Increasing Classification Accuracy. Data Mining: Bagging and Boosting. Bagging 1. Bagging 2. Bagging. Boosting Meta-learning (stacking)

Size: px
Start display at page:

Download "Increasing Classification Accuracy. Data Mining: Bagging and Boosting. Bagging 1. Bagging 2. Bagging. Boosting Meta-learning (stacking)"

Transcription

1 Data Mining: Bagging and Boosting Increasing Classification Accuracy Andrew Kusiak 2139 Seamans Center Iowa City, Iowa Tel: Bagging g Boosting Meta-learning (stacking) Bagging 1 Bagging 2 Corporate decision-making analogy Sample 1 Classifier 1 New Managers seeks advice of experts in areas that s/he does not have expertise The skills of the advisers should complement each other rather than being duplicative Applies also to boosting Training Bootstrap scheme Sample 2 Sample 3 Classifier 2 Classifier 3 Combined classifier Voting scheme decision (1-1/n) n ~ e -1 =.368, where e =

2 Bagging Procedure Bagging 3 Classifier generation Step 1. Create t sets from a base applying the sampling with replacement scheme. Step 2. Apply a learning to each sample training set. Classification Step 3. For an object with unknown decision, make predictions with each of the t classifiers. Step 4. Select the most frequently predicted decision. Bagging 4 Classification Voting scheme Prediction Averaging scheme Also used Bagging with costs and randomization schemes within learning s (e.g., features with equal value gain) Bagging 5 The effect of combining different classifiers (hypotheses) can be explained with the theory of bias-variance decomposition Bias an error due to a learning Variance an error due to the learned model ( set related) The total expected error of a classifier = Bias + Variance Boosting 1 Bagging Individual models are built separately Boosting Combines models of the same type (e.g., decision tree) and it is iterative, i.e., a new model is influenced by the performance of the previously built model Boosting Uses voting or averaging (similar to bagging) Different boosting s exist 2

3 Boosting 2 Method AdaBoost.M1 which is widely used Assumption: can handle weighted instances (usually handled by randomization schemes for selection of training subsets) By weighting instances, the learning can concentrate on instances with high weights (called hard instances), i.e., incorrectly classified instances Boosting 3 AdaBoost.M1 Algorithm (Outline) All instances are equally weighted A learning is applied The weight of incorrectly classified examples is increased ( hard instances), correctly decreased ( easy instances) The concentrates on incorrectly classified hard instances Some had instances become harder some softer A series of diverse experts (classifiers) is generated based on the reweighed Boosting 4 AdaBoost.M1 Algorithm (Steps) Classifier generation Step 0. Set the weight value, w = 1, and assign it to each object in the training set. For each of t iterations, perform: Step 1. Apply a learning to the weighted training set. Step 2. Compute classification error e for the weighted training set. If e = 0 or e >=.5, then terminate the classifier generation process and go to Step 4; otherwise multiple the weight w of each object by e/(1 e) and normalize the weights of all objects. Classification Step 4. Assign weight q = 0 to each decision (class) to be predicted. Step 5. For each of t (or less) classifiers, add log e/(1 e) to the weight of the decision predicted by the classifier and output the decision with the highest weight. Boosting 4 For e = 0 all training examples (objects) are correctly classified (a perfect classifier) and therefore there is no reason to modify the object weights, i.e., for e/(1 e) = 0 all new weights w become 0. For e =.5, the expression log e/(1 e) = 0, and therefore the weights q = 0 are not be modified and therefore no decision is generated due to high classification error e. 3

4 Training Meta-learning 1 Classifier 1 Creating Meta-training Data Voting Each classifier gets one vote and the majority wins. Test Weighted voting Provides preferential treatment to some voting classifiers. Training 2 Classifier 2 decisions decisions Arbitration An arbitrator makes a selection, if the classifiers can not reach a consensus. decisions Metaclassifier Metalearning Metatraining Combining Decisions produced by different classifiers are combined as one decision. Example (1) 1 Vector 1 High 2 Vector 2 Low 3 Vector 3 High Example (2) Predictions of classifiers 1 and 2 for the training set Object No. Classifier 1 Prediction 1 Vector 1 High 2 Vector 2 Low 3 Vector 3 High Classifier 2 Prediction 4

5 Example (3) Object No. Classifier 1 Prediction Classifier 2 Prediction Training set generated by the class-combiner scheme 1 High, High High 2 High, Low Low 3 Low, Low High Example (4) Object No. Classifier 1 Prediction Classifier 2 Prediction Training set generated by the class-attribute-combiner scheme 1 High, High, Vector 1 High 2 High, Low, Vector 2 Low 3 Low, Low, Vector 3 High Example (5) Example (6) Object No. Classifier 1 Prediction Classifier 2 Prediction Training i set generated by the binary class-attribute-combiner bi scheme Object No. Feature Vector Decision 1 Yes, No, Yes, No High 2 Yes, No, No, Yes Low Binary form of the predictions produced by classifier 1 Object No. Classifier 1 Prediction Feature = High Feature = Low Decision 1 High Yes No High 2 High Yes No Low 3 Low No Yes High 3 No,Yes, No, Yes High 5

