The Next Generation of Activated Carbon Adsorbents for the Pre- Combustion Capture of Carbon Dioxide.

Size: px
Start display at page:

Download "The Next Generation of Activated Carbon Adsorbents for the Pre- Combustion Capture of Carbon Dioxide."

Transcription

1 The Next Generation of Activated Carbon Adsorbents for the Pre- Combustion Capture of Carbon Dioxide. Power Plant Modelling Workshop at University of Warwick Dr. Joe Wood,Prof. Jihong Wang, Simon Caldwell, Yue Wang

2 Dr Joe Wood - Introduction Project overview Modelling objectives Simon Caldwell - Modelling of carbon capture at IGCC Power Plants Dispersion Model Adsorption Model Yue Wang - Modelling of power plant performance Heat recovery steam generator Gas turbine and heat recovery module

3 General acceptance that CO 2 emissions are affecting the climate UK emissions targets for power stations is a reduction from 500 to 50 gco 2 /kwhr by 2030 (1) Up to 18 GW of investment of CCS power stations is possible in the 2020s By 2030, 26% of global emissions from China, with 98% of power generation emissions from coal (2) $2.7 trillion investment in power by 2030 (3) 50/50 split favouring pre-combustion to postcombustion capture (3) 1. Turner, A. et al. The Fourth Carbon Budget - Reducing emissions through the 2020s. London : Committee on Climate Change, Grubb, M. Generating Electricity in a Carbon Constrained World. London : Elsevier, Liang, X et al. 2011, Applied Energy, Vol. 88, pp

4 Diagram based on Tampa Electric IGCC Process Flow Diagram, National Energy Technology Laboratory, USA

5 Could provide a CO 2 emission free process of the future Reaction to form Syngas Convert CO in to CO 2 in water gas shift Separation of CO 2 and hydrogen Diagram based on Scottish Carbon Capture and Storage Centre

6

7 University of Birmingham (Simon Caldwell) Simulation of pre-combustion carbon capture Developing a model of the adsorption step Producing cyclic model including all PSA steps Developing model to incorporate complete carbon capture process Incorporates adsorption isotherms, mass transfer models, fixed bed model Unsteady state heat and mass balances Parameter estimation from experimental data

8 Project Overview T, P T, P Syngas from WGS Reactor Composition Dry Molar Flowrate CCS Process Composition Molar Flowrate Fuel gas to gas turbine Molecular Weight Molecular Weight Composition: Hydrogen, Carbon dioxide, Carbon Monoxide, Nitrogen, Methane, Hydrogen Sulphide, Water

9 Typical PSA Process Water Gas Shift Product (60% H 2, 40% CO 2 ) High Purity CO 2 Adsorption Purge Blowdown Pressurisation High Purity H 2

10 University of Warwick Modelling and simulation study of IGCC power generation process Integration of power plant and CCS models Investigations of Dynamic response Impact on power transmission and distribution network Effect of CCS upon plant efficiency Effect of different fuel types Quantified analysis of the process with plant optimization

11 Dr Joe Wood - Introduction Project overview Modelling objectives Simon Caldwell - Modelling of carbon capture at IGCC Power Plants Dispersion Model Adsorption Model Yue Wang - Modelling of an IGCC power plant Heat recovery steam generator Gas turbine and heat recovery module

12 Model being developed for the removal of CO 2 from a H 2 /CO 2 gas mixture by adsorption High CO 2 content compared to post-combustion processes High pressure favours physisorption Hierarchical model developed in gproms Based on Axial Dispersed Plug Flow Model Current model looks at an Adsorption system for the separation of Carbon Dioxide and Nitrogen Literature review of CO 2 /N 2 Adsorption Models on Zeolite 13X

13 Equations Component Mass Balance Use of overall Mass balance: Adsorption rate equation (Linear Driving Force): Equilibrium Isotherm (Langmuir):

14 Temperature, Pressure and Transport Properties Thermal Operating Modes Isothermal Adiabatic Non-isothermal Momentum Balance No pressure drop Ergun s Equation Darcy s Equation Mass Balance Coefficients: Mass transfer coefficient Dispersion coefficient Diffusivity Heat Balance Coefficients: Heat transfer coefficient

15 Fixed bed for removal of CO 2 from a N 2 flow Capable of controlling pressure, input flowrates and temperature Limited to 200 C and 25 barg Maximum CO 2 content of 25% restricted by the CO 2 analyser Main output is CO 2 mole fraction

16

17 A simplified model was established where no adsorption takes place Allows ability to validate model to be tested Tests the response of the entire experimental system Assumes system to be isothermal with no pressure drop Empirical models looking at response of the system without the bed were established Experiments run with bed filled with glass beads Model Parameters identical to experiment (i.e. bed size, flowrates etc.)

