A Real-time MPEG Video Encryption Algorithm using AES

Size: px
Start display at page:

Download "A Real-time MPEG Video Encryption Algorithm using AES"

Transcription

1 A Real-time MPEG Video Encryption Algorithm using AES Jayshri Nehete*, K. Bhagyalakshmi, M. B. Manjunath, Shashikant Chaudhari, T. R. Ramamohan Central Research Laboratory Bharat Electronics Ltd., Bangalore , Phone : bhagya, manju, shashi, rmohan@crlbel.ernet.in Abstract MPEG video stream is quite different from traditional textual data because interframe dependencies exists in MPEG video. Special MPEG video encryption algorithms are required because of their special characteristics, such as coding structure, large amount of data and real-time constraints. We present a real-time MPEG video encryption algorithm based on AES which is fast enough to meet the real-time requirements. 1 Introduction MPEG [1] is an industrial standard for video processing. Multimedia applications such as Videoon-Demand, video broadcast, multimedia mail and video-conferencing must be provided with secure transmission. Secure video transmission is a method in which video can be sent to a receiver with the assurance that any unapproved eavesdroppers along the way will not be able to get any information from video i.e it is desirable that only those who have paid for the services can view their videos or movies. The high amount of redundancy in the video gives an attacker more clues to reconstruct the original video. Normal data, such as program code or text, has much less redundancy in its structure. These factors make providing secure MPEG video a challenge. Adding security to MPEG transmission usually involves encrypting parts or the entire MPEG bit stream. *Student of M. E. at Government College of Engineering, Pune, currently doing M. E. project at Central Research Laboratory, Bangalore. One way to secure distributed multimedia applications is to encrypt multimedia data using secret key cryptography algorithms such as Data Encryption Standard (DES), International Data Encryption Algorithm (IDEA), and Advanced Encryption Standard (AES) [2]. These algorithms involves complex computations. Heavy-weight encryption is performed on almost whole data while lightweight encryption is performed on partial or selective data. Heavy-weight encryption/decryption algorithm aggravates the problem and increases the latency while light-weight encryption/decryption algorithm provides sufficient security level and has an acceptable computation cost to MPEG video applications. In this paper, we present an efficient MPEG video encryption algorithm based on AES for real-time video transmission. It is a light-weight selective encryption scheme for secure MPEG transmission. It is based on RVEA [3] which is light-weight selective encryption algorithm based on DES/IDEA. The security is significantly improved by adopting AES to encrypt data. This algorithm reduces and bounds its computation time by limiting the maximum number of bits selected. 2 Various Methods for MPEG video encryption There are several already existing encryption algorithms based on DES/IDEA for secure MPEG video transmission. Each of them has its strength and weakness in terms of security level, speed, and resulting stream size matrices. The existing algorithms are Naive algorithm, selective algo-

2 rithm, Zig-Zag-Permutation algorithm, Pure Permutation Algorithm and Video Encryption Algorithm (VEA) [4]. The straight-forward method is to encrypt the entire MPEG stream using standard encryption method such as DES. This is called the Naive algorithm approach. Naive algorithm treats the MPEG bit-stream as the traditional text data and does not make use of the special MPEG structures. This is the most secure algorithm but it is very slow. The size of the bit stream does not change because most standard encryption algorithms preserves the size. There are several proposals for selective algorithm which use the features of MPEG layered structures. The basic selective algorithm encrypts only I frames [5] because P and B frames are useless without knowing the corresponding I frames. But great portions of the video could be visible because some of the P and B frames may contain intra-coded I blocks. Encrypting only I frames can save 30-50% of encryption/decryption time. The size of the encrypted stream does not change. One selection scheme proposed is to encrypt only MPEG video headers. This is not effective because the headers contains mostly standard information and a video stream is indexed by frame in order to perform synchronization so that the beginning of each frame is known. Zig-Zag-Permutation algorithm [6] presents a method where the encryption is an integral part of the MPEG compression process. Instead of mapping 8x8 block to a 1x64 vector in zig-zag order, it uses a random permutation list to map the individual 8x8 block to a 1x64 vector. This algorithm cannot withstand the known plaintext attack and is also vulnerable to the ciphertext only attack. The speed is very fast and is almost the same as the MPEG encoding/decoding time and the size of encrypted MPEG stream will increase by a significant factor. Video Encryption Algorithm (VEA) uses secret key to randomly change the sign bits of all DCT coefficients of MPEG video. Extension to VEA is Real-time VEA (RVEA). To encrypt selected sign bits, RVEA uses DES/IDEA while VEA uses only XOR operation. The security of RVEA is significantly improved by adopting secret key cryptography algorithms to encrypt the data. RVEA reduces and bounds its computation time by limiting the maximum number of bits selected. Pure Permutation algorithm simply scrambles the byte stream by permutation. The cardinality of the permutation key can be varied and depends on the security level and the application requirement. The problem of Pure Permutation algorithm is that it is vulnerable to the known plaintext attack. Bytewise permutation is very fast. Pure Permutation algorithm does not increase the stream size unless we change keys for each frame. 3 Background This section describes the MPEG-1 video standard and AES. 3.1 Introduction to MPEG-1 video MPEG-1 video is composed of a sequence of group of pictures (GOPs). Each GOP is composed of series of I, P, and B frames. I frames are intra-frame coded without any reference to other frames; P frames are predictively coded using a previous I or P frames; and B frames are bidirectionally interpolated from both the previous and following I and/or P frame. MPEG-1 video coding uses three techniques to compress the video data. The first technique is transform coding. Each frame is represented as a two dimensional array of RGB triplets. Each RGB triplet is transformed into YCrCb triplet. The Y value is luminance (black and white) level and Cr/Cb values are chrominance (color information) levels. Each frame is divided into macroblocks. Each macroblock corresponds to a 16x16 pixel area of original image. A macroblock is composed of a set of 8x8 pixel blocks, four from Y plane and one from each of the Cr and Cb planes. Macroblocks belonging to I frames are spatially encoded and macroblocks belonging to P and B frames are temporally interpolated from the corresponding reference frames and the difference be-

