Lecture Note of Bus 41202, Spring 2012: Stochastic Diffusion & Option Pricing

Size: px
Start display at page:

Download "Lecture Note of Bus 41202, Spring 2012: Stochastic Diffusion & Option Pricing"

Transcription

1 Lecture Note of Bus 41202, Spring 2012: Stochastic Diffusion & Option Pricing Key concept: Ito s lemma Stock Options: A contract giving its holder the right, but not obligation, to trade shares of a common stock by a certain date for a specified price. (In US, a contract involves 100 shares.) Call option: to buy Put option: to sell Specified price: strike price K date: expiration T (measured in years) Note: You can also write a call or put option (underwrite). Factors affecting the price of an option Current stock price: P t time to expiration: T t Risk-free interest rate: r per annum Stock volatility: σ annualized Payoff for European options (exercised at T only) Call option: V (P T ) = (P T K) + = P T K if P T > K 0 if P T K 1

2 The holder only exercises her option if P T > K (buys the stock via exercising the option and sells the stock on the market). Put option: V (P T ) = (K P T ) + = K P T if P T < K 0 if P T K The holder only exercises her option if P T < K (buys the stock from the market and sells it via option). Mathematical framework Stock (log) price follows a diffusion equation, i.e. a continuoustime continuous stochastic process such as dx t = µ(x t, t)dt + σ(x t, t)dw t, where µ(x t, t) and σ(x t, t) are the drift and diffusion coefficient, respectively, and w t is a standard Brownian motion (or Wiener process). In a complete market, use hedging to derive the price of an option (no arbitrage argument). In an incomplete market (e.g. existence of jumps), specify risk and a hedging strategy to minimize the risk. Stochastic processes Wiener process (or Standard Brownian motion) notation: w t initial value: w 0 = 0 small increments are independent and normal time poits: 0 = t 0 < t 1 < < t n 1 < t n = t 2

3 { w i = w ti w ti 1 } property: w t N(0, t) are independent w t = w t+ t w t N(0, t). zero drift and rate of variance change is 1. That is, dw t = 0dt + 1dw t. A simple way to understand Wiener processes is to do simulation. In R or S-Plus, this can be achieved by using: n=5000 at = rnorm(n) wt = cumsum(at)/sqrt(n) plot(wt,type= l ) Repeat the above commands to generate lots of wt series. Generalized Wiener process dx t = µdt + σdw t, where the drift µ & rate of volatility change σ are constant. Ito s process dx t = µ(x t, t)dt + σ(x t, t)dw t, where both drift and volatility are time-varying. Geometric Brownian motion dp t = µp t dt + σp t dw t, so that µ(p t, t) = µp t and σ(p t, t) = σp t with µ and σ being constant. 3

4 Simulated Standard Brownian Motions w(t) time Figure 1: Time plots of four simulated Wiener processes 4

5 Illustration: Four simulated standard Brownian motions. key feature: variability increases with time. Assume that the price of a stock follows a geometric Brownian motion. What is the distribution of the log return? To answer this question, we need Ito s calculus. Review of differentiation G(x): a differentiable function of x. What is dg(x)? Taylor expansion: G 2 Letting x 0, we have How about G(x, y)? G G(x + x) G(x) = G x x x 2 ( x) dg = G x dx. 3 G x 3 ( x)3 +. G = G G x + x y y G 2 x 2 ( x)2 + 2 G x y x y G 2 y 2 ( y)2 +. Taking limit as x 0 and y 0, we have dg = G G dx + x y dy. Stochastic differentiation Now, consider G(x t, t) with x t being an Ito s process. 5

6 G = G G x + x t t G 2 x 2 ( x)2 + 2 G x t x t G 2 t 2 ( t)2 +. A discretized version of the Ito s process is x = µ t + σ ɛ t, where µ = µ(x t, t) and σ = σ(x t, t). Therefore, ( x) 2 = µ 2 ( t) 2 + σ 2 ɛ 2 t + 2µ σ ɛ( t) 3/2 = σ 2 ɛ 2 t + H( t). Thus, ( x) 2 contains a term of order t. E(σ 2 ɛ 2 t) = σ 2 t, Var(σ 2 ɛ 2 t) = E[σ 4 ɛ 4 ( t) 2 ] [E(σ 2 ɛ 2 t)] 2 = 2σ 4 ( t) 2, where we use E(ɛ 4 ) = 3. These two properties show that Consequently, Using this result, we have σ 2 ɛ 2 t σ 2 t as t 0. ( x) 2 σ 2 dt as t 0. dg = G G dx + x t dt G 2 x 2 σ2 dt = G x µ + G t G 2 This is the well-known Ito s lemma. 6 x 2 σ2 dt + G x σ dw t.

7 Example 1. Let G(w t, t) = w 2 t. What is dg(w t, t)? Answer: Here µ = 0 and σ = 1. Therefore, G w t = 2w t, G t = 0, 2 G w 2 t = 2. dw 2 t = (2w t )dt + 2w tdw t = dt + 2w t dw t. Example 2. If P t follows a geometric Brownian motion, what is the model for ln(p t )? Answer: Let G(P t, t) = ln(p t ). we have G P t = 1 P t, G t = 0, 1 2 G = Consequently, via Ito s lemma, we obtain d ln(p t ) = = 1 µp t + 1 P t 2 1 P 2 t P 2 t µ σ2 dt + σdw t Pt 2 σ 2 P 2 dt + 1 σp t dw t P t Thus, ln(p t ) follows a generalized Wiener Process with drift rate µ σ 2 /2 and variance rate σ 2. The log return from t to T is normal with mean (µ σ 2 /2)(T t) and variance σ 2 (T t). This result enables us to perform simulation. Let t be the time interval. Then, the result says ln(p t+ t ) = ln(p t ) + (µ σ 2 /2) t + tσɛ t+ t, 7 t

