4.3 The Graph of a Rational Function

Size: px
Start display at page:

Download "4.3 The Graph of a Rational Function"

Transcription

1 4.3 The Graph of a Rational Function Section 4.3 Notes Page EXAMPLE: Find the intercepts, asyptotes, and graph of + y =. 9 First we will find the -intercept by setting the top equal to zero: + = 0 so = -. We write (-, 0). To find the y-intercept, put in a zero for : 0 + y =. You will get 0 9 y = and we write 0,. 9 9 To find the vertical asyptote, set the botto equal to zero: 9 = 0 We get = ± 3. For the horizontal asyptote, we notice the highest power on the top is less than the highest power on the botto. Fro the previous section we know that the horizontal asyptote is autoatically y = 0. Now we are ready for the graph. First plot the intercepts. Then use dotted lines to draw in the asyptotes. The y-ais is one asyptote, so we have a horizontal dotted line at y = 0. The other asyptotes are = ± 3. These will be vertical lines going through 3 and -3 on the -ais. Now we need to graph. On the left and right sides of the graph we have two possible ways the graph can be drawn as the picture below shows. Notice that on the ends the graph will follow one asyptote, turn and follow the other asyptote. This is always the case with rational epressions: We need to chose whether the graph is above or below the -ais on each end. In order to do this we need to choose a test points. We need to choose a point that is less than negative 3 since we want to know what the graph is doing to the left of vertical asyptote, = -3. I will choose -4. We will put our test point into the original equation: y =. We get y =. Since this nuber is negative I know that the graph ust ( 4) 9 7 be below the -ais. Now let s test a point to the right of the vertical asyptote, = 3. I will choose 4 since this is greater than 3. Once 4 + again we will put 4 in for in the original equation: y = (4) 9 5 We get y = which is positive so this tells e the graph is above 7 the -ais. So now we know the graph looks like the following:

2 Section 4.3 Notes Page Now we need to take care of the iddle part of the graph. In between the two vertical asyptotes a rational graph will always look like one of the following: If we look at where our intercepts are that will help us choose one of the following. The only graph above that would fit the intercepts we are already plotted would be the third graph, so the following will be the our copleted graph: EXAMPLE: Find the intercepts, asyptotes, and graph of + 4 y =. + 5 ( + ) Let s factor this first: y =. We should always factor soething like this to see if anything ( 3)( + 5) cancels. Nothing does on this one so we will proceed to find the inforation. First we will find the -intercept by setting the top equal to zero: ( + ) = 0. We will get = 0 and = -. We will write our answer as (0, 0) and (-, 0). Since (0, 0) is an -intercept then autoatically this is our y-intercept as well. To find the vertical asyptote, set the botto equal to zero: ( 3)( + 5) = 0 We get = 3 and = -5. For the horizontal asyptote, notice that the highest power on top is the sae as the highest power on the an botto, so we know that y =. Here the a n = and b =, so the horizontal asyptote is y = =. b Now we are ready for the graph. First plot the intercepts. Then use dotted lines to draw in the asyptotes. There will be a horizontal line through y =. The other asyptotes are = 3 and = -5. These will be vertical lines going through 3 and 5 on the -ais.

3 Section 4.3 Notes Page 3 Now we are ready to draw the graph. Let s look at the part of the graph to the left of = -5. We need to decide whether the graph will be above or below the horizontal asyptote. We actually do not need to use test points for this. Notice that our only intercepts are between the two vertical asyptotes. This eans this is the only play the graph crosses the -ais. So when we look at the part of the graph where is less than -5 and since there are no intercepts there I know the graph has to be above the horizontal asyptote. The sae reasoning can be said about the part of the graph where is greater than 3. There are no -intercepts in the part of the graph where is greater than 3, so I know this part of the graph will also be above the horizontal asyptote. Now let s look between the two vertical asyptotes. Reeber there are only four types of graphs that could appear here: By the way the intercepts are located this tells e that only the first two graphs would work. How can we tell which one it is? We need to pick a test point. It can be any nuber between -5 and 3. I will test = -3. I will ( 3) + 4( 3) 7 put this in for in the original equation: y = =. Since this nuber is negative that ( 3) + ( 3) 5 30 eans when is -3 the graph should be below the -ais. This is only going to happen with the second graph above (upside down parabola). So now we can finish our graph:

