TOPIC 3: CONTINUITY OF FUNCTIONS

Size: px
Start display at page:

Download "TOPIC 3: CONTINUITY OF FUNCTIONS"

Transcription

1 TOPIC 3: CONTINUITY OF FUNCTIONS. Absolute value We work in the field of real numbers, R. For the study of the properties of functions we need the concept of absolute value of a number. Definition.. Let a be a real number. Then the absolute value of a is the real number a defined by { a, if a a =. a, if a The absolute value a can be interpreted as its distance from zero on the number line. alternative definition is a = a. An.. Properties. Let a, b R. () a, and a = if and only if a =. () a a a. (3) ab = a b. (4) If a b, then a b. (5) (The Triangle Inequality) a + b a + b. (6) Let p any positive number. Then (a) a p if and only if p a p. (b) a p if and only if a p or a p. Example.. Prove the Triangle Inequality. Solution: a + b = (a + b) = a + ab + b = a + ab + b a + a b + b = ( a + b ), from which we conclude a + b a + b. Example.3. Solve the inequality 5 < x 9. Solution: From (6b), 5 < x if and only if x > 5 or x < 5; hence, x > 3 or x <, that gives the set (, ) (3, + ). From (6a), x 9 if and only if 9 x 9; hence 4 x 5, that is, x [ 4, 5]. Both inequalities hold simultaneously if and only if x belongs to (, ) (3, + ) and to [ 4, 5]. Hence, the solution set is [ 4, ) (3, 5].. Functions A function f consists of two sets, D and R, called the domain and the range of f, and a rule that assigns to each element of D exactly one element of R. This is expressed as f : D R. The graph of f is the set G of ordered pairs (x, y) such that x is in the domain of the function and y is the corresponding element in the range. The value of the function at x D is the element y R such that (x, y) G and will be denoted y = f(x). Thus, the range is the set R = {f(x) x D}, and the graph is G = {(x, f(x)) x D}.

2 y TOPIC 3: CONTINUITY OF FUNCTIONS To stress the dependence of the above sets of the function f, we most often write D(f), R(f) and G(f). We are specially interested in real functions of one variable with D, R R and of two variables, with D R R, R R. We concentrate first in functions of one variable. Example.. () Let f(x) = x. The domain is D = R and the range is R = [, + ). The graph is a parabola passing through (, ) that opens upward () Let g(x) = x. The domain is D(g) = [, + ) and the range is R(g) = [, + ). The graph is shown below (3) Let h(x) = /x. The domain is D(h) = R {} and the range is R(h) = R {}. The graph is shown below x

3 TOPIC 3: CONTINUITY OF FUNCTIONS 3 (4) Let l(x) = ln x. The domain is D(l) = (, + ) and the range is R(l) = R. The graph is shown below. 3 4 (5) Let m(x) = x. The domain is D(m) = R and the range is R(m) = [, + ). The graph is shown below (6) Let n(x) = x( x). The domain is D(n) = [, ] and the range is R(n) = [, ]. The graph is shown below The domain of a function is clear from the statement of the function. The range, however, is not always easily determined. The graph of the function helps to visualize the range. If you project lights horizontally toward the y axis from a great distance away, the shadow of the graph on the y axis gives a picture of the range.

4 4 TOPIC 3: CONTINUITY OF FUNCTIONS A function can be defined by different formulas for different intervals. As an example, the graph of the function x, if x ; f(x) = x, if < x ; x, if x >. is shown below. 3 3 Example.. It costs + /x euros per liter to manufacture x liters of a detergent. What is the total cost of manufacturing liters? What is the profit in manufacturing x liters of detergent if it is sold at euros per liter? Solution: The cost of manufacturing liters is ( + /) = euros. Let c(x) be the cost of manufacturing x liters; then c(x) = x( + /x) = x +. The profit Π(x) is equal to sales minus cost thus, Π(x) = x c(x) = x. In particular, the profit of manufacturing liters is Π() = 99 euros... Operations with functions. Consider functions f, g : D R R and λ R. () The sum of f and g is the function defined as (f + g)(x) = f(x) + g(x). () The product of function f by a scalar λ is defined as the function (λf)(x) = λf(x). (3) The product of f and g is the function defined as (fg)(x) = f(x)g(x). (4) The quotient of f and g is the function defined as (f/g)(x) = f(x)/g(x) whenever g(x)... Composition of functions. Let functions f : D(f) R and g : D(g) R such that R(f) D(g). Observe that we have imposed that g is well defined at some points of the range of f. Definition.3. The composition of functions f and g is the function g f : D R defined as (g f)(x) = g(f(x)). Example.4. If f(x) = 4 x and g(x) = x, find g f, f g and their domains and ranges. Solution: By definition Observe that g f f g. Finally (g f)(x) = g(f(x)) = g( 4 x ) = 4 x, (f g)(x) = f(g(x)) = f(x) = 4 (x) = x. D(g f) = [, ], D(f g) = [, ].

