Fundamentals of Organic Molecules and Semiconductors

Size: px
Start display at page:

Download "Fundamentals of Organic Molecules and Semiconductors"

Transcription

1 Fundamentals of Organic Molecules and Semiconductors

2 Molecule 2

3 Periodic Table of the Elements 3

4 Carbon Carbon is found in every living creature. Elemental carbon can be black (graphite), or hard and beautiful (diamonds). Building block of fossil fuels (gasoline and oil) Basis of organic chemistry Crystalline forms Diamond (metastable) A wide-gap semiconductor Graphite Parallel hexagonal sheets Fullerine Semiconducting Fullerene (C 60 ) Graphite Diamond -Covalent 4

5 Bonding Covalent (C, Si) Electron sharing 2 or more electrons shared by 2 or more atoms Ionic (GaAs) Electron transfer Van der Waals (Bonding between covalent molecules) London forces (attraction between molecules with no permanent dipole moment) Dipolar attraction (polar molecules) Hydrogen bonding (covalently bound hydrogen + negative dipole) 5

6 Covalent Bonding C-O bond 340 kj/mol 1.43 Å C-C bond 360 kj/mol 1.54 Å C-H bond 430 kj/mol 1.11 Å C=C bond 600 kj/mol 1.33 Å C=O bond 690 kj/mol 1.21 Å Sharing of electrons to achieve stable electron configuration Small difference in electronegativity of elements Bond energy : kj/mol Directional bond; between specific atoms in a specific direction, normally along the line connecting the two atoms that share a pair of electrons. 6

7 Valence Bond Theory and Hybridization 1) bond formation by overlapping orbitals: A description of covalent bond formation in terms of atomic orbital overlap is called the valence bond theory. It gives a localized electron model of bonding: core electrons and lone-pair valence electrons retain the same orbital locations as in the separated atoms, and the charge density of the bonding electrons is concentrated in the region of orbital overlap. 2) hybridization of atomic orbitals: How do a carbon with a s-orbital and three p-orbitals combined with four hydrogen (s orbitals) form four bonds and all four bonds are found to be : In 1931, Linus Pauling proposed that the wave functions for the s and p atomic orbitals can be mathematically combined to form a new set of equivalent wave functions called hybrid orbitals. : The mathematical process of replacing pure atomic orbitals with reformulated atomic orbitals for bonded atoms is called hybridization. In a hybridization scheme, the number of hybrid orbitals equals to the total number of atomic orbitals that are combined. The symbols identify the numbers and kinds orbitals involved. 7

8 Atomic Orbitals 8

9 sp 3 Hybridization sp 3 signifies one s and three p orbitals are combined. Mixing one s orbital with three p orbitals yields four equivalent sp 3 hybrid orbitals. 9

10 sp 3 Hybridization The bonding in methane Each of the four C-H bonds results from head-on (s) overlap of a singly occupied carbon sp 3 hybrid orbital with a singly occupied hydrogen 1s orbital. Sigma bonds are formed by head-to-head overlap between the hydrogen s orbital and a singly occupied sp 3 hybrid orbital of carbon. 10

11 sp 3 Hybridization The bonding in Ammonia 11

12 sp 2 Hybridization The molecular geometry is trigonal planar with bond angle = 120. To explain its geometry, we can use the following rational. sp 2 signifies one s and two p orbitals are combined. 12

13 sp Hybridization Now consider BeCl 2 which has linear molecular geometry determined experimentally. In hybridization scheme that best describes this compound is that The combination of one s and one p orbital gives two sp hybrid orbitals oriented 180 apart. Two unhybridized p orbitals remain and are oriented at 90 angles to the sp hybrids. 13

14 sp 3 d Hybridization To described hybridization scheme to correspond to the 5- and 6- electron-group geometries of VSEPR theory, we need to go beyond s and p orbitals and traditionally this meant including d orbitals. We can achieve the five half-filled orbitals and trigonal-bipyramidal molecular geometry through the hybridization of one s, three p and one d orbitals of valence shell into five sp 3 d hybrid orbitals. 14

15 sp 3 d 2 Hybridization In the same way, we can achieve the six half-filled orbitals and octahedral geometry through the hybridization of one s, three p and two d orbitals of valence shell into six sp 3 d 2 hybrid orbitals. 15

16 Hybrid Orbitals 16

17 Hybrid Orbitals and Multiple Covalent Bonds Sigma (ρ) bonds are characterized by Head-to-head overlap. Cylindrical symmetry of electron density about the internuclear axis. Pi (π) bonds are characterized by Side-to-side overlap. Electron density above and below the internuclear axis. 17