4 EXAMPLE: Find the intercepts, asyptotes, and graph of y =. 4 Section 4.3 Notes Page 4 Let s factor this first: y =. Now we will find the -intercept by setting the top equal to zero: ( )( + ) = 0. We are done. We will write our answer as (0, 0). Again since (0, 0) is an -intercept then autoatically this is our y-intercept as well. To find the vertical asyptote, set the botto equal to zero: ( )( + ) = 0 We get = ±. For the horizontal asyptote, notice that the highest power on top is less than the highest power on the botto, so we know that the horizontal asyptote is autoatically y = 0. Now we are ready for the graph. We only have one point to plot this tie. Then we have our dotted lines to draw in the asyptotes. There will be a horizontal line through y = 0. The other asyptotes are = ±. These will be vertical lines going through - and on the -ais. Now we need draw the graph. Right now not uch inforation is given. We need to use test an value that is less than - and greater than - to see if the graph is above or below the -ais. First I will test = -3. We will put this in 3 3 for in the original equation: y = =. We get a ( 3) 4 5 negative nuber so I know the graph is below the -ais at this point. I also need to test a point greater than. I will 3 3 choose = 3. You will get y = =. So I know that the graph ust be above the -ais. What about the part of the graph between the two vertical asyptotes? We need to do test points here as well to deterine which of the four odels the graph resebles. I will test = and = -. We will not test those values: y = = This tells us that when = the graph is below the -ais. 4 3 Now if we test = - you will get y = =. So we know the graph is above the -ais at = -. ( ) 4 3 This tells us that the only graph that will work in the iddle is the third one.

5 EXAMPLE: Find the intercepts, asyptotes, and graph of 4 y =. Section 4.3 Notes Page 5 ( )( + ) Let s factor this first: y =. Now we will find the -intercept by setting the top equal to zero: ( )( + ) = 0. We get = ± ±,0.. well can write this as ( ) For the y-intercept you would put in a zero for. If you do then you will be dividing by zero, so there is no y- intercept in this case. To find the vertical asyptote, set the botto equal to zero: = 0. We only have one vertical asyptote here. For the horizontal asyptote, notice that the highest power on top is ore than the highest power on the botto, so we know that this is no horizontal asyptote. However we need to find the oblique asyptote by doing long division: We need to put in a 0 ter since it is issing. After we do the division we end up with an + 0. This is the equation of the line that the graph will follow. We need to set up 0 our graph by plotting the intercepts and the asyptotes. We will have one vertical 0 asyptote at = 0 and the oblique asyptote will be the line y =. 4 We see where the graph will cross the -ais. This tells us that the graph will be in these section. To the left of the vertical asyptote the graph will follow the line y = and turn turn towards (-, 0). Then it will follow the vertical asyptote. To the right of the vertical asyptote the graph will follow the vertical asyptote, turn through (, 0) and then follow the line y =.