6 Meta-learners Distributed Integration of knowledge learned from different and distributed bases. Elimination of inductive bias. Extraction of high level models. Scalability to hierarchical meta-learning. Distributed by partitioning Distributed by nature Data Populations from homogeneously distributed sets Θ i = Θ j = Θ L-learner 1 Θ 1 Homogeneous (Θ i = Θ j, i j - all learners share the same distribution) Heterogeneous (Θ i Θ j,i j) P(D Θ) L-learner 2 Θ 2 M-learner Θ L-learner n Θ n 6

7 from heterogeneously distributed sets Gini Index 1 P(D 1 Θ 1) L-learner 1 Θ t 1 μ t Θ i Θ j P(D Θ ) 2 2 P(D Θ ) n n L-learner 2 Θ t 2 M-learner (Θ, μ) t L-learner n Θ n S = set with n objects c = number of classes in S p j = relative frequency of class j in S t = step number μ models interrelationships between distributions of the local c gini (S) = 1 Σ p j 2 j = 1 Gini Index 2 S 1 = partition 1 of S n 1 = number of objects in S 1 S 2 = partition 2 of S n 2 = number of objects in S 2, where n 2 =(n -n 1 ) a = splitting criterion gini (S, a) = n 1 /n gini (S 1 ) + n 2 /n gini (S 2 ) 7

Data Mining. Nonlinear Classification

Data Mining. Nonlinear Classification Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Nonlinear Classification Classes may not be separable by a linear boundary Suppose we randomly generate a data set as follows: X has range between 0 to 15

More information

Decision Trees from large Databases: SLIQ

Decision Trees from large Databases: SLIQ Decision Trees from large Databases: SLIQ C4.5 often iterates over the training set How often? If the training set does not fit into main memory, swapping makes C4.5 unpractical! SLIQ: Sort the values

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Unit # 11 Sajjad Haider Fall 2013 1 Supervised Learning Process Data Collection/Preparation Data Cleaning Discretization Supervised/Unuspervised Identification of right

More information

Data Mining Practical Machine Learning Tools and Techniques

Data Mining Practical Machine Learning Tools and Techniques Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea

More information

L25: Ensemble learning

L25: Ensemble learning L25: Ensemble learning Introduction Methods for constructing ensembles Combination strategies Stacked generalization Mixtures of experts Bagging Boosting CSCE 666 Pattern Analysis Ricardo Gutierrez-Osuna

More information

CI6227: Data Mining. Lesson 11b: Ensemble Learning. Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore.

CI6227: Data Mining. Lesson 11b: Ensemble Learning. Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore. CI6227: Data Mining Lesson 11b: Ensemble Learning Sinno Jialin PAN Data Analytics Department, Institute for Infocomm Research, A*STAR, Singapore Acknowledgements: slides are adapted from the lecture notes

More information

Chapter 6. The stacking ensemble approach

Chapter 6. The stacking ensemble approach 82 This chapter proposes the stacking ensemble approach for combining different data mining classifiers to get better performance. Other combination techniques like voting, bagging etc are also described

More information

Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk

Introduction to Machine Learning and Data Mining. Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk Introduction to Machine Learning and Data Mining Prof. Dr. Igor Trajkovski trajkovski@nyus.edu.mk Ensembles 2 Learning Ensembles Learn multiple alternative definitions of a concept using different training

More information

REVIEW OF ENSEMBLE CLASSIFICATION

REVIEW OF ENSEMBLE CLASSIFICATION Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IJCSMC, Vol. 2, Issue.

More information

Ensemble Methods. Knowledge Discovery and Data Mining 2 (VU) (707.004) Roman Kern. KTI, TU Graz 2015-03-05

Ensemble Methods. Knowledge Discovery and Data Mining 2 (VU) (707.004) Roman Kern. KTI, TU Graz 2015-03-05 Ensemble Methods Knowledge Discovery and Data Mining 2 (VU) (707004) Roman Kern KTI, TU Graz 2015-03-05 Roman Kern (KTI, TU Graz) Ensemble Methods 2015-03-05 1 / 38 Outline 1 Introduction 2 Classification

More information

Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris

Class #6: Non-linear classification. ML4Bio 2012 February 17 th, 2012 Quaid Morris Class #6: Non-linear classification ML4Bio 2012 February 17 th, 2012 Quaid Morris 1 Module #: Title of Module 2 Review Overview Linear separability Non-linear classification Linear Support Vector Machines

More information

Classification and Prediction

Classification and Prediction Classification and Prediction Slides for Data Mining: Concepts and Techniques Chapter 7 Jiawei Han and Micheline Kamber Intelligent Database Systems Research Lab School of Computing Science Simon Fraser

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Unit # 6 Sajjad Haider Fall 2014 1 Evaluating the Accuracy of a Classifier Holdout, random subsampling, crossvalidation, and the bootstrap are common techniques for

