Chapter Five: Paired Samples Methods 1/38

Size: px
Start display at page:

Download "Chapter Five: Paired Samples Methods 1/38"

Transcription

1 Chapter Five: Paired Samples Methods 1/38

2 5.1 Introduction 2/38 Introduction Paired data arise with some frequency in a variety of research contexts. Patients might have a particular type of laser surgery performed on one eye with a second form performed on the remaining eye. Visual acuity measures taken on the two eyes would constitute paired data. Patients might have a baseline blood pressure measure taken, receive some treatment with a subsequent blood pressure measure then being taken. The two blood pressure measures would constitute paired data. Twins might be exposed to two different types of vaccine against some disease. An assessment as to whether the twins developed the disease or not would constitute paired data.

3 Methods Related To Mean Difference 3/38 The Paired Samples (Difference) t Test The paired samples t test is conducted on difference scores obtained by subtracting one paired observation from the other. The null hypothesis tested is H 0 : µ d = µ d0 where µ d is the mean of a difference score population and µ d0 is the hypothesized value of µ d (usually but not always zero).

4 Methods Related To Mean Difference 4/38 The Paired Samples t Test (continued) One-tailed alternatives are either H A : µ d > µ d0 or H A : µ d < µ d0 The two-tailed alternative is H A : µ d µ d0

5 Methods Related To Mean Difference 5/38 The Test Statistic The paired samples t test is nothing more than a one mean t test conducted on difference (d) scores. Therefore, the test statistic takes the form t = d µ d0 s d n where d is the sample mean of the difference scores, s 0 the sample standard deviation of the difference scores and n the number of paired observations (or difference scores).

6 Methods Related To Mean Difference 6/38 Example Researchers are interested in comparing the effectiveness of two laser surgery treatments for diabetic retinopathy. Patients who manifest the disease in both eyes have one eye treated by the first surgical method with the remaining eye then being treated by the second method. After a period of time, visual acuity is measured (via LogMar scores) for each eye.

7 Methods Related To Mean Difference 7/38 Example (continued) The question of interest is Does one treatment method produce better vision (as measured by acuity) than does the other? Use the data provided in the next slide (#8) to perform a two-tailed paired samples t test with α =.05 in order to assist in determining whether one treatment was more effective than the other. Based on this test, what do you conclude?

8 Methods Related To Mean Difference 8/38 Example (continued) Table: 5.3 LogMar Scores Treatment One Treatment Two d d σ

9 Methods Related To Mean Difference 9/38 Solution Using the sums from Table 5.3, s d =.81 (.5) = =.129 = and d =.5 7 =.071. By Equation 5.1 obtained t is t = d µ d0 n s d =.071 = =

10 Methods Related To Mean Difference 10/38 Solution (continued) Because the critical values for a two-tailed t test with six degrees of freedom conducted at the.05 level are and 2.447, the null hypothesis is not rejected. We conclude that there was insufficient evidence to allow for a conclusion that the treatments differed in their effectiveness.

11 Methods Related To Mean Difference 11/38 Introduction It sometimes happens that researchers would like to establish that there is no practical difference between treatments or between preand post-treatment means rather than showing that there is a difference. In such instances the paired samples t test can be used to establish equivalence.

12 Methods Related To Mean Difference 12/38 Two-Tailed Null And Alternative Hypotheses If we let EI U represent the upper end of EI and EI L the lower end, the equivalence null hypothesis for the (paired samples) two-tailed equivalence test is The alternative is H 0E : µ d EI L or µ d EI U H AE : EI L < µ d < EI U Notice that the null hypothesis states that the population difference score mean is not in EI while the alternative states that this mean is in EI. The null hypothesis, then, is an assertion of non-equivalence while the alternative asserts equivalence.

13 Methods Related To Mean Difference 13/38 Testing The Equivalence Null Hypothesis Testing the null hypothesis for a two-tailed equivalence test requires that two one-tailed tests be conducted. The null and alternative hypotheses for the two one-tailed tests for paired samples means are as follows Test One Test Two H 01 : µ d = EI U H 02 : µ d = EI L H A1 : µ d < EI U H A2 : µ d > EI L Both of these tests must be significant in order to reject the equivalence null hypothesis.