18 Molecular Orbitals Molecular orbitals (MOs) are mathematical equations that describe the regions in a molecule where there is a high probability of finding electrons Molecular orbitals (MOs) are essentially combinations of atomic orbitals two types exist, bonding and antibonding orbitals Molecular orbitals (MOs) are built up in the same way as atomic orbitals The hydrogen molecule Antibonding MO = region of diminished electron density Bonding MO = enhanced region of electron density 18

19 Molecular Orbitals 19

20 Molecular Orbitals for the 2p Electrons 20

21 Carbon-Carbon Single Bonds The bonding in Ethane Single bonds are always σ bonds, because σ overlap is greater, resulting in a stronger bond and more energy lowering. 21

22 Carbon-Carbon Double Bonds A double bond is made up of one sigma bond and one pi bond 22

23 Carbon-Carbon Double Bonds 23

24 Carbon-Carbon Double Bonds 24

25 Bonding in Aliphatic hydrocarbons 25

26 Carbon-Carbon Triple Bonds 26

27 Conjugated System A chemically conjugated system is a system of atoms covalently bonded with alternating single and multiple (e.g. double) bonds (e.g., C=C-C=C-C) in a molecule of an organic compound. This system results in a general delocalization of the electrons across all of the adjacent parallel aligned p-orbitals of the atoms, which increases stability and thereby lowers the overall energy of the molecule. 27

28 Conjugated System Adjacent, overlapping p orbitals allows for......more resonance...more electron delocalization...lower electron energy...greater stability Compound ethene max ,000 Consequences of p orbital overlap Atoms with p orbitals must be planar Partial pi bond(s) Barrier to rotation 1,3-butadiene ,000 50,000 1,3,5-hexatriene ,000 1,3,5,7-octatetraene ,000 1,3,5,7,9-decapentaene ,000 1,3,5,7,9,11-dodecahexaene 28

29 Benzene and Oligo-acene This kind of structure gives rise to two important resonance hybrids and leads to the idea that all three double bonds are delocalized across all six carbon atoms 29

30 Benzene 30

31 Benzene : Electronic Structure 31

32 Energy Level and Band Gap 32

33 Band Gap for Organic Materials 33

34 Some Semiconductors α quartertiophene α -4T α-sexithiophene α -6T S S S S S S S S S S Tetracene Pentacene π-conjugated Molecules (oligomers) Transport π π* overlap C 60 34

Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure

Chapter 9. Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure Chapter 9 Molecular Geometry & Bonding Theories I) Molecular Geometry (Shapes) Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure Molecular

More information

Chapter 10 Molecular Geometry and Chemical Bonding Theory

Chapter 10 Molecular Geometry and Chemical Bonding Theory Chem 1: Chapter 10 Page 1 Chapter 10 Molecular Geometry and Chemical Bonding Theory I) VSEPR Model Valence-Shell Electron-Pair Repulsion Model A) Model predicts Predicts electron arrangement and molecular

More information

Hybrid Molecular Orbitals

Hybrid Molecular Orbitals Hybrid Molecular Orbitals Last time you learned how to construct molecule orbital diagrams for simple molecules based on the symmetry of the atomic orbitals. Molecular orbitals extend over the entire molecule

More information

Chapter 9 - Covalent Bonding: Orbitals

Chapter 9 - Covalent Bonding: Orbitals Chapter 9 - Covalent Bonding: Orbitals 9.1 Hybridization and the Localized Electron Model A. Hybridization 1. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new

More information

1.15 Bonding in Methane and Orbital Hybridization

1.15 Bonding in Methane and Orbital Hybridization 1.15 Bonding in Methane and Orbital Hybridization Structure of Methane tetrahedral bond angles = 109.5 bond distances = 110 pm but structure seems inconsistent with electron configuration of carbon Electron

More information

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br. Question 4.1: Explain the formation of a chemical bond. A chemical bond is defined as an attractive force that holds the constituents (atoms, ions etc.) together in a chemical species. Various theories

More information

Chapter 1 Structure and Bonding. Modified by Dr. Daniela Radu

Chapter 1 Structure and Bonding. Modified by Dr. Daniela Radu John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 1 Structure and Bonding Modified by Dr. Daniela Radu What is Organic Chemistry? Living things are made of organic chemicals Proteins that make

More information

Bonding Models. Bonding Models (Lewis) Bonding Models (Lewis) Resonance Structures. Section 2 (Chapter 3, M&T) Chemical Bonding

Bonding Models. Bonding Models (Lewis) Bonding Models (Lewis) Resonance Structures. Section 2 (Chapter 3, M&T) Chemical Bonding Bonding Models Section (Chapter, M&T) Chemical Bonding We will look at three models of bonding: Lewis model Valence Bond model M theory Bonding Models (Lewis) Bonding Models (Lewis) Lewis model of bonding

More information

A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES

A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES A REVIEW OF GENERAL CEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES A STUDENT SOULD BE ABLE TO: 1. Draw Lewis (electron dot and line) structural formulas for simple compounds and ions from molecular

More information

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts 8.1 Types of Chemical Bonds A. Ionic Bonding 1. Electrons are transferred 2. Metals react with nonmetals 3. Ions paired have lower energy

More information

Chemistry Workbook 2: Problems For Exam 2

Chemistry Workbook 2: Problems For Exam 2 Chem 1A Dr. White Updated /5/1 1 Chemistry Workbook 2: Problems For Exam 2 Section 2-1: Covalent Bonding 1. On a potential energy diagram, the most stable state has the highest/lowest potential energy.

