Chapter 2 Mobile Communication

Size: px
Start display at page:

Download "Chapter 2 Mobile Communication"

Transcription

1 Page 77 Chapter 2 Mobile Communication 2.1 Characteristics of Mobile Computing 2.2 Wireless Communication Basics 2.3 Wireless Communication Technologies PANs (Bluetooth, ZigBee) Wireless LAN (IEEE ) Cellular Networks (GSM/UMTS) 2.4 Mobile Ad-hoc Networks (MANET)

2 Page 78 How Wireless Communication influences the Layers Application Layer Transport Layer service location new applications, multimedia adaptive applications congestion and flow control quality of service Network Layer Datalink Layer Physical Layer addressing, routing, device location hand-over authentication media access multiplexing media access control encryption modulation interference attenuation frequency

3 Page 79 Radio Waves Electromagnetic oscillation Frequency ƒ (Hz): Number of oscillations per second Speed of light: c 3 * 10 8 m/s (30 cm/ns) Wavelength: λ = c/ƒ Examples of wavelengths: 1 MHz == 300 m 100 MHz == 3 m 10 GHz == 3 cm

4 Page 80 Electromagnetic Spectrum [Image source: ]

5 Page 81 Signal Transmission Signal: physical representation of data The Signal is a function of time and data Classification of possible functions continuous time / discrete time continuous values / discrete values analog signal = continuous time and continuous values digital signal = discrete time and discrete values Periodical signal: g(t) = A t sin(2πƒ t t + ϕ t ) A t : amplitude (amplitude modulation) ƒ t : frequency (frequency modulation) ϕ t : phase shift (phase modulation)

6 Page 82 Modulation Digital modulation digital data is translated into an analog signal (baseband) differences in spectral efficiency, power efficiency, robustness Basic schemes Amplitude Modulation (AM) / Amplitude Shift Keying (ASK) Frequency Modulation (FM) / Frequency Shift Keying (FSK) Phase Modulation (PM) / Phase Shift Keying (PSK) Animation of AM/FM at

7 Page 83 Digital modulation Modulation of digital signals known as Shift Keying Amplitude Shift Keying (ASK): very simple low bandwidth requirements very susceptible to interference Frequency Shift Keying (FSK): needs larger bandwidth t t Phase Shift Keying (PSK): robust against interference t 1 0 1

8 Page 84 Nyquist Theorem Nyquist Theorem (1924) A bandwidth limited signal with a maximum frequency of H can be restored if 2H sample values are known. Calculate the maximal data rate that can be reached on a bandwidth limited channel Max. Datarate =2H log2 V Bit V: number of discrete values per sample s Achievable bandwidth still unlimited Just code more bits per symbol/sample Interactive Demos: nykvist_eng\nykvist.exe [Nota bene: Compressed Sensing goes beyond the Nyquist Theorem]

9 Page 85 Signal Noise Ratio Nyquist theorem only for noise-free channels In reality: noise/interference distorts the signal Signal-Noise Ratio (SNR) S : Signal Strength N : Noise Level SNR = 10 log 10 S/N db S/N SNR db db db

10 Page 86 Shannon-Hartley Shannon-Hartley-Law (1948) Maximum data rate in a noisy channel is limited by Signal to Noise Ratio Max. Datarate = H log (1 S ) Bit 2 + N s Example: Telephone system Bandwidth 3000 Hz SNR 30 db S/N = 1000 max. Datarate ~ Bit/s Claude Elwood Shannon Ralph Hartley

11 Page 87 Bandwidth vs. Propagation Carrier: Radio Frequency Microwave Infrared light Visible Light / Laser Frequency Wavelength Tradeoff: Higher Frequency More available bandwidth but lower propagation Lower Frequency Less available bandwidth but higher propagation

12 Page 88 Signal propagation ranges Transmission range communication possible low error rate Detection range sender detection of the signal possible no communication possible Interference range signal may not be detected signal adds to the background noise transmission detection interference distance Notion of a Radio Cell

13 Page 89 Attenuation / Loss / Fading Attenuation A = 10 log 10 (P s /P r ) db P s = Power Sent; P r = Power Received Ideal situation: P r ~P s /r 2 In reality: signal energy gets absorbed by atmosphere, rain, walls etc. Higher Frequencies higher fading Differences in free space fading vs. fading in solid material Influence of gravity Ground-waves (< 2 MHz): follow surface Sky-wave (2-30 MHz): Ionospheric reflection Line of Sight (>30 MHz): like visual light

14 Page 90 Interfering Effects Blocking (Abschattung) by large objects Reflection (Reflektion) at large objects Refraction (Brechung/Refraktion) if density of medium changes Scattering (Streuung) at small objects Diffraction (Beugung) at edges

15 Page 91 Multipath propagation Signal can take many different paths between sender and receiver due to reflection, refraction, scattering, diffraction line of sight pulses multipath pulses signal at sender signal at receiver Time dispersion signal is dispersed over time interference with neighbor symbols, Inter Symbol Interference (ISI) Delay spread the signal reaches a receiver directly and phase shifted distorted signal depending on the phases of the different parts

16 Page 92 Short/Long Term Fading Moving Sender/Receiver Short Term Fading quick changes in the power received due to rapidly changing characteristics of transmission channel (caused e.g. by multipath propagation) Long Term Fading slow changes in the power received due to changing distance between sender and receiver may be compensated by adapting transmit power Other Problem at high speeds Doppler effect