More information

Data Mining for Knowledge Management. Classification

Data Mining for Knowledge Management. Classification 1 Data Mining for Knowledge Management Classification Themis Palpanas University of Trento http://disi.unitn.eu/~themis Data Mining for Knowledge Management 1 Thanks for slides to: Jiawei Han Eamonn Keogh

More information

How To Make A Credit Risk Model For A Bank Account

How To Make A Credit Risk Model For A Bank Account TRANSACTIONAL DATA MINING AT LLOYDS BANKING GROUP Csaba Főző csaba.fozo@lloydsbanking.com 15 October 2015 CONTENTS Introduction 04 Random Forest Methodology 06 Transactional Data Mining Project 17 Conclusions

More information

Decompose Error Rate into components, some of which can be measured on unlabeled data

Decompose Error Rate into components, some of which can be measured on unlabeled data Bias-Variance Theory Decompose Error Rate into components, some of which can be measured on unlabeled data Bias-Variance Decomposition for Regression Bias-Variance Decomposition for Classification Bias-Variance

More information

Knowledge Discovery and Data Mining. Bootstrap review. Bagging Important Concepts. Notes. Lecture 19 - Bagging. Tom Kelsey. Notes

Knowledge Discovery and Data Mining. Bootstrap review. Bagging Important Concepts. Notes. Lecture 19 - Bagging. Tom Kelsey. Notes Knowledge Discovery and Data Mining Lecture 19 - Bagging Tom Kelsey School of Computer Science University of St Andrews http://tom.host.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom Kelsey ID5059-19-B &

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Unit # 10 Sajjad Haider Fall 2012 1 Supervised Learning Process Data Collection/Preparation Data Cleaning Discretization Supervised/Unuspervised Identification of right

More information

COMP3420: Advanced Databases and Data Mining. Classification and prediction: Introduction and Decision Tree Induction

COMP3420: Advanced Databases and Data Mining. Classification and prediction: Introduction and Decision Tree Induction COMP3420: Advanced Databases and Data Mining Classification and prediction: Introduction and Decision Tree Induction Lecture outline Classification versus prediction Classification A two step process Supervised

More information

DECISION TREE INDUCTION FOR FINANCIAL FRAUD DETECTION USING ENSEMBLE LEARNING TECHNIQUES

DECISION TREE INDUCTION FOR FINANCIAL FRAUD DETECTION USING ENSEMBLE LEARNING TECHNIQUES DECISION TREE INDUCTION FOR FINANCIAL FRAUD DETECTION USING ENSEMBLE LEARNING TECHNIQUES Vijayalakshmi Mahanra Rao 1, Yashwant Prasad Singh 2 Multimedia University, Cyberjaya, MALAYSIA 1 lakshmi.mahanra@gmail.com

More information

CS570 Data Mining Classification: Ensemble Methods

CS570 Data Mining Classification: Ensemble Methods CS570 Data Mining Classification: Ensemble Methods Cengiz Günay Dept. Math & CS, Emory University Fall 2013 Some slides courtesy of Han-Kamber-Pei, Tan et al., and Li Xiong Günay (Emory) Classification:

More information

A Study Of Bagging And Boosting Approaches To Develop Meta-Classifier

A Study Of Bagging And Boosting Approaches To Develop Meta-Classifier A Study Of Bagging And Boosting Approaches To Develop Meta-Classifier G.T. Prasanna Kumari Associate Professor, Dept of Computer Science and Engineering, Gokula Krishna College of Engg, Sullurpet-524121,

More information

Data Mining with R. Decision Trees and Random Forests. Hugh Murrell

Data Mining with R. Decision Trees and Random Forests. Hugh Murrell Data Mining with R Decision Trees and Random Forests Hugh Murrell reference books These slides are based on a book by Graham Williams: Data Mining with Rattle and R, The Art of Excavating Data for Knowledge

More information

Data Mining Methods: Applications for Institutional Research

Data Mining Methods: Applications for Institutional Research Data Mining Methods: Applications for Institutional Research Nora Galambos, PhD Office of Institutional Research, Planning & Effectiveness Stony Brook University NEAIR Annual Conference Philadelphia 2014

More information

LCs for Binary Classification

LCs for Binary Classification Linear Classifiers A linear classifier is a classifier such that classification is performed by a dot product beteen the to vectors representing the document and the category, respectively. Therefore it

More information

New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Introduction

New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Introduction Introduction New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Predictive analytics encompasses the body of statistical knowledge supporting the analysis of massive data sets.