14 Methods Related To Mean Difference 14/38 Example A manufacturer of blood pressure monitoring devices wishes to demonstrate that a new, less expensive, model produces equivalent results to the older, more expensive, device. To this end, blood pressures of 10 subjects are assessed by means of both devices. Difference scores (d) are calculated for the paired readings with the following results. d = 16 d 2 = 94 Use these results to perform a two-tailed equivalence test with the equivalence interval of 4 to 4. Begin by stating the null and alternative equivalence hypotheses.

15 Methods Related To Mean Difference 15/38 Solution The null and alternative equivalence hypotheses are as follows. H 0E : µ d 4 or µ d 4 We calculate d 2 (P d) 2 and s d = n 1 H AE : 4 < µ d < 4 n = d d = n 94 (16) = = = = 2.280

16 Methods Related To Mean Difference 16/38 Solution (continued) Values of obtained t for Test One and Two are then t 1 = = and t 2 = ( 4.0) = Critical t values based on 16 1 = 15 degrees of freedom for the two one-tailed tests are and It follows that both results are significant leading to rejection of the null hypothesis that the two devices are not equivalent insofar as mean blood pressures are concerned in favor of the alternative that maintains equivalence.

17 Methods Related To Mean Difference 17/38 One-Tailed Null And Alternative Hypotheses The null and alternative hypotheses for the one-tailed equivalence test are one of the following: H 0E : µ d EI U H AE : µ d < EI U OR H 0E : µ d EI L H AE : µ d > EI L The first one-tailed equivalence hypothesis given above is tested by Test One with the second being carried out by means of Test Two.

18 Methods Related To Mean Difference 18/38 Example Eighteen subjects who routinely take a standard dose of a cholesterol lowering drug are switched to a lower does that is believed to produce less severe side effects. The question of interest is, Will the reduced dose produce cholesterol levels that are not worse than those obtained with the higher dose? Cholesterol is measured while patients are still on the higher dose and again after they have been on the lower dose for a specified period of time. The researchers decide that if average cholesterol rises by less than six points the reduced dose can be declared to produce results that are no worse than those produced by the higher dose.

19 Methods Related To Mean Difference 19/38 Example (continued) Difference scores are generated by subtracting cholesterol levels obtained from the higher dosage from those obtained from the lower dosage. The following results are obtained. d = 40, d 2 = 730 Use a one-tailed equivalence test with α =.05 to make this determination.

20 Methods Related To Mean Difference 20/38 Solution Because the researchers wish to determine if the rise in cholesterol is less than six points, a one-tailed equivalence test of the form H 0E : µ d 6 H AE : µ d < 6

21 Methods Related To Mean Difference 21/38 Solution (continued) From the previously provided sums we calculate d 2 (P d) 2 s d = n 1 n = 730 (40) = = and Then, d = d n = = t 1 = d µ d0 n s d = =

22 Methods Related To Mean Difference 22/38 Solution (continued) Critical t for a one-tailed test conducted at α =.05 with 17 degrees of freedom is The null hypothesis is rejected leading to the conclusion that the reduced dose is not worse than the higher dose insofar as control of cholesterol is concerned.

23 Methods Related To Mean Difference 23/38 Introduction The paired samples t test attempts to determine whether there is a difference between the means of two paired variables. A related and usually more informative question is, How large is the difference between the means of the paired variables? This difference can be estimated with a confidence interval.

24 Methods Related To Mean Difference 24/38 Construction Of The Interval Construction of L and U are as follows L = d t s d n U = d + t s d n where s d is the sample standard deviation of the difference scores and t is the appropriate value from the t table with n 1 degrees of freedom.

25 Methods Related To Mean Difference 25/38 Example Use the data in slide number 8 to form a two-sided 95% confidence interval. What is the meaning of this interval?

26 Methods Related To Mean Difference 26/38 Solution and s d =.81 (.5) = d =.5 7 =.071. =.359

27 Methods Related To Mean Difference 27/38 Solution (continued) Noting from Appendix B that the appropriate t value (with six degrees of freedom) for a two-sided 95% confidence interval is 2.447, Equations 5.2 and 5.3 yield L = d t s d n = =.403 and U = d + t s d n = =.261.