17 Page 93 Signal Strength in real world examples

18 Page 94 Unregulated Radio Bands ISM = Industrial, Science and Medical use Can effectively be used by anybody (ITU-R) 900 MHz, 2.4 GHz and 5.8 GHz frequency bands Restrictions regarding max. transmit power, etc. Becomes increasingly crowded Bluetooth, WLAN, wireless home appliances and many more

19 Page 95 Multiplexing Problem: How should multiple senders operate in parallel? Solution: Multiplexing in Space (SDM) in Frequency (FDM) in Time (TDM) in Code (CDM) Important: Guard spaces separate the channels

20 Page 96 Space Division Multiplex Large distance between two senders using the same frequency Utilizes attenuation cf. cellular network Same Frequency

21 Page 97 Frequency Division Multiplex Different senders use different frequencies Advantages no dynamic coordination necessary works also for analog signals Disadvantages waste of bandwidth if the traffic is distributed unevenly inflexible c c 1 c 2 c 3 c 4 c 5 c 6 Guard space f t

22 Page 98 Time Division Multiplex Different senders all use the same frequency, but at different times Advantages only one carrier in the medium at any time throughput high even for many users Disadvantages precise synchronization necessary c c 1 c 2 c 3 c 4 c 5 c 6 f t Guard space

23 Page 99 Combination TDM/FDM Often combinations of TDM/FDM are being applied A channel gets a certain frequency band for a certain amount of time Example: GSM Advantages: but: better protection against tapping protection against frequency selective interference higher data rates compared to code multiplex Precise coordination required c c 1 c 2 c 3 c 4 c 5 c 6 Guard space f t Guard space

24 Page 100 Code Division Multiplex c Different senders all use the same frequency and time, but separate codes Codes should be orthogonal Advantages: bandwidth efficient no coordination and synchronization necessary good protection against interference and tapping Disadvantages: lower user data rates more complex signal regeneration Implemented using spread spectrum technology t Guard space f c 1 c 2 c 3 c 4 c 5 c 6

25 Page 101 Multiple Access Methods based on the Multiplex Methods SDMA (Space Division Multiple Access) segment space into sectors, use directed antennas cell structure FDMA (Frequency Division Multiple Access) assign a certain frequency to a transmission channel between a sender and a receiver permanent (e.g., radio broadcast), slow hopping (e.g., GSM), fast hopping (e.g. Bluetooth) TDMA (Time Division Multiple Access) assign the fixed sending frequency to a transmission channel between a sender and a receiver for a certain amount of time (e.g. WLAN, GSM) CDMA (Code Division Multiple Access) assign orthogonal codes to different senders

Mobile Communications Chapter 2: Wireless Transmission

Mobile Communications Chapter 2: Wireless Transmission Mobile Communications Chapter 2: Wireless Transmission Frequencies Signals Antennas Signal propagation Multiplexing Spread spectrum Modulation Cellular systems Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/

More information

About Me" List of Lectures" In This Course" Mobile and Sensor Systems. Lecture 1: Introduction to Wireless Systems" " Dr. Cecilia Mascolo" "

About Me List of Lectures In This Course Mobile and Sensor Systems. Lecture 1: Introduction to Wireless Systems  Dr. Cecilia Mascolo About Me Reader in Mobile Systems NetOS Research Group Research on Mobile, Social and Sensor Systems More specifically, Human Mobility and Social Network modelling Opportunistic Mobile Networks Mobile

More information

Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman

Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman Antennas & Propagation CS 6710 Spring 2010 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception

More information

EECC694 - Shaaban. Transmission Channel

EECC694 - Shaaban. Transmission Channel The Physical Layer: Data Transmission Basics Encode data as energy at the data (information) source and transmit the encoded energy using transmitter hardware: Possible Energy Forms: Electrical, light,

More information

EPL 657 Wireless Networks

EPL 657 Wireless Networks EPL 657 Wireless Networks Some fundamentals: Multiplexing / Multiple Access / Duplex Infrastructure vs Infrastructureless Panayiotis Kolios Recall: The big picture... Modulations: some basics 2 Multiplexing

More information

Modern Wireless Communication

Modern Wireless Communication Modern Wireless Communication Simon Haykin, Michael Moher CH01-1 Chapter 1 Introduction CH01-2 1 Contents 1.1 Background 1.2 Communication Systems 1.3 Physical Layer 1.4 The Data-Link Layer 1.4.1 FDMA

More information

Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System

Digital Modulation. David Tipper. Department of Information Science and Telecommunications University of Pittsburgh. Typical Communication System Digital Modulation David Tipper Associate Professor Department of Information Science and Telecommunications University of Pittsburgh http://www.tele.pitt.edu/tipper.html Typical Communication System Source

More information

I. Wireless Channel Modeling

I. Wireless Channel Modeling I. Wireless Channel Modeling April 29, 2008 Qinghai Yang School of Telecom. Engineering qhyang@xidian.edu.cn Qinghai Yang Wireless Communication Series 1 Contents Free space signal propagation Pass-Loss

More information

T-79.7001 Postgraduate Course in Theoretical Computer Science T-79.5401 Special Course in Mobility Management: Ad hoc networks (2-10 cr) P V

