity participants discover properties of equilateral triangles using properties of symmetry. TExES Mathematics

More information

Incenter Circumcenter

Incenter Circumcenter TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is

More information

Shape, Space and Measure

Shape, Space and Measure Name: Shape, Space and Measure Prep for Paper 2 Including Pythagoras Trigonometry: SOHCAHTOA Sine Rule Cosine Rule Area using 1-2 ab sin C Transforming Trig Graphs 3D Pythag-Trig Plans and Elevations Area

More information

Warm-up Tangent circles Angles inside circles Power of a point. Geometry. Circles. Misha Lavrov. ARML Practice 12/08/2013

Warm-up Tangent circles Angles inside circles Power of a point. Geometry. Circles. Misha Lavrov. ARML Practice 12/08/2013 Circles ARML Practice 12/08/2013 Solutions Warm-up problems 1 A circular arc with radius 1 inch is rocking back and forth on a flat table. Describe the path traced out by the tip. 2 A circle of radius

More information

Tangent Properties. Line m is a tangent to circle O. Point T is the point of tangency.

Tangent Properties. Line m is a tangent to circle O. Point T is the point of tangency. CONDENSED LESSON 6.1 Tangent Properties In this lesson you will Review terms associated with circles Discover how a tangent to a circle and the radius to the point of tangency are related Make a conjecture

More information

Geometry Handout 2 ~ Page 1

Geometry Handout 2 ~ Page 1 1. Given: a b, b c a c Guidance: Draw a line which intersects with all three lines. 2. Given: a b, c a a. c b b. Given: d b d c 3. Given: a c, b d a. α = β b. Given: e and f bisect angles α and β respectively.

More information

15. Appendix 1: List of Definitions

15. Appendix 1: List of Definitions page 321 15. Appendix 1: List of Definitions Definition 1: Interpretation of an axiom system (page 12) Suppose that an axiom system consists of the following four things an undefined object of one type,

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

More information

On Triangles with Vertices on the Angle Bisectors

On Triangles with Vertices on the Angle Bisectors Forum Geometricorum Volume 6 (2006) 247 253. FORUM GEOM SSN 1534-1178 On Triangles with Vertices on the ngle isectors Eric Danneels bstract. We study interesting properties of triangles whose vertices

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2009 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

More information

x R 2 x = (x 1, x 2 ) or p = (x, y) R 3

x R 2 x = (x 1, x 2 ) or p = (x, y) R 3 Euclidean space 1 Chapter 1 Euclidean space A. The basic vector space We shall denote by R the field of real numbers. Then we shall use the Cartesian product R n = R R... R of ordered n-tuples of real

More information

Angles that are between parallel lines, but on opposite sides of a transversal.

Angles that are between parallel lines, but on opposite sides of a transversal. GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,

More information

/27 Intro to Geometry Review

/27 Intro to Geometry Review /27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the

More information