28 Methods Related To Mean Difference 28/38 Solution (continued) A statistical interpretation of this interval would maintain that we can be 95% confident that µ d is between.403 and.261. From the researcher s point of view, it can be stated with 95% confidence that the average difference in visual acuity between patients receiving laser treatment one and those receiving laser treatment two was between.403 and.261 LogMar units. Based on this interval can you rule out a difference of zero?

29 Methods Related To Mean Difference 29/38 Assumptions Assumptions underlying the paired samples t test, equivalence tests based on the paired samples t test, and the confidence interval for mean difference are the same as those for the one mean t test and consequently, the one mean Z test. These are normality independence You should note that these assumptions apply to the difference scores rather than to the two component distributions.

30 Methods Related To Proportions 30/38 McNemar s Test McNemar s test is used to assess outcomes for paired dichotomous data. The null hypothesis assessed is H 0 : π =.5 which is an assertion that the proportion of pairs in which one treatment is favored is equal to the proportion of pairs in which the other treatment is favored. Alternatives take one of the following forms. H A : π < 0 H A : π > 0 H A : π 0

31 1 An equivalent test utilizes the chi-square distribution. Methods Related To Proportions 31/38 McNemar s Test (continued) There are both approximate and exact forms of the test. The approximate form is based on the normal curve 1 and uses the test statistic Z = ˆp.5.5 n where ˆp is the proportion of pairs in which the designated treatment has the advantage and n is the number of pairs utilized in the analysis. The exact test is based on the binomial distribution.

32 Methods Related To Proportions 32/38 Approximate Method: Example Two forms of sunscreen are to be compared with respect to level of protection afforded against sun-induced skin damage. One form of sunscreen is applied to a randomly selected arm of each of 15 volunteer subjects with the second form then being applied to the remaining arm. After a specified period of sun exposure, the skin of each arm is examined and graded as exhibiting a satisfactory level of protection S or as not exhibiting a satisfactory level of protection S.

33 Methods Related To Proportions 33/38 Approximate Method: Example (continued) It was found that the number of pairs where both arms were graded S was 2, both were S was 3, product one produced an S while product two produced an S was 9 and the number of pairs where product one produced an S while product two produced an S was 1. Use the approximate method to perform a two-tailed McNemar s test at α =.05 on the sunscreen data. What is your conclusion concerning the relative effectiveness of the two sunscreen products?

34 Methods Related To Proportions 34/38 Solution Ignoring noninformative outcomes, we note that the proportion of outcomes favoring product one is 9 10 =.90 and n = 10. Equation 5.4 then gives Z = = Appendix A shows that the critical values for a two-tailed test conducted at α =.05 are and 1.96 thereby leading to rejection of the null hypothesis.

35 Methods Related To Proportions 35/38 Solution (continued) Viewed from a statistical point of view the null and alternative hypotheses are H 0 : π =.5 and H A : π.5 When viewed from the context of this study, the null hypothesis asserts that there is no difference in the effectiveness of the two products while the alternative maintains that such a difference does exist. In this case, we rejected the claim of no difference in favor of a statement that the two products do differ in effectiveness. Further, we can conclude that product one is superior to product two in terms of protection provided.

36 Methods Related To Proportions 36/38 Exact Method The exact method employs the binomial distribution to test the null hypothesis H 0 : π =.5

37 Methods Related To Proportions 37/38 Example Use the example outlined in slide 32 with the result reported in slide 33 to perform an exact McNemar s test with alternative H A : π >.5

38 Methods Related To Proportions 38/38 Solution Noting that of the 10 pairs of arms, the number in which treatment one afforded a satisfactory result while treatment two did not was 9. By Equation 4.5 we calculate P (9) = and P (10) = The p-value for a test with alternative H A : π >.5 is then = Because this value is less than α =.05, the null hypothesis is rejected.

An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS

An Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10- TWO-SAMPLE TESTS The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10- TWO-SAMPLE TESTS Practice

More information

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as... HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

More information

Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation

Calculating P-Values. Parkland College. Isela Guerra Parkland College. Recommended Citation Parkland College A with Honors Projects Honors Program 2014 Calculating P-Values Isela Guerra Parkland College Recommended Citation Guerra, Isela, "Calculating P-Values" (2014). A with Honors Projects.