T-79.7001 Postgraduate Course in Theoretical Computer Science T-79.5401 Special Course in Mobility Management: Ad hoc networks (2-10 cr) P V T-79.7001 Postgraduate Course in Theoretical Computer Science T-79.5401 Special Course in Mobility Management: Ad hoc networks (2-10 cr) P V professor Hannu H. Kari Laboratory for Theoretical Computer

More information

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/6/2014 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue

More information

DT3: RF On/Off Remote Control Technology. Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch

DT3: RF On/Off Remote Control Technology. Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch DT3: RF On/Off Remote Control Technology Rodney Singleton Joe Larsen Luis Garcia Rafael Ocampo Mike Moulton Eric Hatch Agenda Radio Frequency Overview Frequency Selection Signals Methods Modulation Methods

More information

communication over wireless link handling mobile user who changes point of attachment to network

communication over wireless link handling mobile user who changes point of attachment to network Wireless Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets: laptops, palmtops, PDAs, Internet-enabled phone promise anytime untethered Internet

More information

1 Lecture Notes 1 Interference Limited System, Cellular. Systems Introduction, Power and Path Loss

1 Lecture Notes 1 Interference Limited System, Cellular. Systems Introduction, Power and Path Loss ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2015 1 Lecture Notes 1 Interference Limited System, Cellular Systems Introduction, Power and Path Loss Reading: Mol 1, 2, 3.3, Patwari

More information

Frequency Hopping Spread Spectrum (FHSS) vs. Direct Sequence Spread Spectrum (DSSS) in Broadband Wireless Access (BWA) and Wireless LAN (WLAN)

Frequency Hopping Spread Spectrum (FHSS) vs. Direct Sequence Spread Spectrum (DSSS) in Broadband Wireless Access (BWA) and Wireless LAN (WLAN) FHSS vs. DSSS page 1 of 16 Frequency Hopping Spread Spectrum (FHSS) vs. Direct Sequence Spread Spectrum (DSSS) in Broadband Wireless Access (BWA) and Wireless LAN (WLAN) by Sorin M. SCHWARTZ Scope In 1997

More information

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction

Attenuation (amplitude of the wave loses strength thereby the signal power) Refraction Reflection Shadowing Scattering Diffraction Wireless Physical Layer Q1. Is it possible to transmit a digital signal, e.g., coded as square wave as used inside a computer, using radio transmission without any loss? Why? It is not possible to transmit

More information

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak

EE4367 Telecom. Switching & Transmission. Prof. Murat Torlak Path Loss Radio Wave Propagation The wireless radio channel puts fundamental limitations to the performance of wireless communications systems Radio channels are extremely random, and are not easily analyzed

More information

Sistemi di Trasmissione Radio. Università di Pavia. Sistemi di Trasmissione Radio

Sistemi di Trasmissione Radio. Università di Pavia. Sistemi di Trasmissione Radio Programma del corso Tecniche di trasmissione Modulazioni numeriche Sistemi ad allargameneto di banda Sistemi multi-tono Codifica di canale Codifica di sorgente (vocoder) Programma del corso Sistemi di

More information

Lecture 3: Signaling and Clock Recovery. CSE 123: Computer Networks Stefan Savage

Lecture 3: Signaling and Clock Recovery. CSE 123: Computer Networks Stefan Savage Lecture 3: Signaling and Clock Recovery CSE 123: Computer Networks Stefan Savage Last time Protocols and layering Application Presentation Session Transport Network Datalink Physical Application Transport

More information

1. (Ungraded) A noiseless 2-kHz channel is sampled every 5 ms. What is the maximum data rate?

1. (Ungraded) A noiseless 2-kHz channel is sampled every 5 ms. What is the maximum data rate? Homework 2 Solution Guidelines CSC 401, Fall, 2011 1. (Ungraded) A noiseless 2-kHz channel is sampled every 5 ms. What is the maximum data rate? 1. In this problem, the channel being sampled gives us the

More information

Omni Antenna vs. Directional Antenna

Omni Antenna vs. Directional Antenna Omni Antenna vs. Directional Antenna Document ID: 82068 Contents Introduction Prerequisites Requirements Components Used Conventions Basic Definitions and Antenna Concepts Indoor Effects Omni Antenna Pros

More information

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B CSE 3461 / 5461: Computer Networking & Internet Technologies Data Transmission Presentation B Kannan Srinivasan 08/30/2012 Data Communications Model Figure 1.2 Studying Assignment: 3.1-3.4, 4.1 Presentation

More information

GSM Network and Services

GSM Network and Services GSM Network and Services Cellular networks GSM Network and Services 2G1723 Johan Montelius 1 The name of the game The number one priority for mobile/cellular networks is to implement full-duplex voice

More information

Data Transmission. Raj Jain. Professor of CIS. The Ohio State University. Columbus, OH 43210 Jain@ACM.Org http://www.cis.ohio-state.

Data Transmission. Raj Jain. Professor of CIS. The Ohio State University. Columbus, OH 43210 Jain@ACM.Org http://www.cis.ohio-state. Data Transmission Professor of CIS Columbus, OH 43210 Jain@ACM.Org http://www.cis.ohio-state.edu/~jain/ 2-1 Overview Time Domain and Frequency Domain Bit, Hertz Decibels Data vs Signal Attenuation, Delay

More information

What Does Communication (or Telecommunication) Mean?