3 tween the actual and reference value is encoded. The interpolation process also produces forward prediction vector for P frame and forward as well as backward prediction vector for B frame. Each block is transformed using Discrete Cosine Transform (DCT) and resulting coefficients are quantized. The quantization output is linearized in a zig-zag order to vector <DC, AC1, AC2,..., AC63>. Run length encoding and then Huffman Entropy coding are applied on the vector. The motion vector is also coded using Huffman Entropy coding. Every Huffman codeword reserves a sign bit. These sign bits are the exact positions which we encrypt for secure video transmission. 3.2 Introduction to AES AES (Rijndael) is chosen by the National Institute of Standards and Technology (NIST) as the cryptography algorithm for use by U.S. Government organizations to protect sensitive information. The cipher has a variable block length and key length of 128, 192, or 256 bits. AES is a key-iterated block cipher. The algorithm is same at encryption and decryption side except at the time of decryption, inverse operations are performed. The input to the cipher is one dimentional array of plaintext which is converted as state matrix. For each round, transformation round key is derived using cipher key and never specified directly. Each round transformation is composed of four different transformations such as ByteSub, ShiftRow, MixColumn, and AddRoundKey. The repeated application 10 rounds of transformation is performed on the state. The ByteSub Transformation is a non-linear byte substitution, operating on each of the state bytes independently. The inverse of ByteSub is the byte substitution where the inverse table is applied. In ShiftRow, the rows of the state are cyclically shifted over different offsets. Row 0 is not shifted, Row 1, 2, and 3 are shifted over 1, 2, and 3 bytes respectively. The inverse ShiftRow is cyclic shift of the 3 bottom rows over 3, 2, 1 bytes respectively. In MixColumn, every column is transformed by multiplying it with specific multiplication polynomial. The inverse of MixColumn is same. In AddRoundKey, a round key is applied to the state by a simple bitwise EX- OR. AddRoundKey is self inverse. 4 Our Algorithm MPEG video encryption aims to prevent unauthorized receivers from decoding the video programs by encrypting them. The general scheme is to apply an invertible transformation to video stream S called plaintext that produces a bitstream C called ciphertext, (1) An authorized receiver who has a secret key k2 can decrypt the video by the transformation, The decryption process is, (2) (3) where k1 is called as encryption key and k2 is called as decryption key. Our MPEG encryption algorithm is a selective encryption algorithm which only operates on the sign bits of DCT coefficients and motion vectors of a MPEG compressed video. A MPEG compressed video S is a bitstream which can be represented as S= where! (i=1,2,3...) are all of the sign bits of DCT and motion vector coefficients. For DC coefficients of I frames, these sign bits are differential values since they are differentially coded. The 128 sign bits are selected from macroblock and AES algorithm is applied on them. Secret key kused is a randomly generated bit stream of 128 bits. The input to the cipher is a one dimensional array of 128 sign bits arranged as a 4*4 state matrix. The cipher output is extracted after 10 rounds of repeated application of round transformation on the state. The expanded key for each round shall always be derived from the cipher key. Resulting 128 bits are kept in their respective position from where they were collected. The AES encryption

4 operation randomly changes the sign bits of coefficients. Based on the used secret key, the sign bit is either changed or unchanged. Even if only some of coefficients are changed, these changes will propagate to most of Inverse DCT (IDCT) coefficients while decoding. Our algorithm achieves the goal of reducing and bounding its computation time by limiting the maximum number of bits selected. For those who have the secret key, they can decrypt the video file and get the original video. The decryption function is the same as encryption function except that inverse operation is performed. Encryption and decryption keys are the same. For those who do not have the secret key, their decoders will play quite different images from the original video, because most of the image pixel values would have been changed. Algorithm for Video Encryption/Decryption 5 Experiments The following experiments were conducted on MPEG-1 video. A secure video streaming system was implemented using client-server model on Linux platform using C language. In real-time, encryption is done in at the server side while decryption is done at the client side. It is impossible to include all the image frames here. Instead we just show one frame from video sequence to demonstrate our algorithm. Our implementation uses AES since it is faster and more secure than DES/IDEA. The original frame is as shown in Figure 1. begin open MPEG video file create output file while (not end of MPEG file) read n bytes from input file in buffer for each byte in buffer if (collected sign bits == 128) /*apply AES encryption algorithm */ Rijndael(state,cipher_key) key_expansion(cipher_key,expanded_key) add_round_key(state,expaned_key) /* Nr: Number of rounds, Nc: No. of columns of state matrix */ for(i=1;i<nr;i++) Round(state,expaned_key + Nc*i) Final_round(state,expanded_key+Nc*Nr) put resulting sign bits in original place write n bytes from buffer to output file close input and output file end Figure 1: Original Frame 1. Encrypting I frame headers: The video image is blurred but still user can determine what is happening in the video. This is useful in systems like video-on-demand where unauthorised users are prevented from watching the movie. This is the lowest level of encryption. This is as shown in Figure Encrypting sign bits of all AC and DC coefficients: The video image is incomprehensible. But one can notice the motion of the objects. This is the medium level of encryption. This is as shown in Figure Encrypting sign bits of all AC, DC and motion vector coefficients: This algorithm has been

5 6 Discussion and conclusion Figure 2: Encrypted all I frame headers Our algorithm selectively encrypts a fraction of the whole video. It is faster than encrypting the whole video with AES. We found that in typical MPEG-1 videos sign-bits occupy less than 10% of the entire video bitstream. Therefore it can save up to 90% of encryption time compared to the algorithm which encrypts the entire video. It encrypts at most 128 bits, no matter what type of frame is used. This considerably reduces encryption computations achieving satisfactory encryption results. A software implementation is fast enough to meet the real-time requirements of MPEG-1 decoding. We believe that this can be used for secure video-on-demand applications and pay-per-view programs. References Figure 3: Encrypted all ACs and DCs explained above. The video image is incomprehensible as well as you can t see the motion of the objects. But playing time is reduced as MPEG- 1 decoder cannot predict exact forward and backward motion in P and B frames. This is the higher level of encryption than the previous one. This is as shown in Figure Le Gall, Didier, "MPEG: A Video Compression Standard for Multimedia Applications," Communications of the ACM, vol.34, no.4, pp , April NIST Home Page 3. C. Shi, Sheng-Yih Wang, and Bharat Bhargava, "MPEG Video Encryption in Real-time using secret key cryptography", Proc. of PDPTA 99, Las Vegas, Nevada C. Shi and Bhargava, "A Fast MPEG Video Encryption Algorithm", Proceedings of ACM International Multimedia Conference, Bristol, UK, pp , September I. Agi and L. Gong, "An Empirical Study of MPEG Video Transmission", Proceedings of the Internet Society Symposium on Network and Distributed Systems Security, pp San Diego, CA, Feb Figure 4: Encrypted all ACs, DCs and motion vectors 6. Lei Tang, "Methods for Encrypting and Decrypting MPEG Video Data Efficiently", Proceedings of ACM Multimedia 96, pp , Boston, MA, November 1996.