More information

HYPOTHESIS TESTING: POWER OF THE TEST

HYPOTHESIS TESTING: POWER OF THE TEST HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,

More information

Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses

Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the

More information

3.4 Statistical inference for 2 populations based on two samples

3.4 Statistical inference for 2 populations based on two samples 3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted

More information

Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis

More information

12.5: CHI-SQUARE GOODNESS OF FIT TESTS

12.5: CHI-SQUARE GOODNESS OF FIT TESTS 125: Chi-Square Goodness of Fit Tests CD12-1 125: CHI-SQUARE GOODNESS OF FIT TESTS In this section, the χ 2 distribution is used for testing the goodness of fit of a set of data to a specific probability

More information

Introduction to Hypothesis Testing OPRE 6301

Introduction to Hypothesis Testing OPRE 6301 Introduction to Hypothesis Testing OPRE 6301 Motivation... The purpose of hypothesis testing is to determine whether there is enough statistical evidence in favor of a certain belief, or hypothesis, about

More information

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as... HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

More information

Module 2 Probability and Statistics

Module 2 Probability and Statistics Module 2 Probability and Statistics BASIC CONCEPTS Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The standard deviation of a standard normal distribution

More information

Section 12 Part 2. Chi-square test

Section 12 Part 2. Chi-square test Section 12 Part 2 Chi-square test McNemar s Test Section 12 Part 2 Overview Section 12, Part 1 covered two inference methods for categorical data from 2 groups Confidence Intervals for the difference of

More information

Hypothesis testing - Steps

Hypothesis testing - Steps Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =

More information

Introduction to Hypothesis Testing

Introduction to Hypothesis Testing I. Terms, Concepts. Introduction to Hypothesis Testing A. In general, we do not know the true value of population parameters - they must be estimated. However, we do have hypotheses about what the true

More information

How To Test For Significance On A Data Set

How To Test For Significance On A Data Set Non-Parametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A non-parametric equivalent of the 1 SAMPLE T-TEST. ASSUMPTIONS: Data is non-normally distributed, even after log transforming.

More information

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

More information

C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters.

C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters. Sample Multiple Choice Questions for the material since Midterm 2. Sample questions from Midterms and 2 are also representative of questions that may appear on the final exam.. A randomly selected sample

More information

In the general population of 0 to 4-year-olds, the annual incidence of asthma is 1.4%

In the general population of 0 to 4-year-olds, the annual incidence of asthma is 1.4% Hypothesis Testing for a Proportion Example: We are interested in the probability of developing asthma over a given one-year period for children 0 to 4 years of age whose mothers smoke in the home In the

More information

Hypothesis Testing. Hypothesis Testing

Hypothesis Testing. Hypothesis Testing Hypothesis Testing Daniel A. Menascé Department of Computer Science George Mason University 1 Hypothesis Testing Purpose: make inferences about a population parameter by analyzing differences between observed

More information

Chi-square test Fisher s Exact test

Chi-square test Fisher s Exact test Lesson 1 Chi-square test Fisher s Exact test McNemar s Test Lesson 1 Overview Lesson 11 covered two inference methods for categorical data from groups Confidence Intervals for the difference of two proportions

More information

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96 1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

More information

Descriptive Statistics

Descriptive Statistics Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

More information

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

More information

Parametric and non-parametric statistical methods for the life sciences - Session I

Parametric and non-parametric statistical methods for the life sciences - Session I Why nonparametric methods What test to use? Rank Tests Parametric and non-parametric statistical methods for the life sciences - Session I Liesbeth Bruckers Geert Molenberghs Interuniversity Institute

More information

NONPARAMETRIC STATISTICS 1. depend on assumptions about the underlying distribution of the data (or on the Central Limit Theorem)

NONPARAMETRIC STATISTICS 1. depend on assumptions about the underlying distribution of the data (or on the Central Limit Theorem) NONPARAMETRIC STATISTICS 1 PREVIOUSLY parametric statistics in estimation and hypothesis testing... construction of confidence intervals computing of p-values classical significance testing depend on assumptions

More information

Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing

Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing

More information

THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7.