5 TOPIC 3: CONTINUITY OF FUNCTIONS 5 and (why?) R(g f) = [, 4], R(f g) = [, ]..3. Inverse function. The function I(x) = x is called the identity function. We will define the inverse of a function f as the function g (if any) such that f g = g f = I. Definition.5. The inverse of the function f : D R is denoted f and satisfies f(f (x)) = x and f (f(x)) = x x. Observe that the inverse has the following properties: () The domain of f is the range of f. () The range of f is the domain of f. Example.6. If f(x) = x and g(x) = x +, f and g are inverse functions. Actually, ( ) ( ) x x g(f(x)) = g = + = x (x + ) f(g(x)) = f(x + ) = = x. Example.7. Find the inverse of f(x) = 4 x for x. Solution: The inverse of f can be determined as follows: () Set y = 4 x. () Switch x and y, x = 4 y, y (describes y = f (x)). (3) Solve for y, y = 4 x (since y we disregard the negative root). Then f (x) = 4 x, with domain (, 4]. The graphs of f and its inverse are shown in the figure below. 4 3 (x,y) f(x) f (x) y=x (y,x) 3 4 Observe that for every point (x, y) in the graph of y = f(x), there is a point (y, x) in the graph of y = f (x). This occurs because whenever f(x) = y, then f (y) = x by the definition of inverse functions. Hence, if we fold the coordinate plane along the line y = x, then the graphs of f and f will coincide. The line y = x is the line of symmetry. Remark.8. Not all functions have inverse functions. Functions that do have inverses are called one to one functions, meaning that to each y value corresponds exactly one x value. One to one functions can be identified by the horizontal line test: If the graph of f is such that no horizontal line intersects the graph in more than one point, then f is one to one and admits inverse.

6 6 TOPIC 3: CONTINUITY OF FUNCTIONS Example.9. The function y = f(x) = 4 x is not one to one since to y = 3 corresponds two different values of x, namely x = and x = : f() = f( ) = 3. Hence, there is no inverse of f in R. This is the reason we considered the function in the region x in the previous example. The function fails to pass the horizontal line test in R but the test is positive in the region x and f admits an inverse in [, )..4. Periodic functions and symmetry. A function f is periodic with period p > if for every x in the domain of f, f(x + p) = f(x) (actually, the period is the smallest p > with this property). As we know, sin(x) and cos(x) are periodic functions of period π, and tan(x) is of period π. In general, if a function f(x) is periodic with period p, then g(x) = f(cx) is periodic with period p/c (c ). This is easily shown as follows: g(x + p/c) = f(c(x + p/c)) = f(cx + p) = f(cx) = g(x). Thus, the function sin x is periodic with period π. A function f is an even function if f( x) = f(x) for every x in the domain of f. The graph of an even function is symmetric with respect to the y axis. Functions f(x) = x, f(x) = x + x 4 and f(x) = cos x are even. A function f is an odd function if f( x) = f(x) for every x in the domain of f. The graph of an odd function has the origin as point of symmetry, that is, the origin is the midpoint of the segment joining pairs of points of the graph of f. Functions f(x) = x, f(x) = x 3 + x 5 and f(x) = sin x are odd. 3. Monotonicity A function f is said to be monotonous increasing if for any x, y D(f) x < y implies f(x) f(y) (strictly increasing if f(x) < f(y)). A function f is said to be monotonous decreasing if for any x, y D(f) x < y implies f(x) f(y) (strictly decreasing if f(x) > f(y)). The definitions can be referred to an interval I. Example 3.. The function f(x) = x is not monotonous in R but it is strictly decreasing in (, ] and strictly increasing in [, ). To show that it is strictly increasing in [, ), let x < y. Then f(y) f(x) = y x = (y x)(y + x) > since y > x. 4. Limits To determine the behavior of a function f as x approaches a finite value c, we use the concept of it. We say that the it of f is L, and write x c f(x) = L, if the values of f approaches L when x gets closer to c. Definition 4.. (Limit when x approach a finite value c). We say that x c f(x) = L if for any small positive ɛ, there is a positive δ such that whenever < x c < δ. f(x) L < ɛ We can split the above definition in two parts, using one sided its. Definition 4.. () We say that L is the it of f as x approaches c from the right, x c + f(x) = L, if for any small positive ɛ, there is a positive δ such that whenever < x c < δ. f(x) L < ɛ