8 where ɛ t+ t is a N(0,1) random variable. By generating ɛ t+ t, we can obtain a simulated value for ln(p t+ t ). If one repeats the above simulation many times, one can take the average of ln(p t+ t ) as the expectation of ln(p t+ t ) given the model and ln(p t ). More specifically, one can use simulation to generate a distribution for ln(p t+ t ). In mathematical finance, this technique is referred to as discretization of a stochastic diffusion equation (SDE). The distribution of ln(p t+ t ) obtained in this way works when P t follows a geometric Brownian motion. The distribution, in general, is not equivalent to the true distribution of ln(p t+ t ) for a general SDE. Certain conditions must be met for the two distributions to be equivalent. Details are beyond this class. However, some results are avilable in the literature concerning the relationship between discrete-time distribution and continuous-time distribution. In other words, one derives conditions under which a discrete-time model converges to a continuoustime model when the time interval t approaches zero. For the GARCH-type models, GARCH-M has a diffusion limit. Return to the geometric Brownian motion. Even though we have a close-form solution for options pricing when σ is constant. We can simulate ln(p t+ t ) when σ t is time-varying. For instance, σ t may follow a GARCH(1,1) model. For options pricing, under risk neural assumption, µ is replaced by the risk-free interest rate per annum. [Of course, σ t is the annualized volatility.] This is another application of the volatility models discussed in Chapter 3. Example 3. If P t follows a geometric Brownian motion, what is the model for 1 P t? 8

9 Answer: Let G(P t ) = 1/P t. By Ito s lemma, the solution is d 1 P t = ( µ + σ 2 ) 1 P t dt σ 1 P t dw t, which is again a geometric Brownian motion. Estimation of µ and σ Assume that n log returns are available, say {r t t = 1,, n}. Statistical theory: Estimate the mean and variance by the sample mean and variance. n t=1 r t r = n, s 2 1 n r = (r t r) 2. n 1 t=1 Remember the length of time intervals! Let be the length of time intervals measured in years. Then, the distribution of r t is We obtain the estimates r t N[(µ σ 2 /2), σ 2 ]. ˆσ = s r. ˆµ = r + ˆσ2 2 = r + s2 r 2. Example. Daily log returns of IBM stock in The data show r = and s r = Since = 1/252 year, we obtain that ˆσ = s r = , ˆµ = r + ˆσ2 2 =

10 Thus, the estimated expected return was 61.98% and the standard deviation was 30.4% per annum for IBM stock in Example. Daily log returns of Cisco stock in Data show r = and s r = , Also, Q(12) = Therefore, we have ˆσ = s r = = 0.418, 1.0/252.0 Expected return was 92.4% per annum Estimated s.d. was 41.8% per annum. ˆµ = r + ˆσ2 2 = Example. Daily log returns of Cisco stock in Data show r = and s r = Therefore, ˆσ = ˆµ = Time-varying nature of mean and volatility is clearly shown. Distributions of stock prices If the price follows then, ln(p T ) ln(p t ) N Consequently, given P t, ln(p T ) N dp t = µp t dt + σp t dw t, and we obtain (log-normal dist; ch. 1) (µ σ2 2 )(T t), σ2 (T t) ln(p t ) + (µ σ2 2 )(T t), σ2 (T t) E(P T ) = P t exp[µ(t t)], Var(P T ) = P 2 t exp[2µ(t t)]{exp[σ 2 (T t)] 1}. 10.,

11 The result can be used to make inference about P T. Simulation is often used to study the behavior of P T. Black-Scholes equation Price of stock: P t is a Geo. B. Motion price of derivative: G t = G(P t, t) contingent the stock Risk neutral world: expected returns are given by the risk-free interest rate (no arbitrage) From Ito s lemma: dg t = G t µp t + G t P t t A discretized version of the set-up: G t G t = µp t + G t P t t Consider the Portfolio: short on derivative long G t P t 2 G t P 2 t P t = µp t t + σp t w t, shares of the stock. Value of the portfolio is 2 G t P 2 t σ 2 Pt 2 dt + G t σp t dw t. P t σ 2 Pt 2 t + G t σp t w t, P t The change in value is V t = G t + G t P t P t. V t = G t + G t P t P t. 11

12 by substitution, we have V t = G t t G t P 2 t σ 2 P 2 t. No stochastic component involved. The protfolio must be riskless during a small time interval. V t = rv t t where r is the risk-free interest rate. We then have G t t G t P 2 t σ 2 P 2 t = r t t G t G t P t t. P t and G t t + rp G t t + 1 P t 2 σ2 Pt 2 2 G t = rg Pt 2 t, the Black-Scholes differential equ. for derivative pricing. Example. A forward contract on a stock (no dividend). Here G t = P t K exp[ r(t t)] where K is the delivery price. We have G t t = rk exp[ r(t t)], G t P t = 1, Substituting these quantities into LHS yields 2 G t P 2 t = 0. rk exp[ r(t t)] + rp t = r{p t K exp[ r(t t)]}, which equals RHS. Black-Scholes formulas 12

13 A European call option: expected payoff Price of the call: (current value) E [max(p T K, 0)] c t = exp[ r(t t)]e [max(p T K, 0)]. In a risk-neutral world, µ = r so that ln(p T ) N ln(p t ) + Let g(p T ) be the pdf of P T. Then, r σ2 (T t), σ 2 (T t) 2 c t = exp[ r(t t)] K (P T K)g(P T )dp T. After some algebra (appendix) c t = P t Φ(h + ) K exp[ r(t t)]φ(h ) where Φ(x) is the CDF of N(0, 1), h + = ln(p t/k) + (r + σ 2 /2)(T t) σ T t h = ln(p t/k) + (r σ 2 /2)(T t) σ = h + σ T t. T t See Chapter 6 for some interpretations of the formula. For put option: p t = K exp[ r(t t)]φ( h ) P t Φ( h + ). Alternatively, use the put-call parity: p t c t = K exp[ r(t t)] P t. Put-call parity: Same underlying stock, same strike price, same time to maturity. 13.