More information

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment.

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment. Molecular and VSEPR We gratefully acknowledge Portland ommunity ollege for the use of this experiment. Objectives To construct molecular models for covalently bonded atoms in molecules and polyatomic ions

More information

SHAPES OF MOLECULES (VSEPR MODEL)

SHAPES OF MOLECULES (VSEPR MODEL) 1 SAPES MLEULES (VSEPR MDEL) Valence Shell Electron-Pair Repulsion model - Electron pairs surrounding atom spread out as to minimize repulsion. - Electron pairs can be bonding pairs (including multiple

More information

Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively.

Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively. Name: Class: Date: Unit 9 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The basis of the VSEPR model of molecular bonding is. A) regions of

More information

Laboratory 11: Molecular Compounds and Lewis Structures

Laboratory 11: Molecular Compounds and Lewis Structures Introduction Laboratory 11: Molecular Compounds and Lewis Structures Molecular compounds are formed by sharing electrons between non-metal atoms. A useful theory for understanding the formation of molecular

More information

Valence Bond Theory: Hybridization

Valence Bond Theory: Hybridization Exercise 13 Page 1 Illinois Central College CEMISTRY 130 Laboratory Section: Valence Bond Theory: ybridization Name: Objectives To illustrate the distribution of electrons and rearrangement of orbitals

More information

ch9 and 10 practice test

ch9 and 10 practice test 1. Which of the following covalent bonds is the most polar (highest percent ionic character)? A. Al I B. Si I C. Al Cl D. Si Cl E. Si P 2. What is the hybridization of the central atom in ClO 3? A. sp

More information

EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory

EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory Materials: Molecular Model Kit INTRODUCTION Although it has recently become possible to image molecules and even atoms using a high-resolution microscope,

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Chapter 10 Molecular Geometry and Chemical Bonding Theory Concept Check 10.1 An atom in a molecule is surrounded by four pairs of electrons, one lone pair and three bonding pairs. Describe how the four

More information

Self Assessment_Ochem I

Self Assessment_Ochem I UTID: 2013 Objective Test Section Identify the choice that best completes the statement or answers the question. There is only one correct answer; please carefully bubble your choice on the scantron sheet.

More information

Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds

Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds Comparing Ionic and Covalent Bonds Chapter 7 Covalent Bonds and Molecular Structure Intermolecular forces (much weaker than bonds) must be broken Ionic bonds must be broken 1 Ionic Bonds Covalent Bonds

More information

Molecular-Orbital Theory

Molecular-Orbital Theory Molecular-Orbital Theory 1 Introduction Orbitals in molecules are not necessarily localized on atoms or between atoms as suggested in the valence bond theory. Molecular orbitals can also be formed the

More information

CHEM 1211K Test IV. MULTIPLE CHOICE (3 points each)

CHEM 1211K Test IV. MULTIPLE CHOICE (3 points each) CEM 1211K Test IV MULTIPLE COICE (3 points each) 1) ow many single covalent bonds must a silicon atom form to have a complete octet in its valence shell? A) 4 B) 3 C) 1 D) 2 E) 0 2) What is the maximum

More information

Molecular Structures. Chapter 9 Molecular Structures. Using Molecular Models. Using Molecular Models. C 2 H 6 O structural isomers: .. H C C O..

Molecular Structures. Chapter 9 Molecular Structures. Using Molecular Models. Using Molecular Models. C 2 H 6 O structural isomers: .. H C C O.. John W. Moore onrad L. Stanitski Peter. Jurs http://academic.cengage.com/chemistry/moore hapter 9 Molecular Structures Stephen. oster Mississippi State University Molecular Structures 2 6 structural isomers:

More information

5. Which of the following is the correct Lewis structure for SOCl 2

5. Which of the following is the correct Lewis structure for SOCl 2 Unit C Practice Problems Chapter 8 1. Draw the lewis structures for the following molecules: a. BeF 2 b. SO 3 c. CNS 1- d. NO 2. The correct Lewis symbol for ground state carbon is a) b) c) d) e) 3. Which