More information

BOOSTING - A METHOD FOR IMPROVING THE ACCURACY OF PREDICTIVE MODEL

BOOSTING - A METHOD FOR IMPROVING THE ACCURACY OF PREDICTIVE MODEL The Fifth International Conference on e-learning (elearning-2014), 22-23 September 2014, Belgrade, Serbia BOOSTING - A METHOD FOR IMPROVING THE ACCURACY OF PREDICTIVE MODEL SNJEŽANA MILINKOVIĆ University

More information

Supervised Learning (Big Data Analytics)

Supervised Learning (Big Data Analytics) Supervised Learning (Big Data Analytics) Vibhav Gogate Department of Computer Science The University of Texas at Dallas Practical advice Goal of Big Data Analytics Uncover patterns in Data. Can be used

More information

Advanced Ensemble Strategies for Polynomial Models

Advanced Ensemble Strategies for Polynomial Models Advanced Ensemble Strategies for Polynomial Models Pavel Kordík 1, Jan Černý 2 1 Dept. of Computer Science, Faculty of Information Technology, Czech Technical University in Prague, 2 Dept. of Computer

More information

Gerry Hobbs, Department of Statistics, West Virginia University

Gerry Hobbs, Department of Statistics, West Virginia University Decision Trees as a Predictive Modeling Method Gerry Hobbs, Department of Statistics, West Virginia University Abstract Predictive modeling has become an important area of interest in tasks such as credit

More information

Model Combination. 24 Novembre 2009

Model Combination. 24 Novembre 2009 Model Combination 24 Novembre 2009 Datamining 1 2009-2010 Plan 1 Principles of model combination 2 Resampling methods Bagging Random Forests Boosting 3 Hybrid methods Stacking Generic algorithm for mulistrategy

More information

Social Media Mining. Data Mining Essentials

Social Media Mining. Data Mining Essentials Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers

More information

Reference Books. Data Mining. Supervised vs. Unsupervised Learning. Classification: Definition. Classification k-nearest neighbors

Reference Books. Data Mining. Supervised vs. Unsupervised Learning. Classification: Definition. Classification k-nearest neighbors Classification k-nearest neighbors Data Mining Dr. Engin YILDIZTEPE Reference Books Han, J., Kamber, M., Pei, J., (2011). Data Mining: Concepts and Techniques. Third edition. San Francisco: Morgan Kaufmann

More information

Data Mining Classification: Decision Trees

Data Mining Classification: Decision Trees Data Mining Classification: Decision Trees Classification Decision Trees: what they are and how they work Hunt s (TDIDT) algorithm How to select the best split How to handle Inconsistent data Continuous

More information

Mining Direct Marketing Data by Ensembles of Weak Learners and Rough Set Methods

Mining Direct Marketing Data by Ensembles of Weak Learners and Rough Set Methods Mining Direct Marketing Data by Ensembles of Weak Learners and Rough Set Methods Jerzy B laszczyński 1, Krzysztof Dembczyński 1, Wojciech Kot lowski 1, and Mariusz Paw lowski 2 1 Institute of Computing

More information

How To Identify A Churner

How To Identify A Churner 2012 45th Hawaii International Conference on System Sciences A New Ensemble Model for Efficient Churn Prediction in Mobile Telecommunication Namhyoung Kim, Jaewook Lee Department of Industrial and Management

More information

Metalearning for Dynamic Integration in Ensemble Methods

Metalearning for Dynamic Integration in Ensemble Methods Metalearning for Dynamic Integration in Ensemble Methods Fábio Pinto 12 July 2013 Faculdade de Engenharia da Universidade do Porto Ph.D. in Informatics Engineering Supervisor: Doutor Carlos Soares Co-supervisor:

More information

Data Mining - Evaluation of Classifiers

Data Mining - Evaluation of Classifiers Data Mining - Evaluation of Classifiers Lecturer: JERZY STEFANOWSKI Institute of Computing Sciences Poznan University of Technology Poznan, Poland Lecture 4 SE Master Course 2008/2009 revised for 2010

More information

Data Mining Techniques for Prognosis in Pancreatic Cancer

Data Mining Techniques for Prognosis in Pancreatic Cancer Data Mining Techniques for Prognosis in Pancreatic Cancer by Stuart Floyd A Thesis Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUE In partial fulfillment of the requirements for the Degree

More information

Welcome. Data Mining: Updates in Technologies. Xindong Wu. Colorado School of Mines Golden, Colorado 80401, USA

Welcome. Data Mining: Updates in Technologies. Xindong Wu. Colorado School of Mines Golden, Colorado 80401, USA Welcome Xindong Wu Data Mining: Updates in Technologies Dept of Math and Computer Science Colorado School of Mines Golden, Colorado 80401, USA Email: xwu@ mines.edu Home Page: http://kais.mines.edu/~xwu/

More information

D-optimal plans in observational studies

D-optimal plans in observational studies D-optimal plans in observational studies Constanze Pumplün Stefan Rüping Katharina Morik Claus Weihs October 11, 2005 Abstract This paper investigates the use of Design of Experiments in observational

More information

Chapter 11 Boosting. Xiaogang Su Department of Statistics University of Central Florida - 1 -

Chapter 11 Boosting. Xiaogang Su Department of Statistics University of Central Florida - 1 - Chapter 11 Boosting Xiaogang Su Department of Statistics University of Central Florida - 1 - Perturb and Combine (P&C) Methods have been devised to take advantage of the instability of trees to create

More information

EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER. Copyr i g ht 2013, SAS Ins titut e Inc. All rights res er ve d.

EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER. Copyr i g ht 2013, SAS Ins titut e Inc. All rights res er ve d. EXPLORING & MODELING USING INTERACTIVE DECISION TREES IN SAS ENTERPRISE MINER ANALYTICS LIFECYCLE Evaluate & Monitor Model Formulate Problem Data Preparation Deploy Model Data Exploration Validate Models

More information

Université de Montpellier 2 Hugo Alatrista-Salas : hugo.alatrista-salas@teledetection.fr

Université de Montpellier 2 Hugo Alatrista-Salas : hugo.alatrista-salas@teledetection.fr Université de Montpellier 2 Hugo Alatrista-Salas : hugo.alatrista-salas@teledetection.fr WEKA Gallirallus Zeland) australis : Endemic bird (New Characteristics Waikato university Weka is a collection

More information

Distributed Regression For Heterogeneous Data Sets 1

Distributed Regression For Heterogeneous Data Sets 1 Distributed Regression For Heterogeneous Data Sets 1 Yan Xing, Michael G. Madden, Jim Duggan, Gerard Lyons Department of Information Technology National University of Ireland, Galway Ireland {yan.xing,

More information

A Study of Detecting Credit Card Delinquencies with Data Mining using Decision Tree Model

A Study of Detecting Credit Card Delinquencies with Data Mining using Decision Tree Model A Study of Detecting Credit Card Delinquencies with Data Mining using Decision Tree Model ABSTRACT Mrs. Arpana Bharani* Mrs. Mohini Rao** Consumer credit is one of the necessary processes but lending bears

More information

An Ensemble Method for Large Scale Machine Learning with Hadoop MapReduce

An Ensemble Method for Large Scale Machine Learning with Hadoop MapReduce An Ensemble Method for Large Scale Machine Learning with Hadoop MapReduce by Xuan Liu Thesis submitted to the Faculty of Graduate and Postdoctoral Studies In partial fulfillment of the requirements For

More information

Introduction to Machine Learning Lecture 1. Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu

Introduction to Machine Learning Lecture 1. Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Introduction to Machine Learning Lecture 1 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Introduction Logistics Prerequisites: basics concepts needed in probability and statistics

More information

Introduction To Ensemble Learning

Introduction To Ensemble Learning Educational Series Introduction To Ensemble Learning Dr. Oliver Steinki, CFA, FRM Ziad Mohammad July 2015 What Is Ensemble Learning? In broad terms, ensemble learning is a procedure where multiple learner

More information

Ensemble Data Mining Methods

Ensemble Data Mining Methods Ensemble Data Mining Methods Nikunj C. Oza, Ph.D., NASA Ames Research Center, USA INTRODUCTION Ensemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods

More information

Data Mining as Exploratory Data Analysis. Zachary Jones

Data Mining as Exploratory Data Analysis. Zachary Jones Data Mining as Exploratory Data Analysis Zachary Jones The Problem(s) presumptions social systems are complex causal identification is difficult/impossible with many data sources theory not generally predictively

More information

Data Mining Techniques Chapter 6: Decision Trees

Data Mining Techniques Chapter 6: Decision Trees Data Mining Techniques Chapter 6: Decision Trees What is a classification decision tree?.......................................... 2 Visualizing decision trees...................................................

More information

Random forest algorithm in big data environment

Random forest algorithm in big data environment Random forest algorithm in big data environment Yingchun Liu * School of Economics and Management, Beihang University, Beijing 100191, China Received 1 September 2014, www.cmnt.lv Abstract Random forest

More information

A Survey of Classification Techniques in the Area of Big Data.

A Survey of Classification Techniques in the Area of Big Data. A Survey of Classification Techniques in the Area of Big Data. 1PrafulKoturwar, 2 SheetalGirase, 3 Debajyoti Mukhopadhyay 1Reseach Scholar, Department of Information Technology 2Assistance Professor,Department

More information

Ensemble of Classifiers Based on Association Rule Mining

Ensemble of Classifiers Based on Association Rule Mining Ensemble of Classifiers Based on Association Rule Mining Divya Ramani, Dept. of Computer Engineering, LDRP, KSV, Gandhinagar, Gujarat, 9426786960. Harshita Kanani, Assistant Professor, Dept. of Computer

More information

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning.