14 current Expiration date T date t P K K < P Write call c K P Buy put p K P Buy stock P P P Borrow Ke r(t t) K K Total Current amount: c p P + Ke r(t t). On the expiration date: 1. If P K: call is worthless, put is K P, stock P and owe bank K. Net worth = If K < P : call is K P, put is worthless, stock P and owe K. Net worth = 0. Under no arbitrage assumption: The initial position should be zero. That is, c = p + P Ke r(t t). Example. P t = $80. σ = 20% per annum. r = 8% per annum. What is the price of a European call option with a strike price of $90 that will expire in 3 months? From the assumptions, we have P t = 80, K = 90, T t = 0.25, σ = 0.2 and r = Therefore, ln(80/90) + ( /2) 0.25 h + =.2 = = h = h It can be found Φ(.9278) = , Φ( ) =

15 Therefore, c t = $80Φ( ) $90Φ( ) exp( 0.02) = $0.73. The stock price has to rise by $10.73 for the purchaser of the call option to break even. If K = $81, then c t = $80Φ( ) $81 exp( 0.02)Φ( ) = $3.49. Lower bounds of European options: No dividends. Why? Consider two portfolios: c t P t K exp[ r(t t)]. A: One European call option plus cash K exp[ r(t t)]. B: One share of the stock. For A: Invest the cash at risk-free interest rate. At time T, the value is K. If P T > K, the call option is exercised so that the portfolio is worth P T. If P T < K, the call option expires at T and the portfolio is worth K. Therefore, the value of the portfolio is max(p T, K). For B: The value at time T is P T. Thus, portfolio A must be worth more than portfolio B today; that is, c t + K exp[ r(t t)] P t. See Example 6.7 for an application. Stochastic integral The formula t 0 dx s = x t x 0 15

16 continues hold. In particular, t 0 dw s = w t w 0 = w t. From dw 2 t = dt + 2w t dw t we have Therefore, w 2 t = t + 2 t 0 w sdw s. t 0 w sdw s = 1 2 (w2 t t). Different from t 0 ydy = (y 2 t y 2 0)/2. Assume x t is a Geo. Brownian motion, dx t = µx t dt + σx t dw t. Apply Ito s lemma to G(x t, t) = ln(x t ), we obtain d ln(x t ) = Taking integration, we have Consequently, and t 0 d ln(x s) = Change x t to P t. The price is µ σ2 dt + σdw t. 2 µ σ2 2 t 0 ds + σ t 0 dw s. ln(x t ) = ln(x 0 ) + (µ σ 2 /2)t + σw t, Jump diffusion Weaknesses of diffusion models: x t = x 0 exp[(µ σ 2 /2)t + σw t ]. P t = P 0 exp[(µ σ 2 /2)t + σw t ]. 16

17 no volatility smile (convex function of implied volatility vs strike price) fail to capture effects of rare events (tails) Modification: jump diffusion and stochastic volatility Jumps are governed by a probaility law: Poisson process: X t is a Poisson process if P r(x t = m) = λm t m m! exp( λt), λ > 0. Use a special jump diffusion model by Kou (2002). dp t P t w t : a Wiener process, = µdt + σdw t + d n t : a Poisson process with rate λ, n t i=1 (J i 1) {J i }: iid such that X = ln(j) has a double exp. dist. with pdf, f X (x) = 1 2η e x κ /η, 0 < η < 1. the above three processes are independent. n t = the number of jumps in [0, t] and Poisson(λt). At the ith jump, the proportion of price jump is J i 1. For pdf of double exp. dist., see Figure 6.8 of the text. Stock price under the jump diffusion model: P t = P 0 exp[(µ σ 2 /2)t + σw t ] n t This result can be used to obtain the distribution for the return series. 17 i=1 J i.

18 Price of an option: Analytical results available, but complicated. Example P t = $80. K = $81. r = 0.08 and T t = Jump: λ = 10, κ = 0.02 and η = We obtain c t = $3.92, which is higher than $3.49 of Example 6.6. p t = $3.31, which is also higher. Some greeks: option value V, stock price P 1. Delta: = V P 2. Gamma: Γ = P 3. Theta: Θ = V t. 18

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price

On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price On Black-Scholes Equation, Black- Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. Black-Scholes Equation is derived using two methods: (1) risk-neutral measure; (2) - hedge. II.

More information

第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model

第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model 1 第 9 讲 : 股 票 期 权 定 价 : B-S 模 型 Valuing Stock Options: The Black-Scholes Model Outline 有 关 股 价 的 假 设 The B-S Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American

More information

CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options

CS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common

More information

The Black-Scholes Formula

The Black-Scholes Formula FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 The Black-Scholes Formula These notes examine the Black-Scholes formula for European options. The Black-Scholes formula are complex as they are based on the

More information

Monte Carlo Methods in Finance

Monte Carlo Methods in Finance Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction

More information

Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13.

Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 11. The Black-Scholes Model: Hull, Ch. 13. Week 11 The Black-Scholes Model: Hull, Ch. 13. 1 The Black-Scholes Model Objective: To show how the Black-Scholes formula is derived and how it can be used to value options. 2 The Black-Scholes Model 1.

More information

Mathematical Finance

Mathematical Finance Mathematical Finance Option Pricing under the Risk-Neutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European

More information

Understanding Options and Their Role in Hedging via the Greeks

Understanding Options and Their Role in Hedging via the Greeks Understanding Options and Their Role in Hedging via the Greeks Bradley J. Wogsland Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 Options are priced assuming that

More information

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem

Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Does Black-Scholes framework for Option Pricing use Constant Volatilities and Interest Rates? New Solution for a New Problem Gagan Deep Singh Assistant Vice President Genpact Smart Decision Services Financial

More information

Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena

Lecture 12: The Black-Scholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena Lecture 12: The Black-Scholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The Black-Scholes-Merton Model

More information

Exam MFE Spring 2007 FINAL ANSWER KEY 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D

Exam MFE Spring 2007 FINAL ANSWER KEY 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D Exam MFE Spring 2007 FINAL ANSWER KEY Question # Answer 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D **BEGINNING OF EXAMINATION** ACTUARIAL MODELS FINANCIAL ECONOMICS

More information

Black-Scholes Equation for Option Pricing

Black-Scholes Equation for Option Pricing Black-Scholes Equation for Option Pricing By Ivan Karmazin, Jiacong Li 1. Introduction In early 1970s, Black, Scholes and Merton achieved a major breakthrough in pricing of European stock options and there

More information

Lecture 7: Bounds on Options Prices Steven Skiena. http://www.cs.sunysb.edu/ skiena

Lecture 7: Bounds on Options Prices Steven Skiena. http://www.cs.sunysb.edu/ skiena Lecture 7: Bounds on Options Prices Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Option Price Quotes Reading the

More information

Options/1. Prof. Ian Giddy

Options/1. Prof. Ian Giddy Options/1 New York University Stern School of Business Options Prof. Ian Giddy New York University Options Puts and Calls Put-Call Parity Combinations and Trading Strategies Valuation Hedging Options2

More information

Option Valuation. Chapter 21

Option Valuation. Chapter 21 Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of in-the-money options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price

More information

Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com

Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com In this Note we derive the Black Scholes PDE for an option V, given by @t + 1 + rs @S2 @S We derive the

More information

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.

Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t. LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing

More information

Black-Scholes and the Volatility Surface

Black-Scholes and the Volatility Surface IEOR E4707: Financial Engineering: Continuous-Time Models Fall 2009 c 2009 by Martin Haugh Black-Scholes and the Volatility Surface When we studied discrete-time models we used martingale pricing to derive

More information

Lecture 5: Put - Call Parity

Lecture 5: Put - Call Parity Lecture 5: Put - Call Parity Reading: J.C.Hull, Chapter 9 Reminder: basic assumptions 1. There are no arbitrage opportunities, i.e. no party can get a riskless profit. 2. Borrowing and lending are possible

More information

Lecture 21 Options Pricing

Lecture 21 Options Pricing Lecture 21 Options Pricing Readings BM, chapter 20 Reader, Lecture 21 M. Spiegel and R. Stanton, 2000 1 Outline Last lecture: Examples of options Derivatives and risk (mis)management Replication and Put-call

More information

Simulating Stochastic Differential Equations

Simulating Stochastic Differential Equations Monte Carlo Simulation: IEOR E473 Fall 24 c 24 by Martin Haugh Simulating Stochastic Differential Equations 1 Brief Review of Stochastic Calculus and Itô s Lemma Let S t be the time t price of a particular

More information

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida

ARBITRAGE-FREE OPTION PRICING MODELS. Denis Bell. University of North Florida ARBITRAGE-FREE OPTION PRICING MODELS Denis Bell University of North Florida Modelling Stock Prices Example American Express In mathematical finance, it is customary to model a stock price by an (Ito) stochatic

More information

The Black-Scholes-Merton Approach to Pricing Options

The Black-Scholes-Merton Approach to Pricing Options he Black-Scholes-Merton Approach to Pricing Options Paul J Atzberger Comments should be sent to: atzberg@mathucsbedu Introduction In this article we shall discuss the Black-Scholes-Merton approach to determining

More information

Call and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options

Call and Put. Options. American and European Options. Option Terminology. Payoffs of European Options. Different Types of Options Call and Put Options A call option gives its holder the right to purchase an asset for a specified price, called the strike price, on or before some specified expiration date. A put option gives its holder

More information

Lecture 15. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 6

Lecture 15. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 6 Lecture 15 Sergei Fedotov 20912 - Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 6 Lecture 15 1 Black-Scholes Equation and Replicating Portfolio 2 Static

More information

Binomial lattice model for stock prices

Binomial lattice model for stock prices Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i }

More information

Lectures. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. No tutorials in the first week

Lectures. Sergei Fedotov. 20912 - Introduction to Financial Mathematics. No tutorials in the first week Lectures Sergei Fedotov 20912 - Introduction to Financial Mathematics No tutorials in the first week Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 1 1 Introduction Elementary economics

More information

Option Pricing. Chapter 4 Including dividends in the BS model. Stefan Ankirchner. University of Bonn. last update: 6th November 2013