7 TOPIC 3: CONTINUITY OF FUNCTIONS 7 () We say that L is the it of f as x approaches c from the left, x c f(x) = L, if for any small positive ɛ, there is a positive δ such that whenever < c x < δ. Theorem 4.3. x c f(x) = L if and only if x c f(x) L < ɛ x c f(x) = L and f(x) = L. + We can also wonder about the behavior of the function f when x approaches + or. Definition 4.4. (Limits when x approaches ± ) () x + f(x) = L if for any small positive ɛ, there is a positive value of x, call it x, such that f(x) L < ɛ whenever x > x. () x f(x) = L if for any small positive ɛ, there is a negative value of x, call it x, such that f(x) L < ɛ whenever x < x. If the absolute values of a function become arbitrarily large as x approaches either a finite value c or ±, then the function has no finite it L but will approach or +. It is possible to give the formal definitions. For example, we will say that x c f(x) = + if for any large positive number M, there is a positive δ such that f(x) > M whenever < x c < δ. Please, complete the remainder cases. Remark 4.5. If the point c belongs to the domain of the function f, then x c f(x) = f(c). Example 4.6. Consider the following its. () x x + 7 = 3. x 6 () x ± x x + 7 =, because the leading term in the polynomial gets arbitrarily large. (3) x + x3 x =, because the leading term in the polynomial gets arbitrarily large for large values of x, but x x3 x = because the leading term in the polynomial gets arbitrarily large in absolute value, and negative. =, since for x arbitrarily large in absolute value, /x is arbitrarily small. x (4) x ± (5) x x does not exists. Actually, the one sided its are: x + x = +. x x =. The right it is infinity because /x becomes arbitrarily large when x is small and positive. The left it is minus infinity because /x becomes arbitrarily large in absolute value and negative, when x is small and negative. (6) x + x sin x does not exist. As x approaches infinity, sin x oscillates between and. This means that x sin x changes sign infinitely often when x approaches infinity, whilst taking arbitrarily large absolute values. The graph is shown below.

8 8 TOPIC 3: CONTINUITY OF FUNCTIONS x, if x ; (7) Consider the function f(x) = x, if < x ; x f(x) = f() =, but x f(x) x, if x >. does not exist since the one sided its are different. x (8) x x f(x) = x =, x + x + f(x) = x x x =. does not exist, because the one sided its are different. x x + x = x x + x =, x x x = x = (when x is negative, x = x). x x In the following, f(x) refer to the it as x approaches +, or a real number c, but we never mix different type of its. 4.. Properties of its. f and g are given functions and we suppose that all the its below exist; λ R denotes an arbitrary scalar. () Product by a scalar: λf(x) = λ f(x). () Sum: (f(x) + g(x)) = f(x) + g(x). (3) Product: f(x)g(x) = ( f(x))( g(x)). (4) Quotient: If g(x), then f(x) f(x) = g(x) g(x). Theorem 4.7 (Squeeze Theorem). Assume that the functions f, g and h are defined around the point c, except, maybe, for the point c itself, and satisfy the inequalities Let x c g(x) = x c h(x) = L. Then Example 4.8. Show that x x sin g(x) f(x) h(x). ( ) =. x f(x) = L. x c Solution: We use the theorem above with g(x) = x and h(x) = x. Notice that for every x, sin (/x) thus, when x > x x sin (/x) x,

9 TOPIC 3: CONTINUITY OF FUNCTIONS 9 and when x < x x sin (/x) x. These inequalities mean that x x sin (/x) x. Since x = x =, x x we can use the theorem above to conclude that x x sin x =. 4.. Techniques for evaluating f(x) g(x). () Use the property of the quotient of its, if possible. () If f(x) = and g(x) =, try the following: (a) Factor f(x) and g(x) and reduce f(x) g(x) to lowest terms. (b) If f(x) or g(x) involves a square root, then multiply both f(x) and g(x) by the conjugate of the square root. Example 4.9. x 9 x 3 x + 3 = x 3 + x + x = x x x x (x 3)(x + 3) x + 3 ) ( + + x + + x = x (3) If f(x) and g(x) =, then either f(x) g(x) = x 3 (x 3) =. x x( + + x) = x + + x =. f(x) does not exist or g(x) = + or. (4) If x approaches + or, divide the numerator and denominator by the highest power of x in any term of the denominator. Example An important it. Recall that Example 4.. Find the following its: tan x sin x () = x x x x cos x = sin x x x sin 3x (z=3x) sin z () = x x z z x 3 x x x 4 + = x x 3 x + = + =. x 4 3 sin x x x =. x sin z = 3 = 3. z z 5. Asymptotes cos x = =. An asymptote is a line that the graph of a function approaches more and more closely until the distance between the curve and the line almost vanishes. Definition 5.. Let f be a function () The line x = c is a vertical asymptote of f if x c f(x) =. () The line y = b is a horizontal asymptote of f if x + f(x) = b or x f(x) = b. (3) The line y = ax + b is an oblique asymptote of f if (a) (b) x + x f(x) x f(x) x = a and (f(x) ax) = b, or x + = a and (f(x) ax) = b. x