THE FIRST SET OF EXAMPLES USE SUMMARY DATA... EXAMPLE 7.2, PAGE 227 DESCRIBES A PROBLEM AND A HYPOTHESIS TEST IS PERFORMED IN EXAMPLE 7. THERE ARE TWO WAYS TO DO HYPOTHESIS TESTING WITH STATCRUNCH: WITH SUMMARY DATA (AS IN EXAMPLE 7.17, PAGE 236, IN ROSNER); WITH THE ORIGINAL DATA (AS IN EXAMPLE 8.5, PAGE 301 IN ROSNER THAT USES DATA FROM

More information

Two-Sample T-Tests Assuming Equal Variance (Enter Means)

Two-Sample T-Tests Assuming Equal Variance (Enter Means) Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of

More information

Two Related Samples t Test

Two Related Samples t Test Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person

More information

Non-Parametric Tests (I)

Non-Parametric Tests (I) Lecture 5: Non-Parametric Tests (I) KimHuat LIM lim@stats.ox.ac.uk http://www.stats.ox.ac.uk/~lim/teaching.html Slide 1 5.1 Outline (i) Overview of Distribution-Free Tests (ii) Median Test for Two Independent

More information

Two Correlated Proportions (McNemar Test)

Two Correlated Proportions (McNemar Test) Chapter 50 Two Correlated Proportions (Mcemar Test) Introduction This procedure computes confidence intervals and hypothesis tests for the comparison of the marginal frequencies of two factors (each with

More information

Study Guide for the Final Exam

Study Guide for the Final Exam Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

More information

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test

More information

Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test

Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely

More information

CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS

CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS CHI-SQUARE TESTS OF INDEPENDENCE (SECTION 11.1 OF UNDERSTANDABLE STATISTICS) In chi-square tests of independence we use the hypotheses. H0: The variables are independent

More information

Chi Square Tests. Chapter 10. 10.1 Introduction

Chi Square Tests. Chapter 10. 10.1 Introduction Contents 10 Chi Square Tests 703 10.1 Introduction............................ 703 10.2 The Chi Square Distribution.................. 704 10.3 Goodness of Fit Test....................... 709 10.4 Chi Square

More information

Name: (b) Find the minimum sample size you should use in order for your estimate to be within 0.03 of p when the confidence level is 95%.

Name: (b) Find the minimum sample size you should use in order for your estimate to be within 0.03 of p when the confidence level is 95%. Chapter 7-8 Exam Name: Answer the questions in the spaces provided. If you run out of room, show your work on a separate paper clearly numbered and attached to this exam. Please indicate which program

More information

Pearson's Correlation Tests

Pearson's Correlation Tests Chapter 800 Pearson's Correlation Tests Introduction The correlation coefficient, ρ (rho), is a popular statistic for describing the strength of the relationship between two variables. The correlation

More information

Regression Analysis: A Complete Example

Regression Analysis: A Complete Example Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

More information

Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)

Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption

More information

General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1.

General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1. General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n

More information

Section 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935)

Section 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935) Section 7.1 Introduction to Hypothesis Testing Schrodinger s cat quantum mechanics thought experiment (1935) Statistical Hypotheses A statistical hypothesis is a claim about a population. Null hypothesis

More information

Statistiek I. Proportions aka Sign Tests. John Nerbonne. CLCG, Rijksuniversiteit Groningen. http://www.let.rug.nl/nerbonne/teach/statistiek-i/

Statistiek I. Proportions aka Sign Tests. John Nerbonne. CLCG, Rijksuniversiteit Groningen. http://www.let.rug.nl/nerbonne/teach/statistiek-i/ Statistiek I Proportions aka Sign Tests John Nerbonne CLCG, Rijksuniversiteit Groningen http://www.let.rug.nl/nerbonne/teach/statistiek-i/ John Nerbonne 1/34 Proportions aka Sign Test The relative frequency

More information

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)

More information

Chapter 7 Notes - Inference for Single Samples. You know already for a large sample, you can invoke the CLT so:

Chapter 7 Notes - Inference for Single Samples. You know already for a large sample, you can invoke the CLT so: Chapter 7 Notes - Inference for Single Samples You know already for a large sample, you can invoke the CLT so: X N(µ, ). Also for a large sample, you can replace an unknown σ by s. You know how to do a

More information

BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394

BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete

More information

Introduction to Analysis of Variance (ANOVA) Limitations of the t-test

Introduction to Analysis of Variance (ANOVA) Limitations of the t-test Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only