Option Pricing. Chapter 4 Including dividends in the BS model. Stefan Ankirchner. University of Bonn. last update: 6th November 2013 Option Pricing Chapter 4 Including dividends in the BS model Stefan Ankirchner University of Bonn last update: 6th November 2013 Stefan Ankirchner Option Pricing 1 Dividend payments So far: we assumed

More information

Caput Derivatives: October 30, 2003

Caput Derivatives: October 30, 2003 Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor

More information

Merton-Black-Scholes model for option pricing. Peter Denteneer. 22 oktober 2009

Merton-Black-Scholes model for option pricing. Peter Denteneer. 22 oktober 2009 Merton-Black-Scholes model for option pricing Instituut{Lorentz voor Theoretische Natuurkunde, LION, Universiteit Leiden 22 oktober 2009 With inspiration from: J. Tinbergen, T.C. Koopmans, E. Majorana,

More information

QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS

QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS QUANTIZED INTEREST RATE AT THE MONEY FOR AMERICAN OPTIONS L. M. Dieng ( Department of Physics, CUNY/BCC, New York, New York) Abstract: In this work, we expand the idea of Samuelson[3] and Shepp[,5,6] for

More information

1 The Black-Scholes model: extensions and hedging

1 The Black-Scholes model: extensions and hedging 1 The Black-Scholes model: extensions and hedging 1.1 Dividends Since we are now in a continuous time framework the dividend paid out at time t (or t ) is given by dd t = D t D t, where as before D denotes

More information

Betting on Volatility: A Delta Hedging Approach. Liang Zhong

Betting on Volatility: A Delta Hedging Approach. Liang Zhong Betting on Volatility: A Delta Hedging Approach Liang Zhong Department of Mathematics, KTH, Stockholm, Sweden April, 211 Abstract In the financial market, investors prefer to estimate the stock price

More information

Notes on Black-Scholes Option Pricing Formula

Notes on Black-Scholes Option Pricing Formula . Notes on Black-Scholes Option Pricing Formula by De-Xing Guan March 2006 These notes are a brief introduction to the Black-Scholes formula, which prices the European call options. The essential reading

More information

On Market-Making and Delta-Hedging

On Market-Making and Delta-Hedging On Market-Making and Delta-Hedging 1 Market Makers 2 Market-Making and Bond-Pricing On Market-Making and Delta-Hedging 1 Market Makers 2 Market-Making and Bond-Pricing What to market makers do? Provide

More information

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab

Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?

More information

Chapter 21: Options and Corporate Finance

Chapter 21: Options and Corporate Finance Chapter 21: Options and Corporate Finance 21.1 a. An option is a contract which gives its owner the right to buy or sell an underlying asset at a fixed price on or before a given date. b. Exercise is the

More information

Black-Scholes model: Greeks - sensitivity analysis

Black-Scholes model: Greeks - sensitivity analysis VII. Black-Scholes model: Greeks- sensitivity analysis p. 1/15 VII. Black-Scholes model: Greeks - sensitivity analysis Beáta Stehlíková Financial derivatives, winter term 2014/2015 Faculty of Mathematics,

More information

Option pricing. Vinod Kothari

Option pricing. Vinod Kothari Option pricing Vinod Kothari Notation we use this Chapter will be as follows: S o : Price of the share at time 0 S T : Price of the share at time T T : time to maturity of the option r : risk free rate

More information

Volatility Index: VIX vs. GVIX

Volatility Index: VIX vs. GVIX I. II. III. IV. Volatility Index: VIX vs. GVIX "Does VIX Truly Measure Return Volatility?" by Victor Chow, Wanjun Jiang, and Jingrui Li (214) An Ex-ante (forward-looking) approach based on Market Price

More information

Finite Differences Schemes for Pricing of European and American Options

Finite Differences Schemes for Pricing of European and American Options Finite Differences Schemes for Pricing of European and American Options Margarida Mirador Fernandes IST Technical University of Lisbon Lisbon, Portugal November 009 Abstract Starting with the Black-Scholes

More information

Option Pricing. 1 Introduction. Mrinal K. Ghosh

Option Pricing. 1 Introduction. Mrinal K. Ghosh Option Pricing Mrinal K. Ghosh 1 Introduction We first introduce the basic terminology in option pricing. Option: An option is the right, but not the obligation to buy (or sell) an asset under specified

More information

Options 1 OPTIONS. Introduction

Options 1 OPTIONS. Introduction Options 1 OPTIONS Introduction A derivative is a financial instrument whose value is derived from the value of some underlying asset. A call option gives one the right to buy an asset at the exercise or

More information

Vanna-Volga Method for Foreign Exchange Implied Volatility Smile. Copyright Changwei Xiong 2011. January 2011. last update: Nov 27, 2013

Vanna-Volga Method for Foreign Exchange Implied Volatility Smile. Copyright Changwei Xiong 2011. January 2011. last update: Nov 27, 2013 Vanna-Volga Method for Foreign Exchange Implied Volatility Smile Copyright Changwei Xiong 011 January 011 last update: Nov 7, 01 TABLE OF CONTENTS TABLE OF CONTENTS...1 1. Trading Strategies of Vanilla

More information

The Black-Scholes pricing formulas

The Black-Scholes pricing formulas The Black-Scholes pricing formulas Moty Katzman September 19, 2014 The Black-Scholes differential equation Aim: Find a formula for the price of European options on stock. Lemma 6.1: Assume that a stock

More information

where N is the standard normal distribution function,

where N is the standard normal distribution function, The Black-Scholes-Merton formula (Hull 13.5 13.8) Assume S t is a geometric Brownian motion w/drift. Want market value at t = 0 of call option. European call option with expiration at time T. Payout at