10 TOPIC 3: CONTINUITY OF FUNCTIONS Notice that a horizontal asymptote is a particular case of oblique asymptote with a =. Example 5.. Determine the asymptotes of f(x) = ( + x)4 ( x) 4. Solution: Since the denominator vanishes at x =, the domain of f is R {}. Let us check that x = is a vertical asymptote of f: On the other hand ( + x) 4 x ± ( x) 4 = + ( + x) 4 x + ( x) 4 = x 4 + lower order terms x + x 4 + lower order terms =, hence y = is a horizontal asymptote at +. In the same way, y = is a horizontal asymptote at. There is no other oblique asymptotes. Example 5.3. Determine the asymptotes of f(x) = 3x3 x. Solution: The domain of f is R {}. Let us check if x = is a vertical asymptote of f. 3x 3 x ± x = x ±(3x x ) = 3x x ± Thus, x = is a vertical asymptote of f. On the other hand x ± x =. 3x 3 x ± x = (3x x ± x ) = ± thus, there is no horizontal asymptote. Let us study now oblique asymptotes: a = b = f(x) x ± x = 3x 3 x ± x 3 = (f(x) 3x) = x ± x ± (3 x ) x ± 3 = 3, ( 3x 3 ) 3x We conclude that y = 3x is an oblique asymptote both at + and. x 6. Continuity = ( x ) x ± =. The easiest its to evaluate are those involving continuous functions. Intuitively, a function is continuous if one can draw its graph without lifting the pencil from the paper. Definition 6.. A function f : R R is continuous at c if c D(f) and f(x) = f(c). x c Hence, f is discontinuous at c if either f(c) is undefined or x c f(x) does not exist or x c f(x) f(c). 6.. Properties of continuous functions. Suppose that the functions f and g are both continuous at c. Then the following functions are also continuous at c. () Sum. f + g. () Product by a scalar. λf, λ R. (3) Product. f g. (4) Quotient. f/g, whenever g(c). 6.. Continuity of a composite function. Suppose that f is continuous at c and g is continuous at f(c). Then, the composite function g f is also continuous at c.

11 TOPIC 3: CONTINUITY OF FUNCTIONS 6.3. Continuity of elementary functions. A function is called elementary if it can be obtained by means of a finite number of arithmetic operations and superpositions involving basic elementary functions. The functions y = C = constant, y = x a, y = a x, y = ln x, y = e x, y = sin x, y = cos x, y = tan x, y = arctan x are examples of elementary functions. Elementary functions are continuous in their domain. Example 6.. () The function f(x) = 4 x is the composition of the functions y = 4 x and f(y) = y /, which are elementary, thus f is continuous in its domain, that is, in D = [, +]. () The function g(x) = 4 x is the composition of function f above and function g(y) = /y, thus it is elementary and continuous in its domain, D(g) = (, +) Continuity theorems. Continuous functions have interesting properties. We shall say that a function is continuous in the closed interval [a, b] if it is continuous at every point x [a, b]. Theorem 6.3 (Bolzano s Theorem). If f is continuous in [a, b] and f(a) f(b) <, then there exists some c (a, b) such that f(c) =. Example 6.4. Show that the equation x 3 + x = admits a solution, and find it with an error less than.. Solution: With f(x) = x 3 + x the problem is to show that there exists c such that f(c) =. We want to apply Bolzano s Theorem. First, f is continuous in R. Second, we identify a suitable interval I = [a, b]. Notice that f() = < and f() = > thus, there is a solution c (, ). Now, to find an approximate value for c, we use a method of bracket and halving as follows: consider the interval [.5, ]; f(.5) = /8 + / < and f() >, thus c (.5, ). Choose now the interval [.5,.75]; f(.5) < and f(.75) = 7/64 + 3/4 > thus, c (.5,.75). Let now the interval [.65,.75]; f(.65).3 and f(.74) > thus, c (.65,.75). The solution is approximately c =.6875 with a maximum error of.65. Theorem 6.5 (Weierstrass Theorem). If f is continuous in [a, b], then there exist points c, d [a, b] such that f(c) f(x) f(d) for every x [a, b]. The theorem asserts that a continuous function attains over a closed interval a minimum (m = f(c)) and a maximum value (M = f(d)). The point c is called a global minimum of f on [a, b] and d is called a global maximum of f on [a, b]. Example 6.6. Show that the function f(x) = x + attains over the closed interval [, ] a minimum and a maximum value. Solution: The graph of f is shown below