CS 2750 Machine Learning. Lecture 1. Machine Learning. http://www.cs.pitt.edu/~milos/courses/cs2750/ CS 2750 Machine Learning. Lecture Machine Learning Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square, x5 http://www.cs.pitt.edu/~milos/courses/cs75/ Administration Instructor: Milos Hauskrecht milos@cs.pitt.edu 539 Sennott

More information

Projektgruppe. Categorization of text documents via classification

Projektgruppe. Categorization of text documents via classification Projektgruppe Steffen Beringer Categorization of text documents via classification 4. Juni 2010 Content Motivation Text categorization Classification in the machine learning Document indexing Construction

More information

Why Ensembles Win Data Mining Competitions

Why Ensembles Win Data Mining Competitions Why Ensembles Win Data Mining Competitions A Predictive Analytics Center of Excellence (PACE) Tech Talk November 14, 2012 Dean Abbott Abbott Analytics, Inc. Blog: http://abbottanalytics.blogspot.com URL:

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.1 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Classification vs. Numeric Prediction Prediction Process Data Preparation Comparing Prediction Methods References Classification

More information

ENSEMBLE METHODS FOR CLASSIFIERS

ENSEMBLE METHODS FOR CLASSIFIERS Chapter 45 ENSEMBLE METHODS FOR CLASSIFIERS Lior Rokach Department of Industrial Engineering Tel-Aviv University liorr@eng.tau.ac.il Abstract Keywords: The idea of ensemble methodology is to build a predictive

More information

PRODUCTION PLANNING AND SCHEDULING Part 1

PRODUCTION PLANNING AND SCHEDULING Part 1 PRODUCTION PLANNING AND SCHEDULING Part Andrew Kusiak 9 Seamans Center Iowa City, Iowa - 7 Tel: 9-9 Fax: 9-669 andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak Forecasting Planning Hierarchy

More information

Predictive Modeling of Titanic Survivors: a Learning Competition

Predictive Modeling of Titanic Survivors: a Learning Competition SAS Analytics Day Predictive Modeling of Titanic Survivors: a Learning Competition Linda Schumacher Problem Introduction On April 15, 1912, the RMS Titanic sank resulting in the loss of 1502 out of 2224

More information

Introduction to Learning & Decision Trees

Introduction to Learning & Decision Trees Artificial Intelligence: Representation and Problem Solving 5-38 April 0, 2007 Introduction to Learning & Decision Trees Learning and Decision Trees to learning What is learning? - more than just memorizing

More information

Using multiple models: Bagging, Boosting, Ensembles, Forests

Using multiple models: Bagging, Boosting, Ensembles, Forests Using multiple models: Bagging, Boosting, Ensembles, Forests Bagging Combining predictions from multiple models Different models obtained from bootstrap samples of training data Average predictions or

More information

How To Perform An Ensemble Analysis

How To Perform An Ensemble Analysis Charu C. Aggarwal IBM T J Watson Research Center Yorktown, NY 10598 Outlier Ensembles Keynote, Outlier Detection and Description Workshop, 2013 Based on the ACM SIGKDD Explorations Position Paper: Outlier

More information

Multiple Classifiers -Integration and Selection

Multiple Classifiers -Integration and Selection 1 A Dynamic Integration Algorithm with Ensemble of Classifiers Seppo Puuronen 1, Vagan Terziyan 2, Alexey Tsymbal 2 1 University of Jyvaskyla, P.O.Box 35, FIN-40351 Jyvaskyla, Finland sepi@jytko.jyu.fi

More information

Analysis of WEKA Data Mining Algorithm REPTree, Simple Cart and RandomTree for Classification of Indian News

Analysis of WEKA Data Mining Algorithm REPTree, Simple Cart and RandomTree for Classification of Indian News Analysis of WEKA Data Mining Algorithm REPTree, Simple Cart and RandomTree for Classification of Indian News Sushilkumar Kalmegh Associate Professor, Department of Computer Science, Sant Gadge Baba Amravati

More information

Classification algorithm in Data mining: An Overview

Classification algorithm in Data mining: An Overview Classification algorithm in Data mining: An Overview S.Neelamegam #1, Dr.E.Ramaraj *2 #1 M.phil Scholar, Department of Computer Science and Engineering, Alagappa University, Karaikudi. *2 Professor, Department

More information

Data Mining Analytics for Business Intelligence and Decision Support

Data Mining Analytics for Business Intelligence and Decision Support Data Mining Analytics for Business Intelligence and Decision Support Chid Apte, T.J. Watson Research Center, IBM Research Division Knowledge Discovery and Data Mining (KDD) techniques are used for analyzing

More information

The multilayer sentiment analysis model based on Random forest Wei Liu1, Jie Zhang2

The multilayer sentiment analysis model based on Random forest Wei Liu1, Jie Zhang2 2nd International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2016) The multilayer sentiment analysis model based on Random forest Wei Liu1, Jie Zhang2 1 School of

More information

Classification and Prediction

Classification and Prediction Classification and Prediction 1. Objectives...2 2. Classification vs. Prediction...3 2.1. Definitions...3 2.2. Supervised vs. Unsupervised Learning...3 2.3. Classification and Prediction Related Issues...4

More information

An Overview of Data Mining: Predictive Modeling for IR in the 21 st Century

An Overview of Data Mining: Predictive Modeling for IR in the 21 st Century An Overview of Data Mining: Predictive Modeling for IR in the 21 st Century Nora Galambos, PhD Senior Data Scientist Office of Institutional Research, Planning & Effectiveness Stony Brook University AIRPO