What Does Communication (or Telecommunication) Mean? What Does Communication (or Telecommunication) Mean? The term communication (or telecommunication) means the transfer of some form of information from one place (known as the source of information) to

More information

Introduction to Wireless Communications and Networks

Introduction to Wireless Communications and Networks Introduction to Wireless Communications and Networks Tongtong Li Dept. Electrical and Computer Engineering East Lansing, MI 48824 tongli@egr.msu.edu 1 Outline Overview of a Communication System Digital

More information

CS423: Lectures 2-4, Physical Layer. George Varghese. April 16, 2008

CS423: Lectures 2-4, Physical Layer. George Varghese. April 16, 2008 CS423: Lectures 2-4, Physical Layer George Varghese April 16, 2008 What does the Physical Layer Do? bits SENDER PHYSICAL LAYER RECEIVER 1 RECEIVER 1 RECEIVER 1 A possibly faulty, single-hop, bit pipe that

More information

Protocolo IEEE 802.15.4. Sergio Scaglia SASE 2012 - Agosto 2012

Protocolo IEEE 802.15.4. Sergio Scaglia SASE 2012 - Agosto 2012 Protocolo IEEE 802.15.4 SASE 2012 - Agosto 2012 IEEE 802.15.4 standard Agenda Physical Layer for Wireless Overview MAC Layer for Wireless - Overview IEEE 802.15.4 Protocol Overview Hardware implementation

More information

A Performance Study of Wireless Broadband Access (WiMAX)

A Performance Study of Wireless Broadband Access (WiMAX) A Performance Study of Wireless Broadband Access (WiMAX) Maan A. S. Al-Adwany Department of Computer & Information Engineering, College of Electronics Engineering University of Mosul Mosul, Iraq maanaladwany@yahoo.com

More information

CDMA Performance under Fading Channel

CDMA Performance under Fading Channel CDMA Performance under Fading Channel Ashwini Dyahadray 05307901 Under the guidance of: Prof Girish P Saraph Department of Electrical Engineering Overview Wireless channel fading characteristics Large

More information

Objectives. Lecture 4. How do computers communicate? How do computers communicate? Local asynchronous communication. How do computers communicate?

Objectives. Lecture 4. How do computers communicate? How do computers communicate? Local asynchronous communication. How do computers communicate? Lecture 4 Continuation of transmission basics Chapter 3, pages 75-96 Dave Novak School of Business University of Vermont Objectives Line coding Modulation AM, FM, Phase Shift Multiplexing FDM, TDM, WDM

More information

:-------------------------------------------------------Instructor---------------------

:-------------------------------------------------------Instructor--------------------- Yarmouk University Hijjawi Faculty for Engineering Technology Computer Engineering Department CPE-462 Digital Data Communications Final Exam: A Date: 20/05/09 Student Name :-------------------------------------------------------Instructor---------------------

More information

CS263: Wireless Communications and Sensor Networks

CS263: Wireless Communications and Sensor Networks CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 4: Medium Access Control October 5, 2004 2004 Matt Welsh Harvard University 1 Today's Lecture Medium Access Control Schemes: FDMA TDMA

More information

CDMA Network Planning

CDMA Network Planning CDMA Network Planning by AWE Communications GmbH www.awe-com.com Contents Motivation Overview Network Planning Module Air Interface Cell Load Interference Network Simulation Simulation Results by AWE Communications

More information

Implementation of Digital Signal Processing: Some Background on GFSK Modulation

Implementation of Digital Signal Processing: Some Background on GFSK Modulation Implementation of Digital Signal Processing: Some Background on GFSK Modulation Sabih H. Gerez University of Twente, Department of Electrical Engineering s.h.gerez@utwente.nl Version 4 (February 7, 2013)

More information

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

More information

Wireless Local Area Network

Wireless Local Area Network Wireless Local Area Network ดร. อน นต ผลเพ ม Anan Phonphoem, Ph.D. anan@cpe.ku.ac.th http://www.cpe.ku.ac.th/~anan Computer Engineering Department Kasetsart University, Bangkok, Thailand iwing Lab CPE

More information

AN INTRODUCTION TO DIGITAL MODULATION

AN INTRODUCTION TO DIGITAL MODULATION AN INTRODUCTION TO DIGITAL MODULATION This article provides readers a simple overview of the various popular methods used in modulating a digital signal. The relative merits of each of these modulation

More information

Professur Technische Informatik Prof. Dr. Wolfram Hardt. Network Standards. and Technologies for Wireless Sensor Networks. Karsten Knuth 16.07.

Professur Technische Informatik Prof. Dr. Wolfram Hardt. Network Standards. and Technologies for Wireless Sensor Networks. Karsten Knuth 16.07. Network Standards and Technologies for Wireless Sensor Networks Karsten Knuth 16.07.2008 Index 1. Motivation 2. Introduction 3. Bluetooth 4. ZigBee 5. nanonet 6. Roundup 16.07.2008 Network Standards 2

More information

Course Curriculum for Master Degree in Electrical Engineering/Wireless Communications

Course Curriculum for Master Degree in Electrical Engineering/Wireless Communications Course Curriculum for Master Degree in Electrical Engineering/Wireless Communications The Master Degree in Electrical Engineering/Wireless Communications, is awarded by the Faculty of Graduate Studies

More information

Questions for Mobile Communications 2 nd ed.