12 TOPIC 3: CONTINUITY OF FUNCTIONS We can see that f is continuous in [, ], actually f is continuous in R, and f attains the minimum value at x =, f() =, and the maximum value at x =, f() = 5.

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity

MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x

More information

Homework # 3 Solutions

Homework # 3 Solutions Homework # 3 Solutions February, 200 Solution (2.3.5). Noting that and ( + 3 x) x 8 = + 3 x) by Equation (2.3.) x 8 x 8 = + 3 8 by Equations (2.3.7) and (2.3.0) =3 x 8 6x2 + x 3 ) = 2 + 6x 2 + x 3 x 8

More information

LIMITS AND CONTINUITY

LIMITS AND CONTINUITY LIMITS AND CONTINUITY 1 The concept of it Eample 11 Let f() = 2 4 Eamine the behavior of f() as approaches 2 2 Solution Let us compute some values of f() for close to 2, as in the tables below We see from

More information

The Mean Value Theorem

The Mean Value Theorem The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers

More information

Continuity. DEFINITION 1: A function f is continuous at a number a if. lim

Continuity. DEFINITION 1: A function f is continuous at a number a if. lim Continuity DEFINITION : A function f is continuous at a number a if f(x) = f(a) REMARK: It follows from the definition that f is continuous at a if and only if. f(a) is defined. 2. f(x) and +f(x) exist.

More information

Exercises and Problems in Calculus. John M. Erdman Portland State University. Version August 1, 2013

Exercises and Problems in Calculus. John M. Erdman Portland State University. Version August 1, 2013 Exercises and Problems in Calculus John M. Erdman Portland State University Version August 1, 2013 c 2010 John M. Erdman E-mail address: erdman@pdx.edu Contents Preface ix Part 1. PRELIMINARY MATERIAL

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

Practice with Proofs

Practice with Proofs Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using

More information

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1 Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

2.1 Increasing, Decreasing, and Piecewise Functions; Applications

2.1 Increasing, Decreasing, and Piecewise Functions; Applications 2.1 Increasing, Decreasing, and Piecewise Functions; Applications Graph functions, looking for intervals on which the function is increasing, decreasing, or constant, and estimate relative maxima and minima.

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving

More information

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?

36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous? 36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this

More information

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper. FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is

More information

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions.

Algebra 2 Chapter 1 Vocabulary. identity - A statement that equates two equivalent expressions. Chapter 1 Vocabulary identity - A statement that equates two equivalent expressions. verbal model- A word equation that represents a real-life problem. algebraic expression - An expression with variables.

More information

Limits and Continuity

Limits and Continuity Math 20C Multivariable Calculus Lecture Limits and Continuity Slide Review of Limit. Side limits and squeeze theorem. Continuous functions of 2,3 variables. Review: Limits Slide 2 Definition Given a function

More information

Math 120 Final Exam Practice Problems, Form: A

Math 120 Final Exam Practice Problems, Form: A Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,

More information

Cartesian Products and Relations

Cartesian Products and Relations Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) :(a A) and (b B)}. The following points are worth special

More information

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus

South Carolina College- and Career-Ready (SCCCR) Pre-Calculus South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know

More information

a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F

a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all

More information

INTRODUCTORY SET THEORY

INTRODUCTORY SET THEORY M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

More information

sin(x) < x sin(x) x < tan(x) sin(x) x cos(x) 1 < sin(x) sin(x) 1 < 1 cos(x) 1 cos(x) = 1 cos2 (x) 1 + cos(x) = sin2 (x) 1 < x 2

sin(x) < x sin(x) x < tan(x) sin(x) x cos(x) 1 < sin(x) sin(x) 1 < 1 cos(x) 1 cos(x) = 1 cos2 (x) 1 + cos(x) = sin2 (x) 1 < x 2 . Problem Show that using an ɛ δ proof. sin() lim = 0 Solution: One can see that the following inequalities are true for values close to zero, both positive and negative. This in turn implies that On the