More information

Unit 26 Estimation with Confidence Intervals

Unit 26 Estimation with Confidence Intervals Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference

More information

6: Introduction to Hypothesis Testing

6: Introduction to Hypothesis Testing 6: Introduction to Hypothesis Testing Significance testing is used to help make a judgment about a claim by addressing the question, Can the observed difference be attributed to chance? We break up significance

More information

Hypothesis Testing. Reminder of Inferential Statistics. Hypothesis Testing: Introduction

Hypothesis Testing. Reminder of Inferential Statistics. Hypothesis Testing: Introduction Hypothesis Testing PSY 360 Introduction to Statistics for the Behavioral Sciences Reminder of Inferential Statistics All inferential statistics have the following in common: Use of some descriptive statistic

More information

HYPOTHESIS TESTING WITH SPSS:

HYPOTHESIS TESTING WITH SPSS: HYPOTHESIS TESTING WITH SPSS: A NON-STATISTICIAN S GUIDE & TUTORIAL by Dr. Jim Mirabella SPSS 14.0 screenshots reprinted with permission from SPSS Inc. Published June 2006 Copyright Dr. Jim Mirabella CHAPTER

More information

5/31/2013. Chapter 8 Hypothesis Testing. Hypothesis Testing. Hypothesis Testing. Outline. Objectives. Objectives

5/31/2013. Chapter 8 Hypothesis Testing. Hypothesis Testing. Hypothesis Testing. Outline. Objectives. Objectives C H 8A P T E R Outline 8 1 Steps in Traditional Method 8 2 z Test for a Mean 8 3 t Test for a Mean 8 4 z Test for a Proportion 8 6 Confidence Intervals and Copyright 2013 The McGraw Hill Companies, Inc.

More information

Math 251, Review Questions for Test 3 Rough Answers

Math 251, Review Questions for Test 3 Rough Answers Math 251, Review Questions for Test 3 Rough Answers 1. (Review of some terminology from Section 7.1) In a state with 459,341 voters, a poll of 2300 voters finds that 45 percent support the Republican candidate,

More information

Standard Deviation Estimator

Standard Deviation Estimator CSS.com Chapter 905 Standard Deviation Estimator Introduction Even though it is not of primary interest, an estimate of the standard deviation (SD) is needed when calculating the power or sample size of

More information

Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm

Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm

More information

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics. Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

More information

t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon

t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com

More information

II. DISTRIBUTIONS distribution normal distribution. standard scores

II. DISTRIBUTIONS distribution normal distribution. standard scores Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,

More information

22. HYPOTHESIS TESTING

22. HYPOTHESIS TESTING 22. HYPOTHESIS TESTING Often, we need to make decisions based on incomplete information. Do the data support some belief ( hypothesis ) about the value of a population parameter? Is OJ Simpson guilty?

More information

Tests of Hypotheses Using Statistics

Tests of Hypotheses Using Statistics Tests of Hypotheses Using Statistics Adam Massey and Steven J. Miller Mathematics Department Brown University Providence, RI 0292 Abstract We present the various methods of hypothesis testing that one

More information

Two-sample hypothesis testing, II 9.07 3/16/2004

Two-sample hypothesis testing, II 9.07 3/16/2004 Two-sample hypothesis testing, II 9.07 3/16/004 Small sample tests for the difference between two independent means For two-sample tests of the difference in mean, things get a little confusing, here,

More information

Non-Inferiority Tests for Two Means using Differences

Non-Inferiority Tests for Two Means using Differences Chapter 450 on-inferiority Tests for Two Means using Differences Introduction This procedure computes power and sample size for non-inferiority tests in two-sample designs in which the outcome is a continuous

More information

Stats Review Chapters 9-10

Stats Review Chapters 9-10 Stats Review Chapters 9-10 Created by Teri Johnson Math Coordinator, Mary Stangler Center for Academic Success Examples are taken from Statistics 4 E by Michael Sullivan, III And the corresponding Test

More information

Comparing Two Groups. Standard Error of ȳ 1 ȳ 2. Setting. Two Independent Samples