More information

Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies

Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies Hedging Illiquid FX Options: An Empirical Analysis of Alternative Hedging Strategies Drazen Pesjak Supervised by A.A. Tsvetkov 1, D. Posthuma 2 and S.A. Borovkova 3 MSc. Thesis Finance HONOURS TRACK Quantitative

More information

One Period Binomial Model

One Period Binomial Model FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 One Period Binomial Model These notes consider the one period binomial model to exactly price an option. We will consider three different methods of pricing

More information

Martingale Pricing Applied to Options, Forwards and Futures

Martingale Pricing Applied to Options, Forwards and Futures IEOR E4706: Financial Engineering: Discrete-Time Asset Pricing Fall 2005 c 2005 by Martin Haugh Martingale Pricing Applied to Options, Forwards and Futures We now apply martingale pricing theory to the

More information

American Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan American Options

American Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan American Options American Options An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Early Exercise Since American style options give the holder the same rights as European style options plus

More information

Option Pricing with S+FinMetrics. PETER FULEKY Department of Economics University of Washington

Option Pricing with S+FinMetrics. PETER FULEKY Department of Economics University of Washington Option Pricing with S+FinMetrics PETER FULEKY Department of Economics University of Washington August 27, 2007 Contents 1 Introduction 3 1.1 Terminology.............................. 3 1.2 Option Positions...........................

More information

Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13

Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13 Valuing Stock Options: The Black-Scholes-Merton Model Chapter 13 Fundamentals of Futures and Options Markets, 8th Ed, Ch 13, Copyright John C. Hull 2013 1 The Black-Scholes-Merton Random Walk Assumption

More information

Option Values. Determinants of Call Option Values. CHAPTER 16 Option Valuation. Figure 16.1 Call Option Value Before Expiration

Option Values. Determinants of Call Option Values. CHAPTER 16 Option Valuation. Figure 16.1 Call Option Value Before Expiration CHAPTER 16 Option Valuation 16.1 OPTION VALUATION: INTRODUCTION Option Values Intrinsic value - profit that could be made if the option was immediately exercised Call: stock price - exercise price Put:

More information

Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008

Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008 : A Stern School of Business New York University Invesco Great Wall Fund Management Co. Shenzhen: June 14, 2008 Outline 1 2 3 4 5 6 se notes review the principles underlying option pricing and some of

More information

2. Exercising the option - buying or selling asset by using option. 3. Strike (or exercise) price - price at which asset may be bought or sold

2. Exercising the option - buying or selling asset by using option. 3. Strike (or exercise) price - price at which asset may be bought or sold Chapter 21 : Options-1 CHAPTER 21. OPTIONS Contents I. INTRODUCTION BASIC TERMS II. VALUATION OF OPTIONS A. Minimum Values of Options B. Maximum Values of Options C. Determinants of Call Value D. Black-Scholes

More information

The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models

The Behavior of Bonds and Interest Rates. An Impossible Bond Pricing Model. 780 w Interest Rate Models 780 w Interest Rate Models The Behavior of Bonds and Interest Rates Before discussing how a bond market-maker would delta-hedge, we first need to specify how bonds behave. Suppose we try to model a zero-coupon

More information

Introduction to Options. Derivatives

Introduction to Options. Derivatives Introduction to Options Econ 422: Investment, Capital & Finance University of Washington Summer 2010 August 18, 2010 Derivatives A derivative is a security whose payoff or value depends on (is derived

More information

THE BLACK-SCHOLES MODEL AND EXTENSIONS

THE BLACK-SCHOLES MODEL AND EXTENSIONS THE BLAC-SCHOLES MODEL AND EXTENSIONS EVAN TURNER Abstract. This paper will derive the Black-Scholes pricing model of a European option by calculating the expected value of the option. We will assume that

More information

FIN 411 -- Investments Option Pricing. Options: Definitions. Arbitrage Restrictions on Call Prices. Arbitrage Restrictions on Call Prices

FIN 411 -- Investments Option Pricing. Options: Definitions. Arbitrage Restrictions on Call Prices. Arbitrage Restrictions on Call Prices FIN 411 -- Investments Option Pricing imple arbitrage relations s to call options Black-choles model Put-Call Parity Implied Volatility Options: Definitions A call option gives the buyer the right, but

More information

Additional questions for chapter 4

Additional questions for chapter 4 Additional questions for chapter 4 1. A stock price is currently $ 1. Over the next two six-month periods it is expected to go up by 1% or go down by 1%. The risk-free interest rate is 8% per annum with

More information

EXP 481 -- Capital Markets Option Pricing. Options: Definitions. Arbitrage Restrictions on Call Prices. Arbitrage Restrictions on Call Prices 1) C > 0

EXP 481 -- Capital Markets Option Pricing. Options: Definitions. Arbitrage Restrictions on Call Prices. Arbitrage Restrictions on Call Prices 1) C > 0 EXP 481 -- Capital Markets Option Pricing imple arbitrage relations Payoffs to call options Black-choles model Put-Call Parity Implied Volatility Options: Definitions A call option gives the buyer the

More information

HPCFinance: New Thinking in Finance. Calculating Variable Annuity Liability Greeks Using Monte Carlo Simulation

HPCFinance: New Thinking in Finance. Calculating Variable Annuity Liability Greeks Using Monte Carlo Simulation HPCFinance: New Thinking in Finance Calculating Variable Annuity Liability Greeks Using Monte Carlo Simulation Dr. Mark Cathcart, Standard Life February 14, 2014 0 / 58 Outline Outline of Presentation

More information

Options Pricing. This is sometimes referred to as the intrinsic value of the option.