6 EXAMPLE: Find the intercepts, asyptotes, and graph of y =. 6 Section 4.3 Notes Page 6 (3 + )( 4) Let s factor this first: y =. Notice that we can cancel out the 4 fro the top and botto. ( + 4)( 4) Whenever this happens you will have what is called a hole in the graph. Whatever part you can cancel you want to set this equal to zero. We will have 4 = 0. Solving it we get = 4. This is not a vertical asyptote. There will be a hole in the graph at the value of So the equation we will now look at to get the inforation will be y =. + 4 To find the -intercept by setting the top equal to zero: 3 + = 0. We get =, so we have, (0) + For the y-intercept you would put in a zero for. If you do then you will have y = =. So 0,. (0) + 4 To find the vertical asyptote, set the botto equal to zero: + 4 = 0 and we get = -4. We only have one vertical asyptote here since the other ter canceled out. We already deterined that there will be a hole at the value of 4. To find the horizontal asyptote we see the highest power on top is the sae as the highest power on the an 3 botto. So the horizontal asyptote is y =. Here the a n = 3 and b =, so y = = 3. b So we have drawn in the asyptotes and the intercepts. We notice that there are no -intercepts to the right of = -4. This tells us that the graph ust be above the horizontal asyptote (y = 3). If the graph was below this line then it would have crossed the -ais but we know this does not happen. To the right of the = -4 we notice the graph does cross the -ais so we know the graph is in this lower portion and not above y = 3. Of course if you are unsure where the graph should be you can always use tests points. You test a point less than = -4 and greater than = -4. When we draw the graph we need to ake sure that we put a hole when = 4.

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s

More information

Lesson 44: Acceleration, Velocity, and Period in SHM

Lesson 44: Acceleration, Velocity, and Period in SHM Lesson 44: Acceleration, Velocity, and Period in SHM Since there is a restoring force acting on objects in SHM it akes sense that the object will accelerate. In Physics 20 you are only required to explain

More information

Power functions: f(x) = x n, n is a natural number The graphs of some power functions are given below. n- even n- odd

Power functions: f(x) = x n, n is a natural number The graphs of some power functions are given below. n- even n- odd 5.1 Polynomial Functions A polynomial unctions is a unction o the orm = a n n + a n-1 n-1 + + a 1 + a 0 Eample: = 3 3 + 5 - The domain o a polynomial unction is the set o all real numbers. The -intercepts

More information

Graphing Linear Equations

Graphing Linear Equations Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope

More information

MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions

MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions The goal of this workshop is to familiarize you with similarities and differences in both the graphing and expression of polynomial

More information

The students will gather, organize, and display data in an appropriate pie (circle) graph.

The students will gather, organize, and display data in an appropriate pie (circle) graph. Algebra/Geoetry Institute Suer 2005 Lesson Plan 3: Pie Graphs Faculty Nae: Leslie Patten School: Cypress Park Eleentary Grade Level: 5 th grade PIE GRAPHS 1 Teaching objective(s) The students will gather,

More information

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)} Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m =

x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m = Slope and Lines The slope of a line is a ratio that measures the incline of the line. As a result, the smaller the incline, the closer the slope is to zero and the steeper the incline, the farther the

More information

Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line.

Plot the following two points on a graph and draw the line that passes through those two points. Find the rise, run and slope of that line. Objective # 6 Finding the slope of a line Material: page 117 to 121 Homework: worksheet NOTE: When we say line... we mean straight line! Slope of a line: It is a number that represents the slant of a line

More information

7.7 Solving Rational Equations

7.7 Solving Rational Equations Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate

More information

2.5 Transformations of Functions

2.5 Transformations of Functions 2.5 Transformations of Functions Section 2.5 Notes Page 1 We will first look at the major graphs you should know how to sketch: Square Root Function Absolute Value Function Identity Function Domain: [

More information

Graphing Linear Equations in Two Variables

Graphing Linear Equations in Two Variables Math 123 Section 3.2 - Graphing Linear Equations Using Intercepts - Page 1 Graphing Linear Equations in Two Variables I. Graphing Lines A. The graph of a line is just the set of solution points of the

More information

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b. PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

More information

MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

More information

How To Get A Loan From A Bank For Free

How To Get A Loan From A Bank For Free Finance 111 Finance We have to work with oney every day. While balancing your checkbook or calculating your onthly expenditures on espresso requires only arithetic, when we start saving, planning for retireent,

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20 Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

More information

A Gas Law And Absolute Zero

A Gas Law And Absolute Zero A Gas Law And Absolute Zero Equipent safety goggles, DataStudio, gas bulb with pressure gauge, 10 C to +110 C theroeter, 100 C to +50 C theroeter. Caution This experient deals with aterials that are very