ENCRYPTION QUALITY ANALYSIS IN MPEG VIDEO FORMAT

ENCRYPTION QUALITY ANALYSIS IN MPEG VIDEO FORMAT ENCRYPTION QUALITY ANALYSIS IN MPEG VIDEO FORMAT Priyanka Sharma Dinesh Goyal M.Tech (Purs.) Associate Professor SGVU, Jaipur SGVU, Jaipur Abstract-: In this work, an attempt is made to analyze four fast

More information

Known-Plaintext Attack Against a Permutation Based Video Encryption Algorithm

Known-Plaintext Attack Against a Permutation Based Video Encryption Algorithm Known-Plaintext Attack Against a Permutation Based Video Encryption Algorithm Adam J. Slagell slagell@ncsa.uiuc.edu January 16, 2004 Abstract One of the approaches to deliver real-time video encryption

More information

SeChat: An AES Encrypted Chat

SeChat: An AES Encrypted Chat Name: Luis Miguel Cortés Peña GTID: 901 67 6476 GTG: gtg683t SeChat: An AES Encrypted Chat Abstract With the advancement in computer technology, it is now possible to break DES 56 bit key in a meaningful

More information

Video-Conferencing System

Video-Conferencing System Video-Conferencing System Evan Broder and C. Christoher Post Introductory Digital Systems Laboratory November 2, 2007 Abstract The goal of this project is to create a video/audio conferencing system. Video

More information

The Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) The Advanced Encryption Standard (AES) Conception - Why A New Cipher? Conception - Why A New Cipher? DES had outlived its usefulness Vulnerabilities were becoming known 56-bit key was too small Too slow

More information

Enhancing Advanced Encryption Standard S-Box Generation Based on Round Key

Enhancing Advanced Encryption Standard S-Box Generation Based on Round Key Enhancing Advanced Encryption Standard S-Box Generation Based on Round Key Julia Juremi Ramlan Mahmod Salasiah Sulaiman Jazrin Ramli Faculty of Computer Science and Information Technology, Universiti Putra

More information

The Advanced Encryption Standard: Four Years On

The Advanced Encryption Standard: Four Years On The Advanced Encryption Standard: Four Years On Matt Robshaw Reader in Information Security Information Security Group Royal Holloway University of London September 21, 2004 The State of the AES 1 The

More information

Video Authentication for H.264/AVC using Digital Signature Standard and Secure Hash Algorithm

Video Authentication for H.264/AVC using Digital Signature Standard and Secure Hash Algorithm Video Authentication for H.264/AVC using Digital Signature Standard and Secure Hash Algorithm Nandakishore Ramaswamy Qualcomm Inc 5775 Morehouse Dr, Sam Diego, CA 92122. USA nandakishore@qualcomm.com K.

More information

Image Compression through DCT and Huffman Coding Technique

Image Compression through DCT and Huffman Coding Technique International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Rahul

More information

Cryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur

Cryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. # 01 Lecture No. # 12 Block Cipher Standards

More information

A Secure Data Transmission By Integrating Cryptography And Video Steganography

A Secure Data Transmission By Integrating Cryptography And Video Steganography A Secure Data Transmission By Integrating Cryptography And Video Steganography Shafna P K Computer Science Department KMEA Engineering College Ernakulam, India shabanapk9999@gmail.com Abstract Advances

More information

Combining Mifare Card and agsxmpp to Construct a Secure Instant Messaging Software

Combining Mifare Card and agsxmpp to Construct a Secure Instant Messaging Software Combining Mifare Card and agsxmpp to Construct a Secure Instant Messaging Software Ya Ling Huang, Chung Huang Yang Graduate Institute of Information & Computer Education, National Kaohsiung Normal University

More information

Novel Selective Video Encryption for H.264 Video

Novel Selective Video Encryption for H.264 Video Novel Selective Video Encryption for H.264 Video Dinesh Goyal*, Naveen Hemrajani** * Department of Computer Science and Engineering, Suresh Gyan Vihar University, Jaipur, India ** Department of Computer

More information

CS 758: Cryptography / Network Security

CS 758: Cryptography / Network Security CS 758: Cryptography / Network Security offered in the Fall Semester, 2003, by Doug Stinson my office: DC 3122 my email address: dstinson@uwaterloo.ca my web page: http://cacr.math.uwaterloo.ca/~dstinson/index.html

More information

CSCE 465 Computer & Network Security

CSCE 465 Computer & Network Security CSCE 465 Computer & Network Security Instructor: Dr. Guofei Gu http://courses.cse.tamu.edu/guofei/csce465/ Secret Key Cryptography (I) 1 Introductory Remarks Roadmap Feistel Cipher DES AES Introduction

More information

H 261. Video Compression 1: H 261 Multimedia Systems (Module 4 Lesson 2) H 261 Coding Basics. Sources: Summary:

H 261. Video Compression 1: H 261 Multimedia Systems (Module 4 Lesson 2) H 261 Coding Basics. Sources: Summary: Video Compression : 6 Multimedia Systems (Module Lesson ) Summary: 6 Coding Compress color motion video into a low-rate bit stream at following resolutions: QCIF (76 x ) CIF ( x 88) Inter and Intra Frame

More information

Video Coding Basics. Yao Wang Polytechnic University, Brooklyn, NY11201 yao@vision.poly.edu

Video Coding Basics. Yao Wang Polytechnic University, Brooklyn, NY11201 yao@vision.poly.edu Video Coding Basics Yao Wang Polytechnic University, Brooklyn, NY11201 yao@vision.poly.edu Outline Motivation for video coding Basic ideas in video coding Block diagram of a typical video codec Different