Options Pricing. This is sometimes referred to as the intrinsic value of the option. Options Pricing We will use the example of a call option in discussing the pricing issue. Later, we will turn our attention to the Put-Call Parity Relationship. I. Preliminary Material Recall the payoff

More information

Lecture 6: Option Pricing Using a One-step Binomial Tree. Friday, September 14, 12

Lecture 6: Option Pricing Using a One-step Binomial Tree. Friday, September 14, 12 Lecture 6: Option Pricing Using a One-step Binomial Tree An over-simplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond

More information

Options: Valuation and (No) Arbitrage

Options: Valuation and (No) Arbitrage Prof. Alex Shapiro Lecture Notes 15 Options: Valuation and (No) Arbitrage I. Readings and Suggested Practice Problems II. Introduction: Objectives and Notation III. No Arbitrage Pricing Bound IV. The Binomial

More information

Black-Scholes. 3.1 Digital Options

Black-Scholes. 3.1 Digital Options 3 Black-Scholes In this chapter, we will study the value of European digital and share digital options and standard European puts and calls under the Black-Scholes assumptions. We will also explain how

More information

Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)

Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald) Copyright 2003 Pearson Education, Inc. Slide 08-1 Institutional Finance 08: Dynamic Arbitrage to Replicate Non-linear Payoffs Binomial Option Pricing: Basics (Chapter 10 of McDonald) Originally prepared

More information

Schonbucher Chapter 9: Firm Value and Share Priced-Based Models Updated 07-30-2007

Schonbucher Chapter 9: Firm Value and Share Priced-Based Models Updated 07-30-2007 Schonbucher Chapter 9: Firm alue and Share Priced-Based Models Updated 07-30-2007 (References sited are listed in the book s bibliography, except Miller 1988) For Intensity and spread-based models of default

More information

9 Basics of options, including trading strategies

9 Basics of options, including trading strategies ECG590I Asset Pricing. Lecture 9: Basics of options, including trading strategies 1 9 Basics of options, including trading strategies Option: The option of buying (call) or selling (put) an asset. European

More information

Pricing Barrier Options under Local Volatility

Pricing Barrier Options under Local Volatility Abstract Pricing Barrier Options under Local Volatility Artur Sepp Mail: artursepp@hotmail.com, Web: www.hot.ee/seppar 16 November 2002 We study pricing under the local volatility. Our research is mainly

More information

The interest volatility surface

The interest volatility surface The interest volatility surface David Kohlberg Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats 2011:7 Matematisk statistik Juni 2011 www.math.su.se Matematisk

More information

Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 9. Binomial Trees : Hull, Ch. 12.

Jorge Cruz Lopez - Bus 316: Derivative Securities. Week 9. Binomial Trees : Hull, Ch. 12. Week 9 Binomial Trees : Hull, Ch. 12. 1 Binomial Trees Objective: To explain how the binomial model can be used to price options. 2 Binomial Trees 1. Introduction. 2. One Step Binomial Model. 3. Risk Neutral

More information

A Comparison of Option Pricing Models

A Comparison of Option Pricing Models A Comparison of Option Pricing Models Ekrem Kilic 11.01.2005 Abstract Modeling a nonlinear pay o generating instrument is a challenging work. The models that are commonly used for pricing derivative might

More information

Example 1. Consider the following two portfolios: 2. Buy one c(s(t), 20, τ, r) and sell one c(s(t), 10, τ, r).

Example 1. Consider the following two portfolios: 2. Buy one c(s(t), 20, τ, r) and sell one c(s(t), 10, τ, r). Chapter 4 Put-Call Parity 1 Bull and Bear Financial analysts use words such as bull and bear to describe the trend in stock markets. Generally speaking, a bull market is characterized by rising prices.

More information

LECTURE 9: A MODEL FOR FOREIGN EXCHANGE

LECTURE 9: A MODEL FOR FOREIGN EXCHANGE LECTURE 9: A MODEL FOR FOREIGN EXCHANGE 1. Foreign Exchange Contracts There was a time, not so long ago, when a U. S. dollar would buy you precisely.4 British pounds sterling 1, and a British pound sterling

More information

Numerical Methods for Option Pricing

Numerical Methods for Option Pricing Chapter 9 Numerical Methods for Option Pricing Equation (8.26) provides a way to evaluate option prices. For some simple options, such as the European call and put options, one can integrate (8.26) directly

More information

More on Market-Making and Delta-Hedging

More on Market-Making and Delta-Hedging More on Market-Making and Delta-Hedging What do market makers do to delta-hedge? Recall that the delta-hedging strategy consists of selling one option, and buying a certain number shares An example of

More information

Figure S9.1 Profit from long position in Problem 9.9

Figure S9.1 Profit from long position in Problem 9.9 Problem 9.9 Suppose that a European call option to buy a share for $100.00 costs $5.00 and is held until maturity. Under what circumstances will the holder of the option make a profit? Under what circumstances

More information

More Exotic Options. 1 Barrier Options. 2 Compound Options. 3 Gap Options

More Exotic Options. 1 Barrier Options. 2 Compound Options. 3 Gap Options More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options Definition; Some types The payoff of a Barrier option is path

More information

LECTURE 15: AMERICAN OPTIONS

LECTURE 15: AMERICAN OPTIONS LECTURE 15: AMERICAN OPTIONS 1. Introduction All of the options that we have considered thus far have been of the European variety: exercise is permitted only at the termination of the contract. These

More information

Lecture. S t = S t δ[s t ].