More information

Graphing - Slope-Intercept Form

Graphing - Slope-Intercept Form 2.3 Graphing - Slope-Intercept Form Objective: Give the equation of a line with a known slope and y-intercept. When graphing a line we found one method we could use is to make a table of values. However,

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving

More information

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P. MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

More information

Roots, Linear Factors, and Sign Charts review of background material for Math 163A (Barsamian)

Roots, Linear Factors, and Sign Charts review of background material for Math 163A (Barsamian) Roots, Linear Factors, and Sign Charts review of background material for Math 16A (Barsamian) Contents 1. Introduction 1. Roots 1. Linear Factors 4. Sign Charts 5 5. Eercises 8 1. Introduction The sign

More information

A Gas Law And Absolute Zero Lab 11

A Gas Law And Absolute Zero Lab 11 HB 04-06-05 A Gas Law And Absolute Zero Lab 11 1 A Gas Law And Absolute Zero Lab 11 Equipent safety goggles, SWS, gas bulb with pressure gauge, 10 C to +110 C theroeter, 100 C to +50 C theroeter. Caution

More information

Determine If An Equation Represents a Function

Determine If An Equation Represents a Function Question : What is a linear function? The term linear function consists of two parts: linear and function. To understand what these terms mean together, we must first understand what a function is. The

More information

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY

Why should we learn this? One real-world connection is to find the rate of change in an airplane s altitude. The Slope of a Line VOCABULARY Wh should we learn this? The Slope of a Line Objectives: To find slope of a line given two points, and to graph a line using the slope and the -intercept. One real-world connection is to find the rate

More information

( C) CLASS 10. TEMPERATURE AND ATOMS

( C) CLASS 10. TEMPERATURE AND ATOMS CLASS 10. EMPERAURE AND AOMS 10.1. INRODUCION Boyle s understanding of the pressure-volue relationship for gases occurred in the late 1600 s. he relationships between volue and teperature, and between

More information

Graphing Rational Functions

Graphing Rational Functions Graphing Rational Functions A rational function is defined here as a function that is equal to a ratio of two polynomials p(x)/q(x) such that the degree of q(x) is at least 1. Examples: is a rational function

More information

Pre Calculus Math 40S: Explained!

Pre Calculus Math 40S: Explained! www.math0s.com 97 Conics Lesson Part I The Double Napped Cone Conic Sections: There are main conic sections: circle, ellipse, parabola, and hyperbola. It is possible to create each of these shapes by passing

More information

2-5 Rational Functions

2-5 Rational Functions -5 Rational Functions Find the domain of each function and the equations of the vertical or horizontal asymptotes, if any 1 f () = The function is undefined at the real zeros of the denominator b() = 4

More information

M 1310 4.1 Polynomial Functions 1

M 1310 4.1 Polynomial Functions 1 M 1310 4.1 Polynomial Functions 1 Polynomial Functions and Their Graphs Definition of a Polynomial Function Let n be a nonnegative integer and let a, a,..., a, a, a n n1 2 1 0, be real numbers, with a

More information

Answer Key Building Polynomial Functions

Answer Key Building Polynomial Functions Answer Key Building Polynomial Functions 1. What is the equation of the linear function shown to the right? 2. How did you find it? y = ( 2/3)x + 2 or an equivalent form. Answers will vary. For example,

More information

The Velocities of Gas Molecules

The Velocities of Gas Molecules he Velocities of Gas Molecules by Flick Colean Departent of Cheistry Wellesley College Wellesley MA 8 Copyright Flick Colean 996 All rights reserved You are welcoe to use this docuent in your own classes

More information

Part 1: Background - Graphing

Part 1: Background - Graphing Department of Physics and Geology Graphing Astronomy 1401 Equipment Needed Qty Computer with Data Studio Software 1 1.1 Graphing Part 1: Background - Graphing In science it is very important to find and