More information

Implementation of Full -Parallelism AES Encryption and Decryption

Implementation of Full -Parallelism AES Encryption and Decryption Implementation of Full -Parallelism AES Encryption and Decryption M.Anto Merline M.E-Commuication Systems, ECE Department K.Ramakrishnan College of Engineering-Samayapuram, Trichy. Abstract-Advanced Encryption

More information

Survey on Enhancing Cloud Data Security using EAP with Rijndael Encryption Algorithm

Survey on Enhancing Cloud Data Security using EAP with Rijndael Encryption Algorithm Global Journal of Computer Science and Technology Software & Data Engineering Volume 13 Issue 5 Version 1.0 Year 2013 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

Network Security. Omer Rana

Network Security. Omer Rana Network Security Omer Rana CM0255 Material from: Cryptography Components Sender Receiver Plaintext Encryption Ciphertext Decryption Plaintext Encryption algorithm: Plaintext Ciphertext Cipher: encryption

More information

Quality Estimation for Scalable Video Codec. Presented by Ann Ukhanova (DTU Fotonik, Denmark) Kashaf Mazhar (KTH, Sweden)

Quality Estimation for Scalable Video Codec. Presented by Ann Ukhanova (DTU Fotonik, Denmark) Kashaf Mazhar (KTH, Sweden) Quality Estimation for Scalable Video Codec Presented by Ann Ukhanova (DTU Fotonik, Denmark) Kashaf Mazhar (KTH, Sweden) Purpose of scalable video coding Multiple video streams are needed for heterogeneous

More information

Overview/Questions. What is Cryptography? The Caesar Shift Cipher. CS101 Lecture 21: Overview of Cryptography

Overview/Questions. What is Cryptography? The Caesar Shift Cipher. CS101 Lecture 21: Overview of Cryptography CS101 Lecture 21: Overview of Cryptography Codes and Ciphers Overview/Questions What is cryptography? What are the challenges of data encryption? What factors make an encryption strategy successful? What

More information

A NEW APPROACH FOR COMPLEX ENCRYPTING AND DECRYPTING DATA

A NEW APPROACH FOR COMPLEX ENCRYPTING AND DECRYPTING DATA A NEW APPROACH FOR COMPLEX ENCRYPTING AND DECRYPTING DATA ABSTRACT Obaida Mohammad Awad Al-Hazaimeh Department of Information Technology, Al-balqa Applied University, AL-Huson University College, Irbid,

More information

Network Security. Chapter 3 Symmetric Cryptography. Symmetric Encryption. Modes of Encryption. Symmetric Block Ciphers - Modes of Encryption ECB (1)

Network Security. Chapter 3 Symmetric Cryptography. Symmetric Encryption. Modes of Encryption. Symmetric Block Ciphers - Modes of Encryption ECB (1) Chair for Network Architectures and Services Department of Informatics TU München Prof. Carle Network Security Chapter 3 Symmetric Cryptography General Description Modes of ion Data ion Standard (DES)

More information

Efficient Software Implementation of AES on 32-bit Platforms

Efficient Software Implementation of AES on 32-bit Platforms Efficient Software Implementation of AES on 32-bit Platforms Guido Bertoni, Luca Breveglieri Politecnico di Milano, Milano - Italy Pasqualina Lilli Lilli Fragneto AST-LAB of ST Microelectronics, Agrate

More information

How To Encrypt Data With A Power Of N On A K Disk

How To Encrypt Data With A Power Of N On A K Disk Towards High Security and Fault Tolerant Dispersed Storage System with Optimized Information Dispersal Algorithm I Hrishikesh Lahkar, II Manjunath C R I,II Jain University, School of Engineering and Technology,

More information

Standards compliant watermarking for access management

Standards compliant watermarking for access management Standards compliant watermarking for access management Viresh Ratnakar and Onur G. Guleryuz Epson Palo Alto Laboratory 3145 Porter Drive, Suite 104 Palo Alto, CA 94304, USA ABSTRACT We present standards-compliant

More information

Network Security Technology Network Management

Network Security Technology Network Management COMPUTER NETWORKS Network Security Technology Network Management Source Encryption E(K,P) Decryption D(K,C) Destination The author of these slides is Dr. Mark Pullen of George Mason University. Permission

More information

AES Power Attack Based on Induced Cache Miss and Countermeasure

AES Power Attack Based on Induced Cache Miss and Countermeasure AES Power Attack Based on Induced Cache Miss and Countermeasure Guido Bertoni, Vittorio Zaccaria STMicroelectronics, Advanced System Technology Agrate Brianza - Milano, Italy, {guido.bertoni, vittorio.zaccaria}@st.com

More information

A comprehensive survey on various ETC techniques for secure Data transmission

A comprehensive survey on various ETC techniques for secure Data transmission A comprehensive survey on various ETC techniques for secure Data transmission Shaikh Nasreen 1, Prof. Suchita Wankhade 2 1, 2 Department of Computer Engineering 1, 2 Trinity College of Engineering and

More information

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No. # 11 Block Cipher Standards (DES) (Refer Slide

More information

IJESRT. [Padama, 2(5): May, 2013] ISSN: 2277-9655

IJESRT. [Padama, 2(5): May, 2013] ISSN: 2277-9655 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Design and Verification of VLSI Based AES Crypto Core Processor Using Verilog HDL Dr.K.Padama Priya *1, N. Deepthi Priya 2 *1,2

More information

JPEG Image Compression by Using DCT

JPEG Image Compression by Using DCT International Journal of Computer Sciences and Engineering Open Access Research Paper Volume-4, Issue-4 E-ISSN: 2347-2693 JPEG Image Compression by Using DCT Sarika P. Bagal 1* and Vishal B. Raskar 2 1*

More information

Figure 1: Relation between codec, data containers and compression algorithms.