More information

UNSUPERVISED MACHINE LEARNING TECHNIQUES IN GENOMICS

UNSUPERVISED MACHINE LEARNING TECHNIQUES IN GENOMICS UNSUPERVISED MACHINE LEARNING TECHNIQUES IN GENOMICS Dwijesh C. Mishra I.A.S.R.I., Library Avenue, New Delhi-110 012 dcmishra@iasri.res.in What is Learning? "Learning denotes changes in a system that enable

More information

Increasing the Accuracy of Predictive Algorithms: A Review of Ensembles of Classifiers

Increasing the Accuracy of Predictive Algorithms: A Review of Ensembles of Classifiers 1906 Category: Software & Systems Design Increasing the Accuracy of Predictive Algorithms: A Review of Ensembles of Classifiers Sotiris Kotsiantis University of Patras, Greece & University of Peloponnese,

More information

Leveraging Ensemble Models in SAS Enterprise Miner

Leveraging Ensemble Models in SAS Enterprise Miner ABSTRACT Paper SAS133-2014 Leveraging Ensemble Models in SAS Enterprise Miner Miguel Maldonado, Jared Dean, Wendy Czika, and Susan Haller SAS Institute Inc. Ensemble models combine two or more models to

More information

How To Solve The Class Imbalance Problem In Data Mining

How To Solve The Class Imbalance Problem In Data Mining IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART C: APPLICATIONS AND REVIEWS 1 A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches Mikel Galar,

More information

A Property and Casualty Insurance Predictive Modeling Process in SAS

A Property and Casualty Insurance Predictive Modeling Process in SAS Paper 11422-2016 A Property and Casualty Insurance Predictive Modeling Process in SAS Mei Najim, Sedgwick Claim Management Services ABSTRACT Predictive analytics is an area that has been developing rapidly

More information

Studying Auto Insurance Data

Studying Auto Insurance Data Studying Auto Insurance Data Ashutosh Nandeshwar February 23, 2010 1 Introduction To study auto insurance data using traditional and non-traditional tools, I downloaded a well-studied data from http://www.statsci.org/data/general/motorins.

More information

Credit Card Fraud Detection Using Meta-Learning: Issues and Initial Results 1

Credit Card Fraud Detection Using Meta-Learning: Issues and Initial Results 1 Credit Card Fraud Detection Using Meta-Learning: Issues and Initial Results 1 Salvatore J. Stolfo, David W. Fan, Wenke Lee and Andreas L. Prodromidis Department of Computer Science Columbia University

More information

Machine Learning. Term 2012/2013 LSI - FIB. Javier Béjar cbea (LSI - FIB) Machine Learning Term 2012/2013 1 / 34

Machine Learning. Term 2012/2013 LSI - FIB. Javier Béjar cbea (LSI - FIB) Machine Learning Term 2012/2013 1 / 34 Machine Learning Javier Béjar cbea LSI - FIB Term 2012/2013 Javier Béjar cbea (LSI - FIB) Machine Learning Term 2012/2013 1 / 34 Outline 1 Introduction to Inductive learning 2 Search and inductive learning

More information

Data mining techniques: decision trees

Data mining techniques: decision trees Data mining techniques: decision trees 1/39 Agenda Rule systems Building rule systems vs rule systems Quick reference 2/39 1 Agenda Rule systems Building rule systems vs rule systems Quick reference 3/39

More information

F. Aiolli - Sistemi Informativi 2007/2008

F. Aiolli - Sistemi Informativi 2007/2008 Text Categorization Text categorization (TC - aka text classification) is the task of buiding text classifiers, i.e. sofware systems that classify documents from a domain D into a given, fixed set C =

More information

II. RELATED WORK. Sentiment Mining

II. RELATED WORK. Sentiment Mining Sentiment Mining Using Ensemble Classification Models Matthew Whitehead and Larry Yaeger Indiana University School of Informatics 901 E. 10th St. Bloomington, IN 47408 {mewhiteh, larryy}@indiana.edu Abstract

More information

Bisecting K-Means for Clustering Web Log data

Bisecting K-Means for Clustering Web Log data Bisecting K-Means for Clustering Web Log data Ruchika R. Patil Department of Computer Technology YCCE Nagpur, India Amreen Khan Department of Computer Technology YCCE Nagpur, India ABSTRACT Web usage mining

More information

Data Mining. 1 Introduction 2 Data Mining methods. Alfred Holl Data Mining 1

Data Mining. 1 Introduction 2 Data Mining methods. Alfred Holl Data Mining 1 Data Mining 1 Introduction 2 Data Mining methods Alfred Holl Data Mining 1 1 Introduction 1.1 Motivation 1.2 Goals and problems 1.3 Definitions 1.4 Roots 1.5 Data Mining process 1.6 Epistemological constraints

More information

A General Framework for Mining Concept-Drifting Data Streams with Skewed Distributions

A General Framework for Mining Concept-Drifting Data Streams with Skewed Distributions A General Framework for Mining Concept-Drifting Data Streams with Skewed Distributions Jing Gao Wei Fan Jiawei Han Philip S. Yu University of Illinois at Urbana-Champaign IBM T. J. Watson Research Center

More information

Big Data & Scripting Part II Streaming Algorithms

Big Data & Scripting Part II Streaming Algorithms Big Data & Scripting Part II Streaming Algorithms 1, Counting Distinct Elements 2, 3, counting distinct elements problem formalization input: stream of elements o from some universe U e.g. ids from a set

More information

Supervised Learning Evaluation (via Sentiment Analysis)!