More information

The fairy tale Hansel and Gretel tells the story of a brother and sister who

The fairy tale Hansel and Gretel tells the story of a brother and sister who Piecewise Functions Developing the Graph of a Piecewise Function Learning Goals In this lesson, you will: Develop the graph of a piecewise function from a contet with or without a table of values. Represent

More information

Work, Energy, Conservation of Energy

Work, Energy, Conservation of Energy This test covers Work, echanical energy, kinetic energy, potential energy (gravitational and elastic), Hooke s Law, Conservation of Energy, heat energy, conservative and non-conservative forces, with soe

More information

5.7 Chebyshev Multi-section Matching Transformer

5.7 Chebyshev Multi-section Matching Transformer /9/ 5_7 Chebyshev Multisection Matching Transforers / 5.7 Chebyshev Multi-section Matching Transforer Reading Assignent: pp. 5-55 We can also build a ultisection atching network such that Γ f is a Chebyshev

More information

Basic Graphing Functions for the TI-83 and TI-84

Basic Graphing Functions for the TI-83 and TI-84 Basic Graphing Functions for the TI-83 and TI-84 The primary benefits of the TI-83 and TI-84 are the abilities to graph functions and to identify properties those functions possess. The purpose of this

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

More information

Write the Equation of the Line Review

Write the Equation of the Line Review Connecting Algebra 1 to Advanced Placement* Mathematics A Resource and Strategy Guide Objective: Students will be assessed on their ability to write the equation of a line in multiple methods. Connections

More information

LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to,

LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to, LINEAR INEQUALITIES When we use the equal sign in an equation we are stating that both sides of the equation are equal to each other. In an inequality, we are stating that both sides of the equation are

More information

PHYSICS 151 Notes for Online Lecture 2.2

PHYSICS 151 Notes for Online Lecture 2.2 PHYSICS 151 otes for Online Lecture. A free-bod diagra is a wa to represent all of the forces that act on a bod. A free-bod diagra akes solving ewton s second law for a given situation easier, because

More information

Coordinate Plane, Slope, and Lines Long-Term Memory Review Review 1

Coordinate Plane, Slope, and Lines Long-Term Memory Review Review 1 Review. What does slope of a line mean?. How do you find the slope of a line? 4. Plot and label the points A (3, ) and B (, ). a. From point B to point A, by how much does the y-value change? b. From point

More information

Core Maths C1. Revision Notes

Core Maths C1. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

More information

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

More information

Leak detection in open water channels

Leak detection in open water channels Proceedings of the 17th World Congress The International Federation of Autoatic Control Seoul, Korea, July 6-11, 28 Leak detection in open water channels Erik Weyer Georges Bastin Departent of Electrical

More information

What are the place values to the left of the decimal point and their associated powers of ten?

What are the place values to the left of the decimal point and their associated powers of ten? The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

More information

Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Chapter 10. Key Ideas Correlation, Correlation Coefficient (r), Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables

More information

Problem Set 2: Solutions ECON 301: Intermediate Microeconomics Prof. Marek Weretka. Problem 1 (Marginal Rate of Substitution)

Problem Set 2: Solutions ECON 301: Intermediate Microeconomics Prof. Marek Weretka. Problem 1 (Marginal Rate of Substitution) Proble Set 2: Solutions ECON 30: Interediate Microeconoics Prof. Marek Weretka Proble (Marginal Rate of Substitution) (a) For the third colun, recall that by definition MRS(x, x 2 ) = ( ) U x ( U ). x

More information

Week 1: Functions and Equations

Week 1: Functions and Equations Week 1: Functions and Equations Goals: Review functions Introduce modeling using linear and quadratic functions Solving equations and systems Suggested Textbook Readings: Chapter 2: 2.1-2.2, and Chapter

More information

PLOTTING DATA AND INTERPRETING GRAPHS

PLOTTING DATA AND INTERPRETING GRAPHS PLOTTING DATA AND INTERPRETING GRAPHS Fundamentals of Graphing One of the most important sets of skills in science and mathematics is the ability to construct graphs and to interpret the information they

More information

1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved.