More information

Chapter10 Tro. 4. Based on the Lewis structure, the number of electron domains in the valence shell of the CO molecule is A) 1 B) 2 C) 3 D) 4 E) 5

Chapter10 Tro. 4. Based on the Lewis structure, the number of electron domains in the valence shell of the CO molecule is A) 1 B) 2 C) 3 D) 4 E) 5 Chapter10 Tro 1. All of the geometries listed below are examples of the five basic geometries for molecules with more than 3 atoms except A) planar triangular B) octahedral C) tetrahedral D) trihedral

More information

2. Atoms with very similar electronegativity values are expected to form

2. Atoms with very similar electronegativity values are expected to form AP hemistry Practice Test #6 hapter 8 and 9 1. Which of the following statements is incorrect? a. Ionic bonding results from the transfer of electrons from one atom to another. b. Dipole moments result

More information

CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

More information

7.14 Linear triatomic: A-----B-----C. Bond angles = 180 degrees. Trigonal planar: Bond angles = 120 degrees. B < B A B = 120

7.14 Linear triatomic: A-----B-----C. Bond angles = 180 degrees. Trigonal planar: Bond angles = 120 degrees. B < B A B = 120 APTER SEVEN Molecular Geometry 7.13 Molecular geometry may be defined as the three-dimensional arrangement of atoms in a molecule. The study of molecular geometry is important in that a molecule s geometry

More information

C has 4 valence electrons, O has six electrons. The total number of electrons is 4 + 2(6) = 16.

C has 4 valence electrons, O has six electrons. The total number of electrons is 4 + 2(6) = 16. 129 Lewis Structures G. N. Lewis hypothesized that electron pair bonds between unlike elements in the second (and sometimes the third) row occurred in a way that electrons were shared such that each element

More information

EXPERIMENT 9 Dot Structures and Geometries of Molecules

EXPERIMENT 9 Dot Structures and Geometries of Molecules EXPERIMENT 9 Dot Structures and Geometries of Molecules INTRODUCTION Lewis dot structures are our first tier in drawing molecules and representing bonds between the atoms. The method was first published

More information

5. Structure, Geometry, and Polarity of Molecules

5. Structure, Geometry, and Polarity of Molecules 5. Structure, Geometry, and Polarity of Molecules What you will accomplish in this experiment This experiment will give you an opportunity to draw Lewis structures of covalent compounds, then use those

More information

Theme 3: Bonding and Molecular Structure. (Chapter 8)

Theme 3: Bonding and Molecular Structure. (Chapter 8) Theme 3: Bonding and Molecular Structure. (Chapter 8) End of Chapter questions: 5, 7, 9, 12, 15, 18, 23, 27, 28, 32, 33, 39, 43, 46, 67, 77 Chemical reaction valence electrons of atoms rearranged (lost,

More information

LCAO-MO Correlation Diagrams

LCAO-MO Correlation Diagrams LCAO-MO Correlation Diagrams (Linear Combination of Atomic Orbitals to yield Molecular Orbitals) For (Second Row) Homonuclear Diatomic Molecules (X 2 ) - the following LCAO-MO s are generated: LCAO MO

More information

Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance

Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance Lewis Dot Notation Ionic Bonds Covalent Bonds Polar Covalent Bonds Lewis Dot Notation Revisited Resonance Lewis Dot notation is a way of describing the outer shell (also called the valence shell) of an

More information

Unit 3: Quantum Theory, Periodicity and Chemical Bonding. Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular Forces

Unit 3: Quantum Theory, Periodicity and Chemical Bonding. Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular Forces onour Chemistry Unit 3: Quantum Theory, Periodicity and Chemical Bonding Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular orces 10.1: Molecular Geometry Molecular Structure: - the three-dimensional

More information

Chapter 2 Polar Covalent Bonds; Acids and Bases

Chapter 2 Polar Covalent Bonds; Acids and Bases John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds; Acids and Bases Javier E. Horta, M.D., Ph.D. University of Massachusetts Lowell Polar Covalent Bonds: Electronegativity

More information

: : Solutions to Additional Bonding Problems

: : Solutions to Additional Bonding Problems Solutions to Additional Bonding Problems 1 1. For the following examples, the valence electron count is placed in parentheses after the empirical formula and only the resonance structures that satisfy

More information

Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015)

Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015) (Revised 05/22/2015) Introduction In the early 1900s, the chemist G. N. Lewis proposed that bonds between atoms consist of two electrons apiece and that most atoms are able to accommodate eight electrons

More information

Molecular Geometry & Polarity

Molecular Geometry & Polarity Name AP Chemistry Molecular Geometry & Polarity Molecular Geometry A key to understanding the wide range of physical and chemical properties of substances is recognizing that atoms combine with other atoms