Comparing Two Groups. Standard Error of ȳ 1 ȳ 2. Setting. Two Independent Samples Comparing Two Groups Chapter 7 describes two ways to compare two populations on the basis of independent samples: a confidence interval for the difference in population means and a hypothesis test. The

More information

Confidence Intervals for the Difference Between Two Means

Confidence Intervals for the Difference Between Two Means Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means

More information

p ˆ (sample mean and sample

p ˆ (sample mean and sample Chapter 6: Confidence Intervals and Hypothesis Testing When analyzing data, we can t just accept the sample mean or sample proportion as the official mean or proportion. When we estimate the statistics

More information

Point Biserial Correlation Tests

Point Biserial Correlation Tests Chapter 807 Point Biserial Correlation Tests Introduction The point biserial correlation coefficient (ρ in this chapter) is the product-moment correlation calculated between a continuous random variable

More information

Principles of Hypothesis Testing for Public Health

Principles of Hypothesis Testing for Public Health Principles of Hypothesis Testing for Public Health Laura Lee Johnson, Ph.D. Statistician National Center for Complementary and Alternative Medicine johnslau@mail.nih.gov Fall 2011 Answers to Questions

More information

NCSS Statistical Software. One-Sample T-Test

NCSS Statistical Software. One-Sample T-Test Chapter 205 Introduction This procedure provides several reports for making inference about a population mean based on a single sample. These reports include confidence intervals of the mean or median,

More information

Chapter 3 RANDOM VARIATE GENERATION

Chapter 3 RANDOM VARIATE GENERATION Chapter 3 RANDOM VARIATE GENERATION In order to do a Monte Carlo simulation either by hand or by computer, techniques must be developed for generating values of random variables having known distributions.

More information

Statistics Review PSY379

Statistics Review PSY379 Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses

More information

Correlational Research

Correlational Research Correlational Research Chapter Fifteen Correlational Research Chapter Fifteen Bring folder of readings The Nature of Correlational Research Correlational Research is also known as Associational Research.

More information

Chi Squared and Fisher's Exact Tests. Observed vs Expected Distributions

Chi Squared and Fisher's Exact Tests. Observed vs Expected Distributions BMS 617 Statistical Techniques for the Biomedical Sciences Lecture 11: Chi-Squared and Fisher's Exact Tests Chi Squared and Fisher's Exact Tests This lecture presents two similarly structured tests, Chi-squared

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

Nonparametric Statistics

Nonparametric Statistics Nonparametric Statistics J. Lozano University of Goettingen Department of Genetic Epidemiology Interdisciplinary PhD Program in Applied Statistics & Empirical Methods Graduate Seminar in Applied Statistics

More information

Name: Date: Use the following to answer questions 3-4:

Name: Date: Use the following to answer questions 3-4: Name: Date: 1. Determine whether each of the following statements is true or false. A) The margin of error for a 95% confidence interval for the mean increases as the sample size increases. B) The margin

More information

1 Nonparametric Statistics

1 Nonparametric Statistics 1 Nonparametric Statistics When finding confidence intervals or conducting tests so far, we always described the population with a model, which includes a set of parameters. Then we could make decisions

More information

Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics

Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This

More information

Simple Regression Theory II 2010 Samuel L. Baker

Simple Regression Theory II 2010 Samuel L. Baker SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the

More information

StatCrunch and Nonparametric Statistics

StatCrunch and Nonparametric Statistics StatCrunch and Nonparametric Statistics You can use StatCrunch to calculate the values of nonparametric statistics. It may not be obvious how to enter the data in StatCrunch for various data sets that

More information

Independent t- Test (Comparing Two Means)

Independent t- Test (Comparing Two Means) Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent

More information

How to get accurate sample size and power with nquery Advisor R

How to get accurate sample size and power with nquery Advisor R How to get accurate sample size and power with nquery Advisor R Brian Sullivan Statistical Solutions Ltd. ASA Meeting, Chicago, March 2007 Sample Size Two group t-test χ 2 -test Survival Analysis 2 2 Crossover

More information

Test Positive True Positive False Positive. Test Negative False Negative True Negative. Figure 5-1: 2 x 2 Contingency Table