Questions for Mobile Communications 2 nd ed. Questions for Mobile Communications 2 nd ed. Jochen H. Schiller, Freie Universität Berlin, Germany schiller@computer.org, www.jochenschiller.de 1. Introduction 1.1 Discover the current numbers of subscribers

More information

Unit of Learning # 2 The Physical Layer. Redes de Datos Sergio Guíñez Molinos sguinez@utalca.cl 1-2009

Unit of Learning # 2 The Physical Layer. Redes de Datos Sergio Guíñez Molinos sguinez@utalca.cl 1-2009 Unit of Learning # 2 The Physical Layer Redes de Datos Sergio Guíñez Molinos sguinez@utalca.cl 1-2009 The Theoretical Basis for Data Communication Sergio Guíñez Molinos Redes de Computadores 2 The Theoretical

More information

Analysis of Immunity by RF Wireless Communication Signals

Analysis of Immunity by RF Wireless Communication Signals 64 PIERS Proceedings, Guangzhou, China, August 25 28, 2014 Analysis of Immunity by RF Wireless Communication Signals Hongsik Keum 1, Jungyu Yang 2, and Heung-Gyoon Ryu 3 1 EletroMagneticwave Technology

More information

Solution. (Chapters 5-6-7-8) Dr. Hasan Qunoo. The Islamic University of Gaza. Faculty of Engineering. Computer Engineering Department

Solution. (Chapters 5-6-7-8) Dr. Hasan Qunoo. The Islamic University of Gaza. Faculty of Engineering. Computer Engineering Department The Islamic University of Gaza Faculty of Engineering Computer Engineering Department Data Communications ECOM 4314 Solution (Chapters 5-6-7-8) Dr. Hasan Qunoo Eng. Wafaa Audah Eng. Waleed Mousa 1. A cable

More information

Development of Wireless Networks

Development of Wireless Networks Development of Wireless Networks Cellular Revolution In 1990 mobile phone users populate 11 million. By 2004 the figure will become 1 billion Phones are most obvious sign of the success of wireless technology.

More information

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur Module 5 Broadcast Communication Networks Lesson 9 Cellular Telephone Networks Specific Instructional Objectives At the end of this lesson, the student will be able to: Explain the operation of Cellular

More information

Interference Identification Guide. Table of Contents

Interference Identification Guide. Table of Contents Interference Identification Guide This document is a guide to help IT professionals optimize the performance of wireless networks by using spectrum analysis tools to identify sources of wireless interference.

More information

Public Switched Telephone System

Public Switched Telephone System Public Switched Telephone System Structure of the Telephone System The Local Loop: Modems, ADSL Structure of the Telephone System (a) Fully-interconnected network. (b) Centralized switch. (c) Two-level

More information

ECE/CS 372 introduction to computer networks. Lecture 13

ECE/CS 372 introduction to computer networks. Lecture 13 ECE/CS 372 introduction to computer networks Lecture 13 Announcements: HW #4 hard copy due today Lab #5 posted is due Tuesday June 4 th HW #5 posted is due Thursday June 6 th Pickup midterms Acknowledgement:

More information

CARLETON UNIVERSITY Department of Systems and Computer Engineering. SYSC4700 Telecommunications Engineering Winter 2014. Term Exam 13 February 2014

CARLETON UNIVERSITY Department of Systems and Computer Engineering. SYSC4700 Telecommunications Engineering Winter 2014. Term Exam 13 February 2014 CARLETON UNIVERSITY Department of Systems and Computer Engineering SYSC4700 Telecommunications Engineering Winter 2014 Term Exam 13 February 2014 Duration: 75 minutes Instructions: 1. Closed-book exam

More information

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz

AN1200.04. Application Note: FCC Regulations for ISM Band Devices: 902-928 MHz. FCC Regulations for ISM Band Devices: 902-928 MHz AN1200.04 Application Note: FCC Regulations for ISM Band Devices: Copyright Semtech 2006 1 of 15 www.semtech.com 1 Table of Contents 1 Table of Contents...2 1.1 Index of Figures...2 1.2 Index of Tables...2

More information

Lecture 1: Introduction

Lecture 1: Introduction Mobile Data Networks Lecturer: Victor O.K. Li EEE Department Room: CYC601D Tel.: 857 845 Email: vli@eee.hku.hk Course home page: http://www.eee.hku.hk/courses.msc/ 1 Lecture 1: Introduction Mobile data

More information

Wireless Personal Area Networks (WPANs)

Wireless Personal Area Networks (WPANs) Wireless Personal Area Networks (WPANs) Bluetooth, ZigBee Contents Introduction to the IEEE 802 specification family Concept of ISM frequency band Comparison between different wireless technologies ( and

More information

Bluetooth voice and data performance in 802.11 DS WLAN environment

Bluetooth voice and data performance in 802.11 DS WLAN environment 1 (1) Bluetooth voice and data performance in 802.11 DS WLAN environment Abstract In this document, the impact of a 20dBm 802.11 Direct-Sequence WLAN system on a 0dBm Bluetooth link is studied. A typical

More information

TABLE OF CONTENTS. Dedication. Table of Contents. Preface. Overview of Wireless Networks. vii 1.1 1.2 1.3 1.4 1.5 1.6 1.7. xvii