More information

Chemistry 105, Chapter 7 Exercises

Chemistry 105, Chapter 7 Exercises hemistry 15, hapter 7 Exercises Types of Bonds 1. Using the periodic table classify the bonds in the following compounds as ionic or covalent. If covalent, classify the bond as polar or not. Mg2 4 i2 a(3)2

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory To date, we have looked at three different theories of molecular boning. They are the VSEPR Theory (with Lewis Dot Structures), the Valence Bond Theory (with hybridization) and

More information

PRACTICE PROBLEMS, CHAPTERS 1-3

PRACTICE PROBLEMS, CHAPTERS 1-3 PRATIE PRBLEMS, APTERS 1-3 (overed from h. 3: Alkane and Alkyl alide nomenclature only) 1. The atomic number of boron is 5. The correct electronic configuration of boron is: A. 1s 2 2s 3 B. 1s 2 2p 3.

More information

Exercises Topic 2: Molecules

Exercises Topic 2: Molecules hemistry for Biomedical Engineering. Exercises Topic 2 Authors: ors: Juan Baselga & María González Exercises Topic 2: Molecules 1. Using hybridization concepts and VSEPR model describe the molecular geometry

More information

Covalent Bonding & Molecular Orbital Theory

Covalent Bonding & Molecular Orbital Theory Covalent Bonding & Molecular Orbital Theory Chemistry 754 Solid State Chemistry Dr. Patrick Woodward Lecture #16 References - MO Theory Molecular orbital theory is covered in many places including most

More information

CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ)

CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ) CHEMISTRY 1710 - Practice Exam #5 - SPRING 2014 (KATZ) Name: Score: This is a multiple choice exam. Choose the BEST answer from the choices which are given and write the letter for your choice in the space

More information

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided. Name Date lass APTER 6 REVIEW hemical Bonding SETIN 1 SRT ANSWER Answer the following questions in the space provided. 1. a A chemical bond between atoms results from the attraction between the valence

More information

Chem 121 Problem Set V Lewis Structures, VSEPR and Polarity

Chem 121 Problem Set V Lewis Structures, VSEPR and Polarity hemistry 121 Problem set V olutions - 1 hem 121 Problem et V Lewis tructures, VEPR and Polarity AWER 1. pecies Elecronegativity difference in bond Bond Polarity Mp 3 E = 3.0-3.0 = 0 for - very weakly polar

More information

CHEMISTRY BONDING REVIEW

CHEMISTRY BONDING REVIEW Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.

More information

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing. CHAPTER EIGHT BNDING: GENERAL CNCEPT or Review 1. Electronegativity is the ability of an atom in a molecule to attract electrons to itself. Electronegativity is a bonding term. Electron affinity is the

More information

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A 1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c Answer: E 2) The wavelength of light emitted from a traffic light having a frequency of 5.75 1014 Hz is.

More information

Chapter 8 Concepts of Chemical Bonding

Chapter 8 Concepts of Chemical Bonding Chapter 8 Concepts of Chemical Bonding Chemical Bonds Three types: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other atoms Ionic Bonding

More information

Molecular Geometry and Hybrid Orbitals. Molecular Geometry

Molecular Geometry and Hybrid Orbitals. Molecular Geometry Molecular Geometry and ybrid Orbitals + -- bond angle 90 o Molecular Geometry Why Should I are bout Molecular Geometry? Molecular geometry (shape) influences... 3 Physical properties: 3 3 3 3 3 Pentane

More information

Where Is My Lone Pair?

Where Is My Lone Pair? Where Is My Lone Pair? Goal: In this tutorial we'll learn how to determine which orbital contains a lone pair. This is important for resonance, conjugation, and aromaticity. To master this subject you'll

More information

Structures and Properties of Substances. Introducing Valence-Shell Electron- Pair Repulsion (VSEPR) Theory

Structures and Properties of Substances. Introducing Valence-Shell Electron- Pair Repulsion (VSEPR) Theory Structures and Properties of Substances Introducing Valence-Shell Electron- Pair Repulsion (VSEPR) Theory The VSEPR theory In 1957, the chemist Ronald Gillespie and Ronald Nyholm, developed a model for

More information

Chapter 2 Polar Covalent Bonds: Acids and Bases

Chapter 2 Polar Covalent Bonds: Acids and Bases John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds: Acids and Bases Modified by Dr. Daniela R. Radu Why This Chapter? Description of basic ways chemists account for chemical

More information

Unit 3: Quantum Theory, Periodicity and Chemical Bonding

Unit 3: Quantum Theory, Periodicity and Chemical Bonding Selected Honour Chemistry Assignment Answers pg. 9 Unit 3: Quantum Theory, Periodicity and Chemical Bonding Chapter 7: The Electronic Structure of Atoms (pg. 240 to 241) 48. The shape of an s-orbital is