Supervised Learning Evaluation (via Sentiment Analysis)! Supervised Learning Evaluation (via Sentiment Analysis)! Why Analyze Sentiment? Sentiment Analysis (Opinion Mining) Automatically label documents with their sentiment Toward a topic Aggregated over documents

More information

KATE GLEASON COLLEGE OF ENGINEERING. John D. Hromi Center for Quality and Applied Statistics

KATE GLEASON COLLEGE OF ENGINEERING. John D. Hromi Center for Quality and Applied Statistics ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM KATE GLEASON COLLEGE OF ENGINEERING John D. Hromi Center for Quality and Applied Statistics NEW (or REVISED) COURSE (KGCOE- CQAS- 747- Principles of

More information

Data Mining Applications in Manufacturing

Data Mining Applications in Manufacturing Data Mining Applications in Manufacturing Dr Jenny Harding Senior Lecturer Wolfson School of Mechanical & Manufacturing Engineering, Loughborough University Identification of Knowledge - Context Intelligent

More information

1 Maximum likelihood estimation

1 Maximum likelihood estimation COS 424: Interacting with Data Lecturer: David Blei Lecture #4 Scribes: Wei Ho, Michael Ye February 14, 2008 1 Maximum likelihood estimation 1.1 MLE of a Bernoulli random variable (coin flips) Given N

More information

Consolidated Tree Classifier Learning in a Car Insurance Fraud Detection Domain with Class Imbalance

Consolidated Tree Classifier Learning in a Car Insurance Fraud Detection Domain with Class Imbalance Consolidated Tree Classifier Learning in a Car Insurance Fraud Detection Domain with Class Imbalance Jesús M. Pérez, Javier Muguerza, Olatz Arbelaitz, Ibai Gurrutxaga, and José I. Martín Dept. of Computer

More information

Fine Particulate Matter Concentration Level Prediction by using Tree-based Ensemble Classification Algorithms

Fine Particulate Matter Concentration Level Prediction by using Tree-based Ensemble Classification Algorithms Fine Particulate Matter Concentration Level Prediction by using Tree-based Ensemble Classification Algorithms Yin Zhao School of Mathematical Sciences Universiti Sains Malaysia (USM) Penang, Malaysia Yahya

More information

A SURVEY OF TEXT CLASSIFICATION ALGORITHMS

A SURVEY OF TEXT CLASSIFICATION ALGORITHMS Chapter 6 A SURVEY OF TEXT CLASSIFICATION ALGORITHMS Charu C. Aggarwal IBM T. J. Watson Research Center Yorktown Heights, NY charu@us.ibm.com ChengXiang Zhai University of Illinois at Urbana-Champaign

More information

Inductive Learning in Less Than One Sequential Data Scan

Inductive Learning in Less Than One Sequential Data Scan Inductive Learning in Less Than One Sequential Data Scan Wei Fan, Haixun Wang, and Philip S. Yu IBM T.J.Watson Research Hawthorne, NY 10532 {weifan,haixun,psyu}@us.ibm.com Shaw-Hwa Lo Statistics Department,

More information

DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS

DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS DATA MINING CLUSTER ANALYSIS: BASIC CONCEPTS 1 AND ALGORITHMS Chiara Renso KDD-LAB ISTI- CNR, Pisa, Italy WHAT IS CLUSTER ANALYSIS? Finding groups of objects such that the objects in a group will be similar

More information

Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví. Pavel Kříž. Seminář z aktuárských věd MFF 4.

Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví. Pavel Kříž. Seminář z aktuárských věd MFF 4. Insurance Analytics - analýza dat a prediktivní modelování v pojišťovnictví Pavel Kříž Seminář z aktuárských věd MFF 4. dubna 2014 Summary 1. Application areas of Insurance Analytics 2. Insurance Analytics

More information

6 Classification and Regression Trees, 7 Bagging, and Boosting

6 Classification and Regression Trees, 7 Bagging, and Boosting hs24 v.2004/01/03 Prn:23/02/2005; 14:41 F:hs24011.tex; VTEX/ES p. 1 1 Handbook of Statistics, Vol. 24 ISSN: 0169-7161 2005 Elsevier B.V. All rights reserved. DOI 10.1016/S0169-7161(04)24011-1 1 6 Classification

More information

Getting Even More Out of Ensemble Selection

Getting Even More Out of Ensemble Selection Getting Even More Out of Ensemble Selection Quan Sun Department of Computer Science The University of Waikato Hamilton, New Zealand qs12@cs.waikato.ac.nz ABSTRACT Ensemble Selection uses forward stepwise

More information