TABLE OF CONTENTS. Dedication. Table of Contents. Preface. Overview of Wireless Networks. vii 1.1 1.2 1.3 1.4 1.5 1.6 1.7. xvii TABLE OF CONTENTS Dedication Table of Contents Preface v vii xvii Chapter 1 Overview of Wireless Networks 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Signal Coverage Propagation Mechanisms 1.2.1 Multipath 1.2.2 Delay

More information

Implementing Digital Wireless Systems. And an FCC update

Implementing Digital Wireless Systems. And an FCC update Implementing Digital Wireless Systems And an FCC update Spectrum Repacking Here We Go Again: The FCC is reallocating 600 MHz Frequencies for Wireless Mics 30-45 MHz (8-m HF) 174-250 MHz (VHF) 450-960 MHz

More information

Pointers on using the 5GHz WiFi bands

Pointers on using the 5GHz WiFi bands Pointers on using the 5GHz WiFi bands Legalities In the UK, there are two main types of radio devices that use the 5GHz frequency bands. The most common are those devices that conform to the 11a standard.

More information

Analog vs. Digital Transmission

Analog vs. Digital Transmission Analog vs. Digital Transmission Compare at two levels: 1. Data continuous (audio) vs. discrete (text) 2. Signaling continuously varying electromagnetic wave vs. sequence of voltage pulses. Also Transmission

More information

Signal directionality Lower frequency signals are omnidirectional Higher frequency signals can be focused in a directional beam

Signal directionality Lower frequency signals are omnidirectional Higher frequency signals can be focused in a directional beam Transmission Media Transmission medium Physical path between transmitter and receiver May be guided (wired) or unguided (wireless) Communication achieved by using em waves Characteristics and quality of

More information

Radio Frequency Operations and Technology

Radio Frequency Operations and Technology Radio Frequency Operations and Technology Mobile Device Investigations Program (b)(6) Senior Instructor Technical Operations Division DHS - FLETC RF Operation and Technology Radio propagation the eletromagnetic

More information

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National

More information

www.aticourses.com Boost Your Skills with On-Site Courses Tailored to Your Needs

www.aticourses.com Boost Your Skills with On-Site Courses Tailored to Your Needs Boost Your Skills with On-Site Courses Tailored to Your Needs www.aticourses.com The Applied Technology Institute specializes in training programs for technical professionals. Our courses keep you current

More information

How To Understand And Understand The Power Of A Cdma/Ds System

How To Understand And Understand The Power Of A Cdma/Ds System CDMA Technology : Pr. Dr. W. Skupin www.htwg-konstanz.de Pr. S. Flament www.greyc.fr/user/99 On line Course on CDMA Technology CDMA Technology : Introduction to Spread Spectrum Technology CDMA / DS : Principle

More information

The GSM and GPRS network T-110.300/301

The GSM and GPRS network T-110.300/301 The GSM and GPRS network T-110.300/301 History The successful analog 1:st generation mobile telephone systems proved that there is a market for mobile telephones ARP (AutoRadioPuhelin) in Finland NMT (Nordic

More information

Preview of Period 3: Electromagnetic Waves Radiant Energy II

Preview of Period 3: Electromagnetic Waves Radiant Energy II Preview of Period 3: Electromagnetic Waves Radiant Energy II 3.1 Radiant Energy from the Sun How is light reflected and transmitted? What is polarized light? 3.2 Energy Transfer with Radiant Energy How

More information

Whitepaper. 802.11n The Next Generation in Wireless Technology

Whitepaper. 802.11n The Next Generation in Wireless Technology Whitepaper 802.11n The Next Generation in Wireless Technology Introduction Wireless technology continues to evolve and add value with its inherent characteristics. First came 802.11, then a & b, followed

More information

Location management Need Frequency Location updating

Location management Need Frequency Location updating Lecture-16 Mobility Management Location management Need Frequency Location updating Fig 3.10 Location management in cellular network Mobility Management Paging messages Different paging schemes Transmission

More information

Electromagnetic (EM) waves. Electric and Magnetic Fields. L 30 Electricity and Magnetism [7] James Clerk Maxwell (1831-1879)

Electromagnetic (EM) waves. Electric and Magnetic Fields. L 30 Electricity and Magnetism [7] James Clerk Maxwell (1831-1879) L 30 Electricity and Magnetism [7] ELECTROMAGNETIC WAVES Faraday laid the groundwork with his discovery of electromagnetic induction Maxwell added the last piece of the puzzle Heinrich Hertz made the experimental

More information

IT4405 Computer Networks (Compulsory)

IT4405 Computer Networks (Compulsory) IT4405 Computer Networks (Compulsory) INTRODUCTION This course provides a comprehensive insight into the fundamental concepts in data communications, computer network systems and protocols both fixed and

More information

CHAPTER 1 1 INTRODUCTION

CHAPTER 1 1 INTRODUCTION CHAPTER 1 1 INTRODUCTION 1.1 Wireless Networks Background 1.1.1 Evolution of Wireless Networks Figure 1.1 shows a general view of the evolution of wireless networks. It is well known that the first successful

More information

Multihopping for OFDM based Wireless Networks

Multihopping for OFDM based Wireless Networks Multihopping for OFDM based Wireless Networks Jeroen Theeuwes, Frank H.P. Fitzek, Carl Wijting Center for TeleInFrastruktur (CTiF), Aalborg University Neils Jernes Vej 12, 9220 Aalborg Øst, Denmark phone:

More information

ISI Mitigation in Image Data for Wireless Wideband Communications Receivers using Adjustment of Estimated Flat Fading Errors

ISI Mitigation in Image Data for Wireless Wideband Communications Receivers using Adjustment of Estimated Flat Fading Errors International Journal of Engineering and Management Research, Volume-3, Issue-3, June 2013 ISSN No.: 2250-0758 Pages: 24-29 www.ijemr.net ISI Mitigation in Image Data for Wireless Wideband Communications

More information

Chapter 6 Bandwidth Utilization: Multiplexing and Spreading 6.1

Chapter 6 Bandwidth Utilization: Multiplexing and Spreading 6.1 Chapter 6 Bandwidth Utilization: Multiplexing and Spreading 6.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Note Bandwidth utilization is the wise use of

More information

MODULATION Systems (part 1)

MODULATION Systems (part 1) Technologies and Services on Digital Broadcasting (8) MODULATION Systems (part ) "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4-339-62-2) is published by CORONA publishing co.,

More information

1 Multi-channel frequency division multiplex frequency modulation (FDM-FM) emissions

1 Multi-channel frequency division multiplex frequency modulation (FDM-FM) emissions Rec. ITU-R SM.853-1 1 RECOMMENDATION ITU-R SM.853-1 NECESSARY BANDWIDTH (Question ITU-R 77/1) Rec. ITU-R SM.853-1 (1992-1997) The ITU Radiocommunication Assembly, considering a) that the concept of necessary

More information

frequency experienced by mobile is not f but distorted version of f: call it f

frequency experienced by mobile is not f but distorted version of f: call it f Impact of mobility: Doppler frequency shift and fading First, Doppler frequency shift Set-up: mobile (e.g., car, train, pedestrian) travels in straight line at speed v mph sender transmits data on carrier

More information

Tutorial on Basic Link Budget Analysis

Tutorial on Basic Link Budget Analysis TM Tutorial on Basic Link Budget Analysis Application Note June 1998 AN9804.1 Authors: Jim Zyren and Al Petrick Abstract Advances in the state-of-the-art have made wireless technology a more compelling

More information

Adjacent Channel Interference. Adaptive Modulation and Coding. Advanced Mobile Phone System. Automatic Repeat Request. Additive White Gaussian Noise

Adjacent Channel Interference. Adaptive Modulation and Coding. Advanced Mobile Phone System. Automatic Repeat Request. Additive White Gaussian Noise Apéndice A. Lista de s ACI AM AMC AMPS ARQ AWGN BB BER BPSK BPF BW CCK CD CDMA CDPD COFDM CRL CSI CWTS Adjacent Channel Interference Amplitude Modulation Adaptive Modulation and Coding Advanced Mobile

More information

Multiplexing on Wireline Telephone Systems

Multiplexing on Wireline Telephone Systems Multiplexing on Wireline Telephone Systems Isha Batra, Divya Raheja Information Technology, Dronacharya College of Engineering Farrukh Nagar, Gurgaon, India ABSTRACT- This Paper Outlines a research multiplexing

More information

Noise Power and SNR Estimation for OFDM Based Wireless Communication Systems

Noise Power and SNR Estimation for OFDM Based Wireless Communication Systems Noise Power and SNR Estimation for OFDM Based Wireless Communication Systems Hüseyin Arslan Department of Electrical Engineering University of South Florida 422 E. Fowler Avenue Tampa, FL- 3362-535, USA

More information

Chapter 3: Spread Spectrum Technologies

Chapter 3: Spread Spectrum Technologies Chapter 3: Spread Spectrum Technologies Overview Comprehend the differences between, and explain the different types of spread spectrum technologies and how they relate to the IEEE 802.11 standard's PHY

More information

How To Understand The Theory Of Time Division Duplexing

How To Understand The Theory Of Time Division Duplexing Multiple Access Techniques Dr. Francis LAU Dr. Francis CM Lau, Associate Professor, EIE, PolyU Content Introduction Frequency Division Multiple Access Time Division Multiple Access Code Division Multiple

More information

Lecture 18: CDMA. What is Multiple Access? ECE 598 Fall 2006

Lecture 18: CDMA. What is Multiple Access? ECE 598 Fall 2006 ECE 598 Fall 2006 Lecture 18: CDMA What is Multiple Access? Multiple users want to communicate in a common geographic area Cellular Example: Many people want to talk on their cell phones. Each phone must

More information

Communications COMMS (CE700038-2)

Communications COMMS (CE700038-2) Faculty of Computing, Engineering & Technology Multiplexing, (FDM, TDM, CDM) & Communications COMMS (CE700038-2) Alison L Carrington C203 A.L.Carrington@staffs.ac.uk www.fcet.staffs.ac.uk/alg1 2008/9 2

More information

IT4504 - Data Communication and Networks (Optional)

IT4504 - Data Communication and Networks (Optional) - Data Communication and Networks (Optional) INTRODUCTION This is one of the optional courses designed for Semester 4 of the Bachelor of Information Technology Degree program. This course on Data Communication

More information

Dynamic Reconfiguration & Efficient Resource Allocation for Indoor Broadband Wireless Networks

Dynamic Reconfiguration & Efficient Resource Allocation for Indoor Broadband Wireless Networks Dynamic Reconfiguration & Efficient Resource Allocation for Indoor Broadband Wireless Networks Tim Farnham, Brian Foxon* Home Communications Department HP Laboratories Bristol HPL-98-123 June, 1998 broadband,