More information

Bonding & Molecular Shape Ron Robertson

Bonding & Molecular Shape Ron Robertson Bonding & Molecular Shape Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\00bondingtrans.doc The Nature of Bonding Types 1. Ionic 2. Covalent 3. Metallic 4. Coordinate covalent Driving

More information

Chapter 1 Benzene Blues 27

Chapter 1 Benzene Blues 27 hapter 1 Benzene Blues 27 The ybridization Model of Atoms in Molecules An important question facing chemists about 80 years ago, was, ow does one go from recently invented atomic orbitals to rationalizing

More information

Chapter 2. Atomic Structure and Interatomic Bonding

Chapter 2. Atomic Structure and Interatomic Bonding Chapter 2. Atomic Structure and Interatomic Bonding Interatomic Bonding Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules Bonding Forces and Energies Considering the interaction

More information

CHEM 340 CHEMICAL BONDING - in General Lect-07 IONIC COVALENT METAL COVALENT NETWORK

CHEM 340 CHEMICAL BONDING - in General Lect-07 IONIC COVALENT METAL COVALENT NETWORK CHEM 340 CHEMICAL BONDING in General Lect07 BONDING between atoms classified as belonging to one of the following types: IONIC COVALENT METAL COVALENT NETWORK or each bond type, the valence shell electrons

More information

VSEPR Model. The Valence-Shell Electron Pair Repulsion Model. Predicting Molecular Geometry

VSEPR Model. The Valence-Shell Electron Pair Repulsion Model. Predicting Molecular Geometry VSEPR Model The structure around a given atom is determined principally by minimizing electron pair repulsions. The Valence-Shell Electron Pair Repulsion Model The valence-shell electron pair repulsion

More information

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10. CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.102 10.1 INTERACTIONS BETWEEN IONS Ion-ion Interactions and Lattice Energy

More information

Order of Filling Subshells

Order of Filling Subshells Bonding: General Concepts Ionic Bonds Sections 13.2-13.6 Covalent Bonds Section 13.7 Covalent Bond Energy & Chemical Reactions Section 13.8-13.9 Lewis Structures Sections 13.10-13.12 VSEPR Theory Section

More information

H 2O gas: molecules are very far apart

H 2O gas: molecules are very far apart Non-Covalent Molecular Forces 2/27/06 3/1/06 How does this reaction occur: H 2 O (liquid) H 2 O (gas)? Add energy H 2O gas: molecules are very far apart H 2O liquid: bonding between molecules Use heat

More information

CHAPTER 10 THE SHAPES OF MOLECULES

CHAPTER 10 THE SHAPES OF MOLECULES ATER 10 TE AE MLEULE EMIAL ETI BED READIG RBLEM B10.1 lan: Examine the Lewis structure, noting the number of regions of electron density around the carbon and nitrogen atoms in the two resonance structures.

More information

CHAPTER 10 THE SHAPES OF MOLECULES

CHAPTER 10 THE SHAPES OF MOLECULES ATER 10 TE AE MLEULE 10.1 To be the central atom in a compound, the atom must be able to simultaneously bond to at least two other atoms. e,, and cannot serve as central atoms in a Lewis structure. elium

More information

CHEMISTRY 113 EXAM 4(A)

CHEMISTRY 113 EXAM 4(A) Summer 2003 1. The molecular geometry of PF 4 + ion is: A. bent B. trigonal planar C. tetrahedral D. octahedral CHEMISTRY 113 EXAM 4(A) 2. The Cl-C-Cl bond angle in CCl 2 O molecule (C is the central atom)

More information

4.2. Molecular Shape and Polarity. Lewis Structures for Molecules and Polyatomic Ions

4.2. Molecular Shape and Polarity. Lewis Structures for Molecules and Polyatomic Ions Molecular Shape and Polarity 4.2 molecule is a discrete chemical entity, in which atoms are held together by the electrostatic attractions of covalent bonds. In previous chemistry courses, you used Lewis

More information

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n) Chemistry I ATOMIC BONDING PRACTICE QUIZ Mr. Scott Select the best answer. 1) A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is

More information

SOME TOUGH COLLEGE PROBLEMS! .. : 4. How many electrons should be shown in the Lewis dot structure for carbon monoxide? N O O

SOME TOUGH COLLEGE PROBLEMS! .. : 4. How many electrons should be shown in the Lewis dot structure for carbon monoxide? N O O SME TUGH CLLEGE PRBLEMS! LEWIS DT STRUCTURES 1. An acceptable Lewis dot structure for 2 is (A) (B) (C) 2. Which molecule contains one unshared pair of valence electrons? (A) H 2 (B) H 3 (C) CH 4 acl 3.