Figure 1: Relation between codec, data containers and compression algorithms. Video Compression Djordje Mitrovic University of Edinburgh This document deals with the issues of video compression. The algorithm, which is used by the MPEG standards, will be elucidated upon in order

More information

Cryptography and Network Security

Cryptography and Network Security Cryptography and Network Security Spring 2012 http://users.abo.fi/ipetre/crypto/ Lecture 3: Block ciphers and DES Ion Petre Department of IT, Åbo Akademi University January 17, 2012 1 Data Encryption Standard

More information

A New Digital Encryption Scheme: Binary Matrix Rotations Encryption Algorithm

A New Digital Encryption Scheme: Binary Matrix Rotations Encryption Algorithm International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Volume 2, Issue 2, February 2015, PP 18-27 ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online) www.arcjournals.org A

More information

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur

Module 8 VIDEO CODING STANDARDS. Version 2 ECE IIT, Kharagpur Module 8 VIDEO CODING STANDARDS Version ECE IIT, Kharagpur Lesson H. andh.3 Standards Version ECE IIT, Kharagpur Lesson Objectives At the end of this lesson the students should be able to :. State the

More information

Bandwidth Adaptation for MPEG-4 Video Streaming over the Internet

Bandwidth Adaptation for MPEG-4 Video Streaming over the Internet DICTA2002: Digital Image Computing Techniques and Applications, 21--22 January 2002, Melbourne, Australia Bandwidth Adaptation for MPEG-4 Video Streaming over the Internet K. Ramkishor James. P. Mammen

More information

FAREY FRACTION BASED VECTOR PROCESSING FOR SECURE DATA TRANSMISSION

FAREY FRACTION BASED VECTOR PROCESSING FOR SECURE DATA TRANSMISSION FAREY FRACTION BASED VECTOR PROCESSING FOR SECURE DATA TRANSMISSION INTRODUCTION GANESH ESWAR KUMAR. P Dr. M.G.R University, Maduravoyal, Chennai. Email: geswarkumar@gmail.com Every day, millions of people

More information

Modern Block Cipher Standards (AES) Debdeep Mukhopadhyay

Modern Block Cipher Standards (AES) Debdeep Mukhopadhyay Modern Block Cipher Standards (AES) Debdeep Mukhopadhyay Assistant Professor Department of Computer Science and Engineering Indian Institute of Technology Kharagpur INDIA -721302 Objectives Introduction

More information

Real-Time DMB Video Encryption in Recording on PMP

Real-Time DMB Video Encryption in Recording on PMP Real-Time DMB Video Encryption in Recording on PMP Seong-Yeon Lee and Jong-Nam Kim Dept. of Electronic Computer Telecommunication Engineering, PuKyong Nat'l Univ. sylee9997@pknu.ac.kr, jongnam@pknu.ac.kr

More information

Design and Verification of Area-Optimized AES Based on FPGA Using Verilog HDL

Design and Verification of Area-Optimized AES Based on FPGA Using Verilog HDL Design and Verification of Area-Optimized AES Based on FPGA Using Verilog HDL 1 N. Radhika, 2 Obili Ramesh, 3 Priyadarshini, 3 Asst.Profosser, 1,2 M.Tech ( Digital Systems & Computer Electronics), 1,2,3,

More information

Separable & Secure Data Hiding & Image Encryption Using Hybrid Cryptography

Separable & Secure Data Hiding & Image Encryption Using Hybrid Cryptography 502 Separable & Secure Data Hiding & Image Encryption Using Hybrid Cryptography 1 Vinay Wadekar, 2 Ajinkya Jadhavrao, 3 Sharad Ghule, 4 Akshay Kapse 1,2,3,4 Computer Engineering, University Of Pune, Pune,

More information

MPEG-1 and MPEG-2 Digital Video Coding Standards

MPEG-1 and MPEG-2 Digital Video Coding Standards Please note that the page has been produced based on text and image material from a book in [sik] and may be subject to copyright restrictions from McGraw Hill Publishing Company. MPEG-1 and MPEG-2 Digital

More information

96 T. Kunkelmann, U. Horn

96 T. Kunkelmann, U. Horn Video Encryption Based on Data Partitioning and Scalable Coding - A Comparison Thomas Kunkelmann 1 and Uwe Horn 2 1 Darmstadt University oftechnology, Department of Computer Science Information Technology

More information

A Robust and Lossless Information Embedding in Image Based on DCT and Scrambling Algorithms

A Robust and Lossless Information Embedding in Image Based on DCT and Scrambling Algorithms A Robust and Lossless Information Embedding in Image Based on DCT and Scrambling Algorithms Dr. Mohammad V. Malakooti Faculty and Head of Department of Computer Engineering, Islamic Azad University, UAE

More information

Statistical Modeling of Huffman Tables Coding

Statistical Modeling of Huffman Tables Coding Statistical Modeling of Huffman Tables Coding S. Battiato 1, C. Bosco 1, A. Bruna 2, G. Di Blasi 1, G.Gallo 1 1 D.M.I. University of Catania - Viale A. Doria 6, 95125, Catania, Italy {battiato, bosco,

More information

For Articulation Purpose Only

For Articulation Purpose Only E305 Digital Audio and Video (4 Modular Credits) This document addresses the content related abilities, with reference to the module. Abilities of thinking, learning, problem solving, team work, communication,

More information

encoding compression encryption

encoding compression encryption encoding compression encryption ASCII utf-8 utf-16 zip mpeg jpeg AES RSA diffie-hellman Expressing characters... ASCII and Unicode, conventions of how characters are expressed in bits. ASCII (7 bits) -

More information

AN IMPLEMENTATION OF HYBRID ENCRYPTION-DECRYPTION (RSA WITH AES AND SHA256) FOR USE IN DATA EXCHANGE BETWEEN CLIENT APPLICATIONS AND WEB SERVICES

AN IMPLEMENTATION OF HYBRID ENCRYPTION-DECRYPTION (RSA WITH AES AND SHA256) FOR USE IN DATA EXCHANGE BETWEEN CLIENT APPLICATIONS AND WEB SERVICES HYBRID RSA-AES ENCRYPTION FOR WEB SERVICES AN IMPLEMENTATION OF HYBRID ENCRYPTION-DECRYPTION (RSA WITH AES AND SHA256) FOR USE IN DATA EXCHANGE BETWEEN CLIENT APPLICATIONS AND WEB SERVICES Kalyani Ganesh