1.2 GRAPHS OF EQUATIONS. Copyright Cengage Learning. All rights reserved. 1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs

More information

Vectors & Newton's Laws I

Vectors & Newton's Laws I Physics 6 Vectors & Newton's Laws I Introduction In this laboratory you will eplore a few aspects of Newton s Laws ug a force table in Part I and in Part II, force sensors and DataStudio. By establishing

More information

LIMITS AND CONTINUITY

LIMITS AND CONTINUITY LIMITS AND CONTINUITY 1 The concept of it Eample 11 Let f() = 2 4 Eamine the behavior of f() as approaches 2 2 Solution Let us compute some values of f() for close to 2, as in the tables below We see from

More information

Physics 211: Lab Oscillations. Simple Harmonic Motion.

Physics 211: Lab Oscillations. Simple Harmonic Motion. Physics 11: Lab Oscillations. Siple Haronic Motion. Reading Assignent: Chapter 15 Introduction: As we learned in class, physical systes will undergo an oscillatory otion, when displaced fro a stable equilibriu.

More information

Experiment 2 Index of refraction of an unknown liquid --- Abbe Refractometer

Experiment 2 Index of refraction of an unknown liquid --- Abbe Refractometer Experient Index of refraction of an unknown liquid --- Abbe Refractoeter Principle: The value n ay be written in the for sin ( δ +θ ) n =. θ sin This relation provides us with one or the standard ethods

More information

Calculating the Return on Investment (ROI) for DMSMS Management. The Problem with Cost Avoidance

Calculating the Return on Investment (ROI) for DMSMS Management. The Problem with Cost Avoidance Calculating the Return on nvestent () for DMSMS Manageent Peter Sandborn CALCE, Departent of Mechanical Engineering (31) 45-3167 sandborn@calce.ud.edu www.ene.ud.edu/escml/obsolescence.ht October 28, 21

More information

5.3 Graphing Cubic Functions

5.3 Graphing Cubic Functions Name Class Date 5.3 Graphing Cubic Functions Essential Question: How are the graphs of f () = a ( - h) 3 + k and f () = ( 1_ related to the graph of f () = 3? b ( - h) 3 ) + k Resource Locker Eplore 1

More information

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

More information

5.1 Radical Notation and Rational Exponents

5.1 Radical Notation and Rational Exponents Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

More information

A Quick Algebra Review

A Quick Algebra Review 1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals

More information

Solving Equations Involving Parallel and Perpendicular Lines Examples

Solving Equations Involving Parallel and Perpendicular Lines Examples Solving Equations Involving Parallel and Perpendicular Lines Examples. The graphs of y = x, y = x, and y = x + are lines that have the same slope. They are parallel lines. Definition of Parallel Lines

More information

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.

More information

a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F

a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

Writing the Equation of a Line in Slope-Intercept Form

Writing the Equation of a Line in Slope-Intercept Form Writing the Equation of a Line in Slope-Intercept Form Slope-Intercept Form y = mx + b Example 1: Give the equation of the line in slope-intercept form a. With y-intercept (0, 2) and slope -9 b. Passing

More information

Lesson 9.1 Solving Quadratic Equations

Lesson 9.1 Solving Quadratic Equations Lesson 9.1 Solving Quadratic Equations 1. Sketch the graph of a quadratic equation with a. One -intercept and all nonnegative y-values. b. The verte in the third quadrant and no -intercepts. c. The verte

More information

5.1. A Formula for Slope. Investigation: Points and Slope CONDENSED

5.1. A Formula for Slope. Investigation: Points and Slope CONDENSED CONDENSED L E S S O N 5.1 A Formula for Slope In this lesson ou will learn how to calculate the slope of a line given two points on the line determine whether a point lies on the same line as two given

More information

Slope-Intercept Equation. Example

Slope-Intercept Equation. Example 1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the y-intercept. Determine

More information

Homework #1 Solutions

Homework #1 Solutions Homework #1 Solutions Problems Section 1.1: 8, 10, 12, 14, 16 Section 1.2: 2, 8, 10, 12, 16, 24, 26 Extra Problems #1 and #2 1.1.8. Find f (5) if f (x) = 10x x 2. Solution: Setting x = 5, f (5) = 10(5)

More information

Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year.

Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year. Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year. Goal The goal of the summer math program is to help students

More information

Graphing Quadratic Equations

Graphing Quadratic Equations .4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph first-degree equations. Similar methods will allow ou to graph quadratic equations

More information

Elements of a graph. Click on the links below to jump directly to the relevant section

Elements of a graph. Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section Elements of a graph Linear equations and their graphs What is slope? Slope and y-intercept in the equation of a line Comparing lines on

More information

Aim: How do we find the slope of a line? Warm Up: Go over test. A. Slope -

Aim: How do we find the slope of a line? Warm Up: Go over test. A. Slope - Aim: How do we find the slope of a line? Warm Up: Go over test A. Slope - Plot the points and draw a line through the given points. Find the slope of the line.. A(-5,4) and B(4,-3) 2. A(4,3) and B(4,-6)

More information

MPE Review Section III: Logarithmic & Exponential Functions

MPE Review Section III: Logarithmic & Exponential Functions MPE Review Section III: Logarithmic & Eponential Functions FUNCTIONS AND GRAPHS To specify a function y f (, one must give a collection of numbers D, called the domain of the function, and a procedure

More information

The Mathematics of Pumping Water

The Mathematics of Pumping Water The Matheatics of Puping Water AECOM Design Build Civil, Mechanical Engineering INTRODUCTION Please observe the conversion of units in calculations throughout this exeplar. In any puping syste, the role

More information

Exponent Law Review 3 + 3 0. 12 13 b. 1 d. 0. x 5 d. x 11. a 5 b. b 8 a 8. b 2 a 2 d. 81u 8 v 10 81. u 8 v 20 81. Name: Class: Date:

Exponent Law Review 3 + 3 0. 12 13 b. 1 d. 0. x 5 d. x 11. a 5 b. b 8 a 8. b 2 a 2 d. 81u 8 v 10 81. u 8 v 20 81. Name: Class: Date: Name: Class: Date: Eponent Law Review Multiple Choice Identify the choice that best completes the statement or answers the question The epression + 0 is equal to 0 Simplify 6 6 8 6 6 6 0 Simplify ( ) (

More information

Colegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radio-active substance at time t hours is given by. m = 4e 0.2t.

Colegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radio-active substance at time t hours is given by. m = 4e 0.2t. REPASO. The mass m kg of a radio-active substance at time t hours is given b m = 4e 0.t. Write down the initial mass. The mass is reduced to.5 kg. How long does this take?. The function f is given b f()

More information

Lecture L9 - Linear Impulse and Momentum. Collisions

Lecture L9 - Linear Impulse and Momentum. Collisions J. Peraire, S. Widnall 16.07 Dynaics Fall 009 Version.0 Lecture L9 - Linear Ipulse and Moentu. Collisions In this lecture, we will consider the equations that result fro integrating Newton s second law,

More information

1 Shapes of Cubic Functions

1 Shapes of Cubic Functions MA 1165 - Lecture 05 1 1/26/09 1 Shapes of Cubic Functions A cubic function (a.k.a. a third-degree polynomial function) is one that can be written in the form f(x) = ax 3 + bx 2 + cx + d. (1) Quadratic

More information

Algebra 2 Notes AII.7 Functions: Review, Domain/Range. Function: Domain: Range:

Algebra 2 Notes AII.7 Functions: Review, Domain/Range. Function: Domain: Range: Name: Date: Block: Functions: Review What is a.? Relation: Function: Domain: Range: Draw a graph of a : a) relation that is a function b) relation that is NOT a function Function Notation f(x): Names the

More information

135 Final Review. Determine whether the graph is symmetric with respect to the x-axis, the y-axis, and/or the origin.

135 Final Review. Determine whether the graph is symmetric with respect to the x-axis, the y-axis, and/or the origin. 13 Final Review Find the distance d(p1, P2) between the points P1 and P2. 1) P1 = (, -6); P2 = (7, -2) 2 12 2 12 3 Determine whether the graph is smmetric with respect to the -ais, the -ais, and/or the

More information

Review of Fundamental Mathematics

Review of Fundamental Mathematics Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools

More information

Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown.

Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown. Warm Up Write an equation given the slope and y-intercept Write an equation of the line shown. EXAMPLE 1 Write an equation given the slope and y-intercept From the graph, you can see that the slope is

More information

Chapter 4.1 Parallel Lines and Planes

Chapter 4.1 Parallel Lines and Planes Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about

More information

Activity 6 Graphing Linear Equations

Activity 6 Graphing Linear Equations Activity 6 Graphing Linear Equations TEACHER NOTES Topic Area: Algebra NCTM Standard: Represent and analyze mathematical situations and structures using algebraic symbols Objective: The student will be

More information

Temperature Scales. The metric system that we are now using includes a unit that is specific for the representation of measured temperatures.

Temperature Scales. The metric system that we are now using includes a unit that is specific for the representation of measured temperatures. Temperature Scales INTRODUCTION The metric system that we are now using includes a unit that is specific for the representation of measured temperatures. The unit of temperature in the metric system is

More information

Procedure for Graphing Polynomial Functions

Procedure for Graphing Polynomial Functions Procedure for Graphing Polynomial Functions P(x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 To graph P(x): As an example, we will examine the following polynomial function: P(x) = 2x 3 3x 2 23x + 12 1. Determine

More information

COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level 2

COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level 2 COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level This study guide is for students trying to test into College Algebra. There are three levels of math study guides. 1. If x and y 1, what

More information

Effects of changing slope or y-intercept

Effects of changing slope or y-intercept Teacher Notes Parts 1 and 2 of this lesson are to be done on the calculator. Part 3 uses the TI-Navigator System. Part 1: Calculator Investigation of changing the y-intercept of an equation In your calculators

More information

Unit 3 - Lesson 3. MM3A2 - Logarithmic Functions and Inverses of exponential functions

Unit 3 - Lesson 3. MM3A2 - Logarithmic Functions and Inverses of exponential functions Math Instructional Framework Time Frame Unit Name Learning Task/Topics/ Themes Standards and Elements Lesson Essential Questions Activator Unit 3 - Lesson 3 MM3A2 - Logarithmic Functions and Inverses of

More information

2.5 Zeros of a Polynomial Functions

2.5 Zeros of a Polynomial Functions .5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the x-axis and

More information

4.9 Graph and Solve Quadratic

4.9 Graph and Solve Quadratic 4.9 Graph and Solve Quadratic Inequalities Goal p Graph and solve quadratic inequalities. Your Notes VOCABULARY Quadratic inequalit in two variables Quadratic inequalit in one variable GRAPHING A QUADRATIC

More information

MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

More information

The Point-Slope Form

The Point-Slope Form 7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope

More information

Experiment 9. The Pendulum

Experiment 9. The Pendulum Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum

More information

Midterm 2 Review Problems (the first 7 pages) Math 123-5116 Intermediate Algebra Online Spring 2013

Midterm 2 Review Problems (the first 7 pages) Math 123-5116 Intermediate Algebra Online Spring 2013 Midterm Review Problems (the first 7 pages) Math 1-5116 Intermediate Algebra Online Spring 01 Please note that these review problems are due on the day of the midterm, Friday, April 1, 01 at 6 p.m. in

More information

Section 5.0A Factoring Part 1

Section 5.0A Factoring Part 1 Section 5.0A Factoring Part 1 I. Work Together A. Multiply the following binomials into trinomials. (Write the final result in descending order, i.e., a + b + c ). ( 7)( + 5) ( + 7)( + ) ( + 7)( + 5) (

More information