Lecture. S t = S t δ[s t ]. Lecture In real life the vast majority of all traded options are written on stocks having at least one dividend left before the date of expiration of the option. Thus the study of dividends is important

More information

How To Value Options In Black-Scholes Model

How To Value Options In Black-Scholes Model Option Pricing Basics Aswath Damodaran Aswath Damodaran 1 What is an option? An option provides the holder with the right to buy or sell a specified quantity of an underlying asset at a fixed price (called

More information

Lecture 4: The Black-Scholes model

Lecture 4: The Black-Scholes model OPTIONS and FUTURES Lecture 4: The Black-Scholes model Philip H. Dybvig Washington University in Saint Louis Black-Scholes option pricing model Lognormal price process Call price Put price Using Black-Scholes

More information

The Constant Elasticity of Variance Option Pricing Model

The Constant Elasticity of Variance Option Pricing Model The Constant Elasticity of Variance Option Pricing Model John Randal A thesis submitted to the Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Science

More information

7: The CRR Market Model

7: The CRR Market Model Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney MATH3075/3975 Financial Mathematics Semester 2, 2015 Outline We will examine the following issues: 1 The Cox-Ross-Rubinstein

More information

14 Greeks Letters and Hedging

14 Greeks Letters and Hedging ECG590I Asset Pricing. Lecture 14: Greeks Letters and Hedging 1 14 Greeks Letters and Hedging 14.1 Illustration We consider the following example through out this section. A financial institution sold

More information

BINOMIAL OPTION PRICING

BINOMIAL OPTION PRICING Darden Graduate School of Business Administration University of Virginia BINOMIAL OPTION PRICING Binomial option pricing is a simple but powerful technique that can be used to solve many complex option-pricing

More information

Part V: Option Pricing Basics

Part V: Option Pricing Basics erivatives & Risk Management First Week: Part A: Option Fundamentals payoffs market microstructure Next 2 Weeks: Part B: Option Pricing fundamentals: intrinsic vs. time value, put-call parity introduction

More information

Sensitivity analysis of European options in jump-diffusion models via the Malliavin calculus on the Wiener space

Sensitivity analysis of European options in jump-diffusion models via the Malliavin calculus on the Wiener space Sensitivity analysis of European options in jump-diffusion models via the Malliavin calculus on the Wiener space Virginie Debelley and Nicolas Privault Département de Mathématiques Université de La Rochelle

More information

Hedging Options In The Incomplete Market With Stochastic Volatility. Rituparna Sen Sunday, Nov 15

Hedging Options In The Incomplete Market With Stochastic Volatility. Rituparna Sen Sunday, Nov 15 Hedging Options In The Incomplete Market With Stochastic Volatility Rituparna Sen Sunday, Nov 15 1. Motivation This is a pure jump model and hence avoids the theoretical drawbacks of continuous path models.

More information

Chapter 5 Financial Forwards and Futures

Chapter 5 Financial Forwards and Futures Chapter 5 Financial Forwards and Futures Question 5.1. Four different ways to sell a share of stock that has a price S(0) at time 0. Question 5.2. Description Get Paid at Lose Ownership of Receive Payment

More information

LogNormal stock-price models in Exams MFE/3 and C/4

LogNormal stock-price models in Exams MFE/3 and C/4 Making sense of... LogNormal stock-price models in Exams MFE/3 and C/4 James W. Daniel Austin Actuarial Seminars http://www.actuarialseminars.com June 26, 2008 c Copyright 2007 by James W. Daniel; reproduction

More information

TABLE OF CONTENTS. A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13

TABLE OF CONTENTS. A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13 TABLE OF CONTENTS 1. McDonald 9: "Parity and Other Option Relationships" A. Put-Call Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13 2. McDonald 10: "Binomial Option Pricing:

More information

Chapter 13 The Black-Scholes-Merton Model

Chapter 13 The Black-Scholes-Merton Model Chapter 13 The Black-Scholes-Merton Model March 3, 009 13.1. The Black-Scholes option pricing model assumes that the probability distribution of the stock price in one year(or at any other future time)

More information

Diusion processes. Olivier Scaillet. University of Geneva and Swiss Finance Institute

Diusion processes. Olivier Scaillet. University of Geneva and Swiss Finance Institute Diusion processes Olivier Scaillet University of Geneva and Swiss Finance Institute Outline 1 Brownian motion 2 Itô integral 3 Diusion processes 4 Black-Scholes 5 Equity linked life insurance 6 Merton

More information

Jung-Soon Hyun and Young-Hee Kim

Jung-Soon Hyun and Young-Hee Kim J. Korean Math. Soc. 43 (2006), No. 4, pp. 845 858 TWO APPROACHES FOR STOCHASTIC INTEREST RATE OPTION MODEL Jung-Soon Hyun and Young-Hee Kim Abstract. We present two approaches of the stochastic interest

More information

Oscillatory Reduction in Option Pricing Formula Using Shifted Poisson and Linear Approximation

Oscillatory Reduction in Option Pricing Formula Using Shifted Poisson and Linear Approximation EPJ Web of Conferences 68, 0 00 06 (2014) DOI: 10.1051/ epjconf/ 20146800006 C Owned by the authors, published by EDP Sciences, 2014 Oscillatory Reduction in Option Pricing Formula Using Shifted Poisson

More information

Two-State Option Pricing

Two-State Option Pricing Rendleman and Bartter [1] present a simple two-state model of option pricing. The states of the world evolve like the branches of a tree. Given the current state, there are two possible states next period.

More information

Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.

Chapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options. Chapter 11 Options Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Part C Determination of risk-adjusted discount rate. Part D Introduction to derivatives. Forwards

More information