More information

Design and Implementation of Asymmetric Cryptography Using AES Algorithm

Design and Implementation of Asymmetric Cryptography Using AES Algorithm Design and Implementation of Asymmetric Cryptography Using AES Algorithm Madhuri B. Shinde Student, Electronics & Telecommunication Department, Matoshri College of Engineering and Research Centre, Nashik,

More information

How To Encrypt With A 64 Bit Block Cipher

How To Encrypt With A 64 Bit Block Cipher The Data Encryption Standard (DES) As mentioned earlier there are two main types of cryptography in use today - symmetric or secret key cryptography and asymmetric or public key cryptography. Symmetric

More information

A Secure Software Implementation of Nonlinear Advanced Encryption Standard

A Secure Software Implementation of Nonlinear Advanced Encryption Standard IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) ISSN: 2319 4200, ISBN No. : 2319 4197 Volume 1, Issue 5 (Jan. - Feb 2013), PP 44-48 A Secure Software Implementation of Nonlinear Advanced Encryption

More information

Classes of multimedia Applications

Classes of multimedia Applications Classes of multimedia Applications Streaming Stored Audio and Video Streaming Live Audio and Video Real-Time Interactive Audio and Video Others Class: Streaming Stored Audio and Video The multimedia content

More information

First Semester Examinations 2011/12 INTERNET PRINCIPLES

First Semester Examinations 2011/12 INTERNET PRINCIPLES PAPER CODE NO. EXAMINER : Martin Gairing COMP211 DEPARTMENT : Computer Science Tel. No. 0151 795 4264 First Semester Examinations 2011/12 INTERNET PRINCIPLES TIME ALLOWED : Two Hours INSTRUCTIONS TO CANDIDATES

More information

Hill s Cipher: Linear Algebra in Cryptography

Hill s Cipher: Linear Algebra in Cryptography Ryan Doyle Hill s Cipher: Linear Algebra in Cryptography Introduction: Since the beginning of written language, humans have wanted to share information secretly. The information could be orders from a

More information

A NEW DNA BASED APPROACH OF GENERATING KEY-DEPENDENT SHIFTROWS TRANSFORMATION

A NEW DNA BASED APPROACH OF GENERATING KEY-DEPENDENT SHIFTROWS TRANSFORMATION A NEW DNA BASED APPROACH OF GENERATING KEY-DEPENDENT SHIFTROWS TRANSFORMATION Auday H. Al-Wattar 1, Ramlan Mahmod 2, Zuriati Ahmad Zukarnain3, and Nur Izura Udzir4, 1 Faculty of Computer Science and Information

More information

Solutions to Problem Set 1

Solutions to Problem Set 1 YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE CPSC 467b: Cryptography and Computer Security Handout #8 Zheng Ma February 21, 2005 Solutions to Problem Set 1 Problem 1: Cracking the Hill cipher Suppose

More information

Conceptual Framework Strategies for Image Compression: A Review

Conceptual Framework Strategies for Image Compression: A Review International Journal of Computer Sciences and Engineering Open Access Review Paper Volume-4, Special Issue-1 E-ISSN: 2347-2693 Conceptual Framework Strategies for Image Compression: A Review Sumanta Lal

More information

REIHE INFORMATIK 7/98 Efficient Video Transport over Lossy Networks Christoph Kuhmünch and Gerald Kühne Universität Mannheim Praktische Informatik IV

REIHE INFORMATIK 7/98 Efficient Video Transport over Lossy Networks Christoph Kuhmünch and Gerald Kühne Universität Mannheim Praktische Informatik IV REIHE INFORMATIK 7/98 Efficient Video Transport over Lossy Networks Christoph Kuhmünch and Gerald Kühne Universität Mannheim Praktische Informatik IV L15, 16 D-68131 Mannheim Efficient Video Transport

More information

MPEG Digital Video Coding Standards

MPEG Digital Video Coding Standards MPEG Digital Video Coding Standards Thomas Sikora, HHI Berlin Preprint from Digital Consumer Electronics Handbook First Edition (Editor R.Jurgens) to be published by McGRAW-Hill Book Company Chapter 9

More information

Rijndael Encryption implementation on different platforms, with emphasis on performance

Rijndael Encryption implementation on different platforms, with emphasis on performance Rijndael Encryption implementation on different platforms, with emphasis on performance KAFUUMA JOHN SSENYONJO Bsc (Hons) Computer Software Theory University of Bath May 2005 Rijndael Encryption implementation

More information

Introduction to image coding

Introduction to image coding Introduction to image coding Image coding aims at reducing amount of data required for image representation, storage or transmission. This is achieved by removing redundant data from an image, i.e. by

More information

Study and Implementation of Video Compression Standards (H.264/AVC and Dirac)

Study and Implementation of Video Compression Standards (H.264/AVC and Dirac) Project Proposal Study and Implementation of Video Compression Standards (H.264/AVC and Dirac) Sumedha Phatak-1000731131- sumedha.phatak@mavs.uta.edu Objective: A study, implementation and comparison of

More information

How To Improve Performance Of The H264 Video Codec On A Video Card With A Motion Estimation Algorithm

How To Improve Performance Of The H264 Video Codec On A Video Card With A Motion Estimation Algorithm Implementation of H.264 Video Codec for Block Matching Algorithms Vivek Sinha 1, Dr. K. S. Geetha 2 1 Student of Master of Technology, Communication Systems, Department of ECE, R.V. College of Engineering,

More information

An Incomplete Cryptography based Digital Rights Management with DCFF

An Incomplete Cryptography based Digital Rights Management with DCFF An Incomplete Cryptography based Digital Rights Management with DCFF Ta Minh Thanh Department of Computer Science Tokyo Institute of Technology 2-12-2, Ookayama, Meguro, Tokyo, 152-8552, Japan. Email:thanhtm@ks.cs.titech.ac.jp

More information

Performance Study on Image Encryption Schemes

Performance Study on Image Encryption Schemes www.ijcsi.org 349 Performance Study on Image Encryption Schemes Jolly Shah and Dr. Vikas Saxena Department of CS & IT, Jaypee Institute of Information Technology Noida, Uttar Pradesh 201307, India Department

More information

Video Encryption Exploiting Non-Standard 3D Data Arrangements. Stefan A. Kramatsch, Herbert Stögner, and Andreas Uhl uhl@cosy.sbg.ac.