More information

Physical Layer, Part 2 Digital Transmissions and Multiplexing

Physical Layer, Part 2 Digital Transmissions and Multiplexing Physical Layer, Part 2 Digital Transmissions and Multiplexing These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make a single machine-readable

More information

GSM and Similar Architectures Lesson 07 GSM Radio Interface, Data bursts and Interleaving

GSM and Similar Architectures Lesson 07 GSM Radio Interface, Data bursts and Interleaving GSM and Similar Architectures Lesson 07 GSM Radio Interface, Data bursts and Interleaving 1 Space Division Multiple Access of the signals from the MSs A BTS with n directed antennae covers mobile stations

More information

Wi-Fi and Bluetooth - Interference Issues

Wi-Fi and Bluetooth - Interference Issues Wi-Fi and Bluetooth - Interference Issues January 2002 1 Introduction Because both Wi-Fi and Bluetooth wireless technology share spectrum and will often be located in close physical proximity to one another,

More information

White Paper. Wireless Network Considerations for Mobile Collaboration

White Paper. Wireless Network Considerations for Mobile Collaboration White Paper Wireless Network Considerations for Mobile Collaboration Table of Contents I. Introduction... 3 II. Wireless Considerations... 4 Channel Selection... 4 Interference... 4 Coverage... 5 Covering

More information

1. Introduction. FER-Zagreb, Satellite communication systems 2011/12

1. Introduction. FER-Zagreb, Satellite communication systems 2011/12 1. Introduction Topics History Characteristics of satellite communications Frequencies Application 1 History Arthur C. Clark suggested in 1945. Earth coverage with 3 geostationary satellites. On 4th of

More information

Wireless LAN advantages. Wireless LAN. Wireless LAN disadvantages. Wireless LAN disadvantages WLAN:

Wireless LAN advantages. Wireless LAN. Wireless LAN disadvantages. Wireless LAN disadvantages WLAN: WLAN: Wireless LAN Make use of a wireless transmission medium Tipically restricted in their diameter: buildings, campus, single room etc.. The global goal is to replace office cabling and to introduce

More information

Cellular Network Organization. Cellular Wireless Networks. Approaches to Cope with Increasing Capacity. Frequency Reuse

Cellular Network Organization. Cellular Wireless Networks. Approaches to Cope with Increasing Capacity. Frequency Reuse Cellular Network Organization Cellular Wireless Networks Use multiple low-power transmitters (100 W or less) Areas divided into cells Each served by its own antenna Served by base station consisting of

More information

Hello viewers, welcome to today s lecture on cellular telephone systems.

Hello viewers, welcome to today s lecture on cellular telephone systems. Data Communications Prof. A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture minus 31 Cellular Telephone Systems Hello viewers, welcome to today s lecture

More information

On the Traffic Capacity of Cellular Data Networks. 1 Introduction. T. Bonald 1,2, A. Proutière 1,2

On the Traffic Capacity of Cellular Data Networks. 1 Introduction. T. Bonald 1,2, A. Proutière 1,2 On the Traffic Capacity of Cellular Data Networks T. Bonald 1,2, A. Proutière 1,2 1 France Telecom Division R&D, 38-40 rue du Général Leclerc, 92794 Issy-les-Moulineaux, France {thomas.bonald, alexandre.proutiere}@francetelecom.com

More information

Vector Signal Analyzer FSQ-K70

Vector Signal Analyzer FSQ-K70 Product brochure Version 02.00 Vector Signal Analyzer FSQ-K70 July 2004 Universal demodulation, analysis and documentation of digital radio signals For all major mobile radio communication standards: GSM

More information

Understanding Range for RF Devices

Understanding Range for RF Devices Understanding Range for RF Devices October 2012 White Paper Understanding how environmental factors can affect range is one of the key aspects to deploying a radio frequency (RF) solution. This paper will

More information

Exercise 2 Common Fundamentals: Multiple Access

Exercise 2 Common Fundamentals: Multiple Access Exercise 2 Common Fundamentals: Multiple Access Problem 1: TDMA, guard time. To set up a GSM-connection, the base station (BTS) and the mobile station (MS) use the following short access burst in a TDMA-slot

More information

Computers Are Your Future. 2006 Prentice-Hall, Inc.

Computers Are Your Future. 2006 Prentice-Hall, Inc. Computers Are Your Future 2006 Prentice-Hall, Inc. Computers Are Your Future Chapter 3 Wired and Wireless Communication 2006 Prentice-Hall, Inc Slide 2 What You Will Learn... ü The definition of bandwidth

More information

Maximizing Receiver Dynamic Range for Spectrum Monitoring

Maximizing Receiver Dynamic Range for Spectrum Monitoring Home Maximizing Receiver Dynamic Range for Spectrum Monitoring Brian Avenell, National Instruments Corp., Austin, TX October 15, 2012 As consumers continue to demand more data wirelessly through mobile

More information

CDMA TECHNOLOGY. Brief Working of CDMA

CDMA TECHNOLOGY. Brief Working of CDMA CDMA TECHNOLOGY History of CDMA The Cellular Challenge The world's first cellular networks were introduced in the early 1980s, using analog radio transmission technologies such as AMPS (Advanced Mobile

More information