More information

Vocabulary Words and Definitions for Algebra

Vocabulary Words and Definitions for Algebra Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

More information

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s

More information

The Derivative. Philippe B. Laval Kennesaw State University

The Derivative. Philippe B. Laval Kennesaw State University The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition

More information

ALGEBRA REVIEW LEARNING SKILLS CENTER. Exponents & Radicals

ALGEBRA REVIEW LEARNING SKILLS CENTER. Exponents & Radicals ALGEBRA REVIEW LEARNING SKILLS CENTER The "Review Series in Algebra" is taught at the beginning of each quarter by the staff of the Learning Skills Center at UC Davis. This workshop is intended to be an

More information

MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

More information

Section 2.7 One-to-One Functions and Their Inverses

Section 2.7 One-to-One Functions and Their Inverses Section. One-to-One Functions and Their Inverses One-to-One Functions HORIZONTAL LINE TEST: A function is one-to-one if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.

More information

Calculus. Contents. Paul Sutcliffe. Office: CM212a.

Calculus. Contents. Paul Sutcliffe. Office: CM212a. Calculus Paul Sutcliffe Office: CM212a. www.maths.dur.ac.uk/~dma0pms/calc/calc.html Books One and several variables calculus, Salas, Hille & Etgen. Calculus, Spivak. Mathematical methods in the physical

More information

Notes on metric spaces

Notes on metric spaces Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.

More information

Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem

Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem Intermediate Value Theorem, Rolle s Theorem and Mean Value Theorem February 21, 214 In many problems, you are asked to show that something exists, but are not required to give a specific example or formula

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

SAT Subject Math Level 2 Facts & Formulas

SAT Subject Math Level 2 Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses

More information

GRE Prep: Precalculus

GRE Prep: Precalculus GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach

More information

5.1 Derivatives and Graphs

5.1 Derivatives and Graphs 5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has

More information

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

More information

To define function and introduce operations on the set of functions. To investigate which of the field properties hold in the set of functions

To define function and introduce operations on the set of functions. To investigate which of the field properties hold in the set of functions Chapter 7 Functions This unit defines and investigates functions as algebraic objects. First, we define functions and discuss various means of representing them. Then we introduce operations on functions

More information

SAT Subject Math Level 1 Facts & Formulas

SAT Subject Math Level 1 Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses

More information

x a x 2 (1 + x 2 ) n.

x a x 2 (1 + x 2 ) n. Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number

More information

Geometric Transformations

Geometric Transformations Geometric Transformations Definitions Def: f is a mapping (function) of a set A into a set B if for every element a of A there exists a unique element b of B that is paired with a; this pairing is denoted

More information

MATH 221 FIRST SEMESTER CALCULUS. fall 2007

MATH 221 FIRST SEMESTER CALCULUS. fall 2007 MATH 22 FIRST SEMESTER CALCULUS fall 2007 Typeset:December, 2007 2 Math 22 st Semester Calculus Lecture notes version.0 (Fall 2007) This is a self contained set of lecture notes for Math 22. The notes

More information

Trigonometric Functions: The Unit Circle

Trigonometric Functions: The Unit Circle Trigonometric Functions: The Unit Circle This chapter deals with the subject of trigonometry, which likely had its origins in the study of distances and angles by the ancient Greeks. The word trigonometry

More information

Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression.

Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. MAC 1105 Final Review Simplify the rational expression. Find all numbers that must be excluded from the domain of the simplified rational expression. 1) 8x 2-49x + 6 x - 6 A) 1, x 6 B) 8x - 1, x 6 x -

More information

Zeros of a Polynomial Function

Zeros of a Polynomial Function Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

More information

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm. PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle

More information

Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only

Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only Algebra II End of Course Exam Answer Key Segment I Scientific Calculator Only Question 1 Reporting Category: Algebraic Concepts & Procedures Common Core Standard: A-APR.3: Identify zeros of polynomials

More information

G. GRAPHING FUNCTIONS

G. GRAPHING FUNCTIONS G. GRAPHING FUNCTIONS To get a quick insight int o how the graph of a function looks, it is very helpful to know how certain simple operations on the graph are related to the way the function epression

More information

1.7 Graphs of Functions

1.7 Graphs of Functions 64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each x-coordinate was matched with only one y-coordinate. We spent most

More information

3.3 Real Zeros of Polynomials

3.3 Real Zeros of Polynomials 3.3 Real Zeros of Polynomials 69 3.3 Real Zeros of Polynomials In Section 3., we found that we can use synthetic division to determine if a given real number is a zero of a polynomial function. This section