Video Encryption Exploiting Non-Standard 3D Data Arrangements. Stefan A. Kramatsch, Herbert Stögner, and Andreas Uhl uhl@cosy.sbg.ac. Video Encryption Exploiting Non-Standard 3D Data Arrangements Stefan A. Kramatsch, Herbert Stögner, and Andreas Uhl uhl@cosy.sbg.ac.at Andreas Uhl 1 Carinthia Tech Institute & Salzburg University Outline

More information

FCE: A Fast Content Expression for Server-based Computing

FCE: A Fast Content Expression for Server-based Computing FCE: A Fast Content Expression for Server-based Computing Qiao Li Mentor Graphics Corporation 11 Ridder Park Drive San Jose, CA 95131, U.S.A. Email: qiao li@mentor.com Fei Li Department of Computer Science

More information

Improving Performance of Secure Data Transmission in Communication Networks Using Physical Implementation of AES

Improving Performance of Secure Data Transmission in Communication Networks Using Physical Implementation of AES Improving Performance of Secure Data Transmission in Communication Networks Using Physical Implementation of AES K Anjaneyulu M.Tech Student, Y.Chalapathi Rao, M.Tech, Ph.D Associate Professor, Mr.M Basha,

More information

Transform-domain Wyner-Ziv Codec for Video

Transform-domain Wyner-Ziv Codec for Video Transform-domain Wyner-Ziv Codec for Video Anne Aaron, Shantanu Rane, Eric Setton, and Bernd Girod Information Systems Laboratory, Department of Electrical Engineering Stanford University 350 Serra Mall,

More information

AVR1318: Using the XMEGA built-in AES accelerator. 8-bit Microcontrollers. Application Note. Features. 1 Introduction

AVR1318: Using the XMEGA built-in AES accelerator. 8-bit Microcontrollers. Application Note. Features. 1 Introduction AVR1318: Using the XMEGA built-in AES accelerator Features Full compliance with AES (FIPS Publication 197, 2002) - Both encryption and decryption procedures 128-bit Key and State memory XOR load option

More information

Video Coding Technologies and Standards: Now and Beyond

Video Coding Technologies and Standards: Now and Beyond Hitachi Review Vol. 55 (Mar. 2006) 11 Video Coding Technologies and Standards: Now and Beyond Tomokazu Murakami Hiroaki Ito Muneaki Yamaguchi Yuichiro Nakaya, Ph.D. OVERVIEW: Video coding technology compresses

More information

High performance digital video servers: storage. Seungyup Paek and Shih-Fu Chang. Columbia University

High performance digital video servers: storage. Seungyup Paek and Shih-Fu Chang. Columbia University High performance digital video servers: storage and retrieval of compressed scalable video Seungyup Paek and Shih-Fu Chang Department of Electrical Engineering Columbia University New York, N.Y. 10027-6699,

More information

Network Security - ISA 656 Introduction to Cryptography

Network Security - ISA 656 Introduction to Cryptography Network Security - ISA 656 Angelos Stavrou September 18, 2007 Codes vs. K = {0, 1} l P = {0, 1} m C = {0, 1} n, C C E : P K C D : C K P p P, k K : D(E(p, k), k) = p It is infeasible to find F : P C K Let

More information

(C) Global Journal of Engineering Science and Research Management

(C) Global Journal of Engineering Science and Research Management DEPENDABLE STORAGE FOR VEHICLE INSURANCE MANAGEMENT THROUGH SECURED ENCRYPTION IN CLOUD COMPUTING Prof.Abhijeet A.Chincholkar *1, Ms.Najuka Todekar 2 *1 M.E. Digital Electronics, JCOET Yavatmal, India.

More information

Hardware Implementation of AES Encryption and Decryption System Based on FPGA

Hardware Implementation of AES Encryption and Decryption System Based on FPGA Send Orders for Reprints to reprints@benthamscience.ae The Open Cybernetics & Systemics Journal, 2015, 9, 1373-1377 1373 Open Access Hardware Implementation of AES Encryption and Decryption System Based

More information

1 Data Encryption Algorithm

1 Data Encryption Algorithm Date: Monday, September 23, 2002 Prof.: Dr Jean-Yves Chouinard Design of Secure Computer Systems CSI4138/CEG4394 Notes on the Data Encryption Standard (DES) The Data Encryption Standard (DES) has been

More information

The Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) The Advanced Encryption Standard (AES) All of the cryptographic algorithms we have looked at so far have some problem. The earlier ciphers can be broken with ease on modern computation systems. The DES

More information

CM0340 SOLNS. Do not turn this page over until instructed to do so by the Senior Invigilator.

CM0340 SOLNS. Do not turn this page over until instructed to do so by the Senior Invigilator. CARDIFF UNIVERSITY EXAMINATION PAPER Academic Year: 2008/2009 Examination Period: Examination Paper Number: Examination Paper Title: SOLUTIONS Duration: Autumn CM0340 SOLNS Multimedia 2 hours Do not turn

More information

Introduction to Medical Image Compression Using Wavelet Transform

Introduction to Medical Image Compression Using Wavelet Transform National Taiwan University Graduate Institute of Communication Engineering Time Frequency Analysis and Wavelet Transform Term Paper Introduction to Medical Image Compression Using Wavelet Transform 李 自

More information

Chair for Network Architectures and Services Department of Informatics TU München Prof. Carle. Network Security. Chapter 13

Chair for Network Architectures and Services Department of Informatics TU München Prof. Carle. Network Security. Chapter 13 Chair for Network Architectures and Services Department of Informatics TU München Prof. Carle Network Security Chapter 13 Some More Secure Channel Issues Outline In the course we have yet only seen catastrophic

More information

Chapter 23. Database Security. Security Issues. Database Security

Chapter 23. Database Security. Security Issues. Database Security Chapter 23 Database Security Security Issues Legal and ethical issues Policy issues System-related issues The need to identify multiple security levels 2 Database Security A DBMS typically includes a database

More information

Digital Video Coding Standards and Their Role in Video Communications

Digital Video Coding Standards and Their Role in Video Communications Digital Video Coding Standards and Their Role in Video Communications RALF SCHAFER AND THOMAS SIKORA, MEMBER, IEEE Invited Paper The eficient digital representation of image and video signals has been