Test Positive True Positive False Positive. Test Negative False Negative True Negative. Figure 5-1: 2 x 2 Contingency Table ANALYSIS OF DISCRT VARIABLS / 5 CHAPTR FIV ANALYSIS OF DISCRT VARIABLS Discrete variables are those which can only assume certain fixed values. xamples include outcome variables with results such as live

More information

Difference of Means and ANOVA Problems

Difference of Means and ANOVA Problems Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly

More information

Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition

Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Online Learning Centre Technology Step-by-Step - Excel Microsoft Excel is a spreadsheet software application

More information

6.4 Normal Distribution

6.4 Normal Distribution Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

More information

Statistical Testing of Randomness Masaryk University in Brno Faculty of Informatics

Statistical Testing of Randomness Masaryk University in Brno Faculty of Informatics Statistical Testing of Randomness Masaryk University in Brno Faculty of Informatics Jan Krhovják Basic Idea Behind the Statistical Tests Generated random sequences properties as sample drawn from uniform/rectangular

More information

STATISTICS 8, FINAL EXAM. Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4

STATISTICS 8, FINAL EXAM. Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4 STATISTICS 8, FINAL EXAM NAME: KEY Seat Number: Last six digits of Student ID#: Circle your Discussion Section: 1 2 3 4 Make sure you have 8 pages. You will be provided with a table as well, as a separate

More information

Hypothesis Testing --- One Mean

Hypothesis Testing --- One Mean Hypothesis Testing --- One Mean A hypothesis is simply a statement that something is true. Typically, there are two hypotheses in a hypothesis test: the null, and the alternative. Null Hypothesis The hypothesis

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

Estimation of σ 2, the variance of ɛ

Estimation of σ 2, the variance of ɛ Estimation of σ 2, the variance of ɛ The variance of the errors σ 2 indicates how much observations deviate from the fitted surface. If σ 2 is small, parameters β 0, β 1,..., β k will be reliably estimated

More information

Non-Inferiority Tests for One Mean

Non-Inferiority Tests for One Mean Chapter 45 Non-Inferiority ests for One Mean Introduction his module computes power and sample size for non-inferiority tests in one-sample designs in which the outcome is distributed as a normal random

More information

research/scientific includes the following: statistical hypotheses: you have a null and alternative you accept one and reject the other

research/scientific includes the following: statistical hypotheses: you have a null and alternative you accept one and reject the other 1 Hypothesis Testing Richard S. Balkin, Ph.D., LPC-S, NCC 2 Overview When we have questions about the effect of a treatment or intervention or wish to compare groups, we use hypothesis testing Parametric

More information

Tests for Two Proportions

Tests for Two Proportions Chapter 200 Tests for Two Proportions Introduction This module computes power and sample size for hypothesis tests of the difference, ratio, or odds ratio of two independent proportions. The test statistics

More information

Odds ratio, Odds ratio test for independence, chi-squared statistic.

Odds ratio, Odds ratio test for independence, chi-squared statistic. Odds ratio, Odds ratio test for independence, chi-squared statistic. Announcements: Assignment 5 is live on webpage. Due Wed Aug 1 at 4:30pm. (9 days, 1 hour, 58.5 minutes ) Final exam is Aug 9. Review

More information

" Y. Notation and Equations for Regression Lecture 11/4. Notation:

 Y. Notation and Equations for Regression Lecture 11/4. Notation: Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

More information

1 Hypothesis Testing. H 0 : population parameter = hypothesized value:

1 Hypothesis Testing. H 0 : population parameter = hypothesized value: 1 Hypothesis Testing In Statistics, a hypothesis proposes a model for the world. Then we look at the data. If the data are consistent with that model, we have no reason to disbelieve the hypothesis. Data

More information

Non-Inferiority Tests for Two Proportions

Non-Inferiority Tests for Two Proportions Chapter 0 Non-Inferiority Tests for Two Proportions Introduction This module provides power analysis and sample size calculation for non-inferiority and superiority tests in twosample designs in which

More information

Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption

Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption Two-sample t-tests. - Independent samples - Pooled standard devation - The equal variance assumption Last time, we used the mean of one sample to test against the hypothesis that the true mean was a particular

More information

Introduction. Statistics Toolbox

Introduction. Statistics Toolbox Introduction A hypothesis test is a procedure for determining if an assertion about a characteristic of a population is reasonable. For example, suppose that someone says that the average price of a gallon

More information