More information

Metric Spaces Joseph Muscat 2003 (Last revised May 2009)

Metric Spaces Joseph Muscat 2003 (Last revised May 2009) 1 Distance J Muscat 1 Metric Spaces Joseph Muscat 2003 (Last revised May 2009) (A revised and expanded version of these notes are now published by Springer.) 1 Distance A metric space can be thought of

More information

6.4 Logarithmic Equations and Inequalities

6.4 Logarithmic Equations and Inequalities 6.4 Logarithmic Equations and Inequalities 459 6.4 Logarithmic Equations and Inequalities In Section 6.3 we solved equations and inequalities involving exponential functions using one of two basic strategies.

More information

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate

More information

Vector and Matrix Norms

Vector and Matrix Norms Chapter 1 Vector and Matrix Norms 11 Vector Spaces Let F be a field (such as the real numbers, R, or complex numbers, C) with elements called scalars A Vector Space, V, over the field F is a non-empty

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS.

WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS. WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS. DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE Contributor: U.N.Iyer Department of Mathematics and Computer Science, CP 315, Bronx Community College, University

More information

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

More information

5.3 Improper Integrals Involving Rational and Exponential Functions

5.3 Improper Integrals Involving Rational and Exponential Functions Section 5.3 Improper Integrals Involving Rational and Exponential Functions 99.. 3. 4. dθ +a cos θ =, < a

More information

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

More information

2.2 Separable Equations

2.2 Separable Equations 2.2 Separable Equations 73 2.2 Separable Equations An equation y = f(x, y) is called separable provided algebraic operations, usually multiplication, division and factorization, allow it to be written

More information

Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

More information

Answer Key for California State Standards: Algebra I

Answer Key for California State Standards: Algebra I Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

More information

Differentiation and Integration

Differentiation and Integration This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have

More information

1 Lecture: Integration of rational functions by decomposition

1 Lecture: Integration of rational functions by decomposition Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.

More information

Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)

Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y) Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = Last day, we saw that the function f(x) = ln x is one-to-one, with domain (, ) and range (, ). We can conclude that f(x) has an inverse function

More information

MATH 21. College Algebra 1 Lecture Notes

MATH 21. College Algebra 1 Lecture Notes MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a

More information

Understanding Basic Calculus

Understanding Basic Calculus Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

More information

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were: Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

More information

Real Roots of Univariate Polynomials with Real Coefficients

Real Roots of Univariate Polynomials with Real Coefficients Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials

More information

Separable First Order Differential Equations

Separable First Order Differential Equations Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously

More information

MATH 221 FIRST SEMESTER CALCULUS. fall 2009

MATH 221 FIRST SEMESTER CALCULUS. fall 2009 MATH 22 FIRST SEMESTER CALCULUS fall 2009 Typeset:June 8, 200 MATH 22 st SEMESTER CALCULUS LECTURE NOTES VERSION 2.0 (fall 2009) This is a self contained set of lecture notes for Math 22. The notes were

More information

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

More information

Week 1: Functions and Equations

Week 1: Functions and Equations Week 1: Functions and Equations Goals: Review functions Introduce modeling using linear and quadratic functions Solving equations and systems Suggested Textbook Readings: Chapter 2: 2.1-2.2, and Chapter

More information

SOLVING TRIGONOMETRIC INEQUALITIES (CONCEPT, METHODS, AND STEPS) By Nghi H. Nguyen

SOLVING TRIGONOMETRIC INEQUALITIES (CONCEPT, METHODS, AND STEPS) By Nghi H. Nguyen SOLVING TRIGONOMETRIC INEQUALITIES (CONCEPT, METHODS, AND STEPS) By Nghi H. Nguyen DEFINITION. A trig inequality is an inequality in standard form: R(x) > 0 (or < 0) that contains one or a few trig functions

More information

4. How many integers between 2004 and 4002 are perfect squares?

4. How many integers between 2004 and 4002 are perfect squares? 5 is 0% of what number? What is the value of + 3 4 + 99 00? (alternating signs) 3 A frog is at the bottom of a well 0 feet deep It climbs up 3 feet every day, but slides back feet each night If it started

More information

Power functions: f(x) = x n, n is a natural number The graphs of some power functions are given below. n- even n- odd

Power functions: f(x) = x n, n is a natural number The graphs of some power functions are given below. n- even n- odd 5.1 Polynomial Functions A polynomial unctions is a unction o the orm = a n n + a n-1 n-1 + + a 1 + a 0 Eample: = 3 3 + 5 - The domain o a polynomial unction is the set o all real numbers. The -intercepts