More information

EXPERIMENT 1: Survival Organic Chemistry: Molecular Models

EXPERIMENT 1: Survival Organic Chemistry: Molecular Models EXPERIMENT 1: Survival Organic Chemistry: Molecular Models Introduction: The goal in this laboratory experience is for you to easily and quickly move between empirical formulas, molecular formulas, condensed

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the ionic compounds NaF, CsI, and CaO in order of increasing lattice energy. Analyze From the formulas for three

More information

Lesson 3. Chemical Bonding. Molecular Orbital Theory

Lesson 3. Chemical Bonding. Molecular Orbital Theory Lesson 3 Chemical Bonding Molecular Orbital Theory 1 Why Do Bonds Form? An energy diagram shows that a bond forms between two atoms if the overall energy of the system is lowered when the two atoms approach

More information

CHEM 101 Exam 4. Page 1

CHEM 101 Exam 4. Page 1 CEM 101 Exam 4 Form 1 (White) November 30, 2001 Page 1 Section This exam consists of 8 pages. When the exam begins make sure you have one of each. Print your name at the top of each page now. Show your

More information

Carbon-Carbon bonds: Hybridization

Carbon-Carbon bonds: Hybridization Carbon-Carbon bonds: Hybridization Abstract: Gina 05/05/11 Molecular binding behavior has a large inuence on the structure of a material and their properties. As a exclusion, carbon bind themself not in

More information

Vocabulary: VSEPR. 3 domains on central atom. 2 domains on central atom. 3 domains on central atom NOTE: Valence Shell Electron Pair Repulsion Theory

Vocabulary: VSEPR. 3 domains on central atom. 2 domains on central atom. 3 domains on central atom NOTE: Valence Shell Electron Pair Repulsion Theory Vocabulary: VSEPR Valence Shell Electron Pair Repulsion Theory domain = any electron pair, or any double or triple bond is considered one domain. lone pair = non-bonding pair = unshared pair = any electron

More information

Geometries and Valence Bond Theory Worksheet

Geometries and Valence Bond Theory Worksheet Geometries and Valence Bond Theory Worksheet Also do Chapter 10 textbook problems: 33, 35, 47, 49, 51, 55, 57, 61, 63, 67, 83, 87. 1. Fill in the tables below for each of the species shown. a) CCl 2 2

More information

Non-Covalent Bonds (Weak Bond)

Non-Covalent Bonds (Weak Bond) Non-Covalent Bonds (Weak Bond) Weak bonds are those forces of attraction that, in biological situations, do not take a large amount of energy to break. For example, hydrogen bonds are broken by energies

More information

Type of Chemical Bonds

Type of Chemical Bonds Type of Chemical Bonds Covalent bond Polar Covalent bond Ionic bond Hydrogen bond Metallic bond Van der Waals bonds. Covalent Bonds Covalent bond: bond in which one or more pairs of electrons are shared

More information

Visualizing Molecular Orbitals: A MacSpartan Pro Experience

Visualizing Molecular Orbitals: A MacSpartan Pro Experience Introduction Name(s) Visualizing Molecular Orbitals: A MacSpartan Pro Experience In class we have discussed Lewis structures, resonance, VSEPR, hybridization and molecular orbitals. These concepts are

More information

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure.

Crystalline solids. A solid crystal consists of different atoms arranged in a periodic structure. Crystalline solids A solid crystal consists of different atoms arranged in a periodic structure. Crystals can be formed via various bonding mechanisms: Ionic bonding Covalent bonding Metallic bonding Van

More information

Section 3: Crystal Binding

Section 3: Crystal Binding Physics 97 Interatomic forces Section 3: rystal Binding Solids are stable structures, and therefore there exist interactions holding atoms in a crystal together. For example a crystal of sodium chloride

More information

Electron Counting in Organometallic Chemistry

Electron Counting in Organometallic Chemistry Electron Counting in Organometallic Chemistry 1. The 18-Electron Rule; definition & rationalisation The constitution and structure of main group element complexes can be predicted and rationalised by a

More information

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each. Basic Chemistry Why do we study chemistry in a biology course? All living organisms are composed of chemicals. To understand life, we must understand the structure, function, and properties of the chemicals

More information

Survival Organic Chemistry Part I: Molecular Models

Survival Organic Chemistry Part I: Molecular Models Survival Organic Chemistry Part I: Molecular Models The goal in this laboratory experience is to get you so you can easily and quickly move between empirical formulas, molecular formulas, condensed formulas,

More information

Chapter 2 Polar Covalent Bond Covalent bond in which the electron pairs are not shared equally.