More information

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Cryptography and Network Security Prof. D. Mukhopadhyay Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module No. #01 Lecture No. #10 Symmetric Key Ciphers (Refer

More information

Performance Analysis and Comparison of JM 15.1 and Intel IPP H.264 Encoder and Decoder

Performance Analysis and Comparison of JM 15.1 and Intel IPP H.264 Encoder and Decoder Performance Analysis and Comparison of 15.1 and H.264 Encoder and Decoder K.V.Suchethan Swaroop and K.R.Rao, IEEE Fellow Department of Electrical Engineering, University of Texas at Arlington Arlington,

More information

Cyber Security Workshop Encryption Reference Manual

Cyber Security Workshop Encryption Reference Manual Cyber Security Workshop Encryption Reference Manual May 2015 Basic Concepts in Encoding and Encryption Binary Encoding Examples Encryption Cipher Examples 1 P a g e Encoding Concepts Binary Encoding Basics

More information

Secret File Sharing Techniques using AES algorithm. C. Navya Latha 200201066 Garima Agarwal 200305032 Anila Kumar GVN 200305002

Secret File Sharing Techniques using AES algorithm. C. Navya Latha 200201066 Garima Agarwal 200305032 Anila Kumar GVN 200305002 Secret File Sharing Techniques using AES algorithm C. Navya Latha 200201066 Garima Agarwal 200305032 Anila Kumar GVN 200305002 1. Feature Overview The Advanced Encryption Standard (AES) feature adds support

More information

VIDEOTELEPHONY AND VIDEOCONFERENCE OVER ISDN

VIDEOTELEPHONY AND VIDEOCONFERENCE OVER ISDN VIDEOTELEPHONY AND VIDEOCONFERENCE OVER ISDN Fernando Pereira Instituto Superior Técnico Digital Video Video versus Images Still Image Services No strong temporal requirements; no realtime notion. Video

More information

A Survey of Video Processing with Field Programmable Gate Arrays (FGPA)

A Survey of Video Processing with Field Programmable Gate Arrays (FGPA) A Survey of Video Processing with Field Programmable Gate Arrays (FGPA) Heather Garnell Abstract This paper is a high-level, survey of recent developments in the area of video processing using reconfigurable

More information

AES Cipher Modes with EFM32

AES Cipher Modes with EFM32 AES Cipher Modes with EFM32 AN0033 - Application Note Introduction This application note describes how to implement several cryptographic cipher modes with the Advanced ion Standard (AES) on the EFM32

More information

Block encryption. CS-4920: Lecture 7 Secret key cryptography. Determining the plaintext ciphertext mapping. CS4920-Lecture 7 4/1/2015

Block encryption. CS-4920: Lecture 7 Secret key cryptography. Determining the plaintext ciphertext mapping. CS4920-Lecture 7 4/1/2015 CS-4920: Lecture 7 Secret key cryptography Reading Chapter 3 (pp. 59-75, 92-93) Today s Outcomes Discuss block and key length issues related to secret key cryptography Define several terms related to secret

More information

Application Note. Introduction. Video Basics. Contents. IP Video Encoding Explained Series Understanding IP Video Performance.

Application Note. Introduction. Video Basics. Contents. IP Video Encoding Explained Series Understanding IP Video Performance. Title Overview IP Video Encoding Explained Series Understanding IP Video Performance Date September 2012 (orig. May 2008) IP networks are increasingly used to deliver video services for entertainment,

More information

INTERNATIONAL TELECOMMUNICATION UNION 42!.3-)33)/. /&./.4%,%0(/.% 3)'.!,3

INTERNATIONAL TELECOMMUNICATION UNION 42!.3-)33)/. /&./.4%,%0(/.% 3)'.!,3 INTERNATIONAL TELECOMMUNICATION UNION )454 ( TELECOMMUNICATION (07/95) STANDARDIZATION SECTOR OF ITU 42!.3-)33)/. /&./.4%,%0(/.% 3)'.!,3 ).&/2-!4)/. 4%#(./,/'9 '%.%2)# #/$).' /& -/6).' 0)#452%3!.$!33/#)!4%$!5$)/

More information

Introduction to Hill cipher

Introduction to Hill cipher Introduction to Hill cipher We have explored three simple substitution ciphers that generated ciphertext C from plaintext p by means of an arithmetic operation modulo 26. Caesar cipher: The Caesar cipher

More information

Network Security. Security. Security Services. Crytographic algorithms. privacy authenticity Message integrity. Public key (RSA) Message digest (MD5)

Network Security. Security. Security Services. Crytographic algorithms. privacy authenticity Message integrity. Public key (RSA) Message digest (MD5) Network Security Security Crytographic algorithms Security Services Secret key (DES) Public key (RSA) Message digest (MD5) privacy authenticity Message integrity Secret Key Encryption Plain text Plain

More information

WATERMARKING FOR IMAGE AUTHENTICATION

WATERMARKING FOR IMAGE AUTHENTICATION WATERMARKING FOR IMAGE AUTHENTICATION Min Wu Bede Liu Department of Electrical Engineering Princeton University, Princeton, NJ 08544, USA Fax: +1-609-258-3745 {minwu, liu}@ee.princeton.edu ABSTRACT A data

More information

6.857 Computer and Network Security Fall Term, 1997 Lecture 4 : 16 September 1997 Lecturer: Ron Rivest Scribe: Michelle Goldberg 1 Conditionally Secure Cryptography Conditionally (or computationally) secure

More information

THE EMERGING JVT/H.26L VIDEO CODING STANDARD

THE EMERGING JVT/H.26L VIDEO CODING STANDARD THE EMERGING JVT/H.26L VIDEO CODING STANDARD H. Schwarz and T. Wiegand Heinrich Hertz Institute, Germany ABSTRACT JVT/H.26L is a current project of the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC

More information

Blaze Vault Online Backup. Whitepaper Data Security

Blaze Vault Online Backup. Whitepaper Data Security Blaze Vault Online Backup Version 5.x Jun 2006 Table of Content 1 Introduction... 3 2 Blaze Vault Offsite Backup Server Secure, Robust and Reliable... 4 2.1 Secure 256-bit SSL communication... 4 2.2 Backup

More information