More information

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123 Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from

More information

Algebra 2: Themes for the Big Final Exam

Algebra 2: Themes for the Big Final Exam Algebra : Themes for the Big Final Exam Final will cover the whole year, focusing on the big main ideas. Graphing: Overall: x and y intercepts, fct vs relation, fct vs inverse, x, y and origin symmetries,

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu

MOP 2007 Black Group Integer Polynomials Yufei Zhao. Integer Polynomials. June 29, 2007 Yufei Zhao yufeiz@mit.edu Integer Polynomials June 9, 007 Yufei Zhao yufeiz@mit.edu We will use Z[x] to denote the ring of polynomials with integer coefficients. We begin by summarizing some of the common approaches used in dealing

More information

Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

More information

CHAPTER 7. Di erentiation

CHAPTER 7. Di erentiation CHAPTER 7 Di erentiation 1. Te Derivative at a Point Definition 7.1. Let f be a function defined on a neigborood of x 0. f is di erentiable at x 0, if te following it exists: f 0 fx 0 + ) fx 0 ) x 0 )=.

More information

Linear Algebra Notes for Marsden and Tromba Vector Calculus

Linear Algebra Notes for Marsden and Tromba Vector Calculus Linear Algebra Notes for Marsden and Tromba Vector Calculus n-dimensional Euclidean Space and Matrices Definition of n space As was learned in Math b, a point in Euclidean three space can be thought of

More information

Rolle s Theorem. q( x) = 1

Rolle s Theorem. q( x) = 1 Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question

More information

Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11}

Mathematics Pre-Test Sample Questions A. { 11, 7} B. { 7,0,7} C. { 7, 7} D. { 11, 11} Mathematics Pre-Test Sample Questions 1. Which of the following sets is closed under division? I. {½, 1,, 4} II. {-1, 1} III. {-1, 0, 1} A. I only B. II only C. III only D. I and II. Which of the following

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

REVIEW EXERCISES DAVID J LOWRY

REVIEW EXERCISES DAVID J LOWRY REVIEW EXERCISES DAVID J LOWRY Contents 1. Introduction 1 2. Elementary Functions 1 2.1. Factoring and Solving Quadratics 1 2.2. Polynomial Inequalities 3 2.3. Rational Functions 4 2.4. Exponentials and

More information

5.1 Radical Notation and Rational Exponents

5.1 Radical Notation and Rational Exponents Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

More information

Some Lecture Notes and In-Class Examples for Pre-Calculus:

Some Lecture Notes and In-Class Examples for Pre-Calculus: Some Lecture Notes and In-Class Examples for Pre-Calculus: Section.7 Definition of a Quadratic Inequality A quadratic inequality is any inequality that can be put in one of the forms ax + bx + c < 0 ax

More information

*X100/12/02* X100/12/02. MATHEMATICS HIGHER Paper 1 (Non-calculator) MONDAY, 21 MAY 1.00 PM 2.30 PM NATIONAL QUALIFICATIONS 2012

*X100/12/02* X100/12/02. MATHEMATICS HIGHER Paper 1 (Non-calculator) MONDAY, 21 MAY 1.00 PM 2.30 PM NATIONAL QUALIFICATIONS 2012 X00//0 NTIONL QULIFITIONS 0 MONY, MY.00 PM.0 PM MTHEMTIS HIGHER Paper (Non-calculator) Read carefully alculators may NOT be used in this paper. Section Questions 0 (40 marks) Instructions for completion

More information

Homework 2 Solutions

Homework 2 Solutions Homework Solutions 1. (a) Find the area of a regular heagon inscribed in a circle of radius 1. Then, find the area of a regular heagon circumscribed about a circle of radius 1. Use these calculations to

More information

3. INNER PRODUCT SPACES

3. INNER PRODUCT SPACES . INNER PRODUCT SPACES.. Definition So far we have studied abstract vector spaces. These are a generalisation of the geometric spaces R and R. But these have more structure than just that of a vector space.

More information

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

More information

Domain of a Composition

Domain of a Composition Domain of a Composition Definition Given the function f and g, the composition of f with g is a function defined as (f g)() f(g()). The domain of f g is the set of all real numbers in the domain of g such

More information

Metric Spaces. Chapter 1

Metric Spaces. Chapter 1 Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

5.3 The Cross Product in R 3

5.3 The Cross Product in R 3 53 The Cross Product in R 3 Definition 531 Let u = [u 1, u 2, u 3 ] and v = [v 1, v 2, v 3 ] Then the vector given by [u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ] is called the cross product (or

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information