Chapter 2 Polar Covalent Bond Covalent bond in which the electron pairs are not shared equally. hapter 2 Polar ovalent Bond ovalent bond in which the electron pairs are not shared equally. Pure ovalent Bond (non-polar) increasing bond polarity Ionic Bond X X X Y X + Y - Electronegativity, c ability

More information

Chapter 2 The Chemical Context of Life

Chapter 2 The Chemical Context of Life Chapter 2 The Chemical Context of Life Multiple-Choice Questions 1) About 25 of the 92 natural elements are known to be essential to life. Which four of these 25 elements make up approximately 96% of living

More information

Sample Exercise 8.1 Magnitudes of Lattice Energies

Sample Exercise 8.1 Magnitudes of Lattice Energies Sample Exercise 8.1 Magnitudes of Lattice Energies Without consulting Table 8.2, arrange the following ionic compounds in order of increasing lattice energy: NaF, CsI, and CaO. Analyze: From the formulas

More information

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP Today: Ionic Bonding vs. Covalent Bonding Strengths of Covalent Bonds: Bond Energy Diagrams Bond Polarities: Nonpolar Covalent vs. Polar Covalent vs. Ionic Electronegativity Differences Dipole Moments

More information

The Lewis structure is a model that gives a description of where the atoms, charges, bonds, and lone pairs of electrons, may be found.

The Lewis structure is a model that gives a description of where the atoms, charges, bonds, and lone pairs of electrons, may be found. CEM110 Week 12 Notes (Chemical Bonding) Page 1 of 8 To help understand molecules (or radicals or ions), VSEPR shapes, and properties (such as polarity and bond length), we will draw the Lewis (or electron

More information

Chemical Bonding: Covalent Systems Written by Rebecca Sunderman, Ph.D Week 1, Winter 2012, Matter & Motion

Chemical Bonding: Covalent Systems Written by Rebecca Sunderman, Ph.D Week 1, Winter 2012, Matter & Motion Chemical Bonding: Covalent Systems Written by Rebecca Sunderman, Ph.D Week 1, Winter 2012, Matter & Motion A covalent bond is a bond formed due to a sharing of electrons. Lewis structures provide a description

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Chapter 4 Educational Goals 1. Given the formula of a molecule, the student will be able to draw the line-bond (Lewis) structure. 2. Understand and construct condensed structural

More information

CHAPTER 5: MOLECULAR ORBITALS

CHAPTER 5: MOLECULAR ORBITALS Chapter 5 Molecular Orbitals 5 CHAPTER 5: MOLECULAR ORBITALS 5. There are three possible bonding interactions: p z d z p y d yz p x d xz 5. a. Li has a bond order of. (two electrons in a bonding orbital;

More information

Chapter 2: The Chemical Context of Life

Chapter 2: The Chemical Context of Life Chapter 2: The Chemical Context of Life Name Period This chapter covers the basics that you may have learned in your chemistry class. Whether your teacher goes over this chapter, or assigns it for you

More information

Polarity. Andy Schweitzer

Polarity. Andy Schweitzer Polarity Andy Schweitzer What does it mean to be polar? A molecule is polar if it contains + and somewhere in the molecule. Remember: Protons can not move. So for a molecule to get a +/- it must somehow

More information

Kinetic Molecular Theory. Chapter 5. KE AVE and Average Velocity. Graham s Law of Effusion. Chapter 7. Real Gases

Kinetic Molecular Theory. Chapter 5. KE AVE and Average Velocity. Graham s Law of Effusion. Chapter 7. Real Gases hapter 5 1. Kinetic Molecular Theory. 2. Average kinetic energy and velocity. 3. Graham s Law of Effusion. 4. Real gases and the van der Waals equation. Kinetic Molecular Theory The curves below represent

More information

AS Chemistry Revision Notes Unit 1 Atomic Structure, Bonding And Periodicity

AS Chemistry Revision Notes Unit 1 Atomic Structure, Bonding And Periodicity AS Chemistry Revision Notes Unit Atomic Structure, Bonding And Periodicity Atomic Structure. All atoms have a mass number, A (the number of nucleons), and a proton number, Z (the number of protons). 2.

More information

Chapter 8 Basic Concepts of the Chemical Bonding

Chapter 8 Basic Concepts of the Chemical Bonding Chapter 8 Basic Concepts of the Chemical Bonding 1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. (a). 4, 2 (b). 2, 4 (c). 4, 3 (d). 2, 3 Explanation: Read the question

More information

O P O O. This structure puts the negative charges on the more electronegative element which is preferred. Molecular Geometry: O Xe O

O P O O. This structure puts the negative charges on the more electronegative element which is preferred. Molecular Geometry: O Xe O hemistry& 141 lark ollege Exam 4 olution 1. Draw the Lewis structures for the following molecules and ions. Include formal charges and resonance structures, where appropriate. Fill out the table for the

More information