18 CO 2 Mole Fraction Flowrate (ml/min) 8.5 Pressure (barg) 25 CO 2 Mole Fraction 0.1 Estimated Dispersion Coefficient (m 2 s -1 ) Literature Dispersion Coefficient (m 2 s -1 ) 2.75 x Experimental Output Model Output Time (s)

19 More complex model developed for simulation of the adsorption step Model Assumptions 1. Fluid flow is governed by axially dispersed plug flow model 2. Equilibrium relations are given by the Langmuir Isotherm 3. MT rates are represented by LDF equations 4. Thermal effects are negligible 5. Pressure drop represented by Ergun Equation Parameters Estimated Dispersion coefficient, Langmuir Isotherm parameters All other parameters match experiment conditions

20 CO2 Mole Fraction Time (s) Experimental Output Model Output Flowrate (ml/min) 8.5 Pressure (barg) 25 CO 2 Mole Fraction 0.1 Bed length (cm) 7.7 Experimental Adsorption Capacity (mmol/g) 3.3

21 Parameters Estimated: Langmuir Isotherm Parameters: Dispersion Coefficient Literature results vary widely for Isotherm parameters and often do not give Dispersion Coefficient values Start point for parameter estimation severely affects estimated value Parameter Range Closest Fit Dispersion Coefficient (m 2 s -1 ) 8.2x x x10-7 A (N 2 ) (mol kg -1 Pa -1 ) 4.4x x x10-7 B (N 2 ) Pa -1 ) 5.5x x x10-7 A (CO 2 ) (mol kg -1 Pa -1 ) 1.9x x x10-5 B (CO 2 ) (Pa -1 ) 5.4x x x10-6 CO 2 Adsorption Capacity (mol kg -1 )

22 Validation of estimated parameters by testing them against a shorter bed Experiment repeated with 5g adsorbent instead of 18g, the remainder filled with glass beads All other conditions kept the same Glass Beads Zeolite 13X Dispersion model used for glass bead part and adsorption model for 5g adsorbent part CO 2 /N 2 Mixture

23 CO2 Mole Fraction Flowrate (ml/min) 8.5 Pressure (barg) 25 CO 2 Mole Fraction 0.1 Bed Length (cm) 2.4 Experimental Adsorption Capacity (mmol/g) 2.8 Experimental Output Model Output Time (s)

24 Parameter Full Bed Best Estimate Short Bed Best Estimate Dispersion Coefficient (m 2 s -1 ) 8.2x x10-7 A (N 2 ) (mol kg -1 Pa -1 ) 4.4x x10-7 B (N 2 ) Pa -1 ) 5.5x x10-7 A (CO 2 ) (mol kg -1 Pa -1 ) 1.9x x10-5 B (CO 2 ) (Pa -1 ) 5.4x x10-5 CO 2 Adsorption Capacity (mol kg -1 ) Dispersion coefficients and Nitrogen Langmuir constants kept constant as they approached their bounds Other models fit adsorption capacity closer but with significantly different parameters

25 Hierarchy model developed based on axial dispersed plug flow model Simplistic dispersion only model validated More complex adsorption model able to mimic experimental work 5 parameters estimated to give very close approximations to experiments

26 Adsorption Model Improve parameter estimation Implement energy balance Pre-Combustion Model Switch system to using Activated Carbon adsorbent Move towards conditions found in pre-combustion capture (i.e. Hydrogen) Produce cyclic PSA model Power Plant Model Complete carbon capture unit model Combine model together with power plant model

27 Dr Joe Wood - Introduction Project overview Modelling objectives Simon Caldwell - Modelling of carbon capture at IGCC Power Plants Dispersion Model Adsorption Model Yue Wang - Modelling of an IGCC power plant Heat recovery steam generator Gas turbine and heat recovery module

28 Figure1. Simplified IGCC power plant procedure Key modules for IGCC process: a.gem with auxiliary systems:coal feed, ASU, Gasifier, WGS; b.combined cycle system: Gas turbine, Heat recovery boiler, steam turbine.

29 Coal slurry feed system Pulverize coal to 5mm particles and mixed with water to feed coal slurry to the gasifier. Coal mill model has been developed from our previous work.

30 ASU unit in IGCC power plant Supplies oxygen to gasification island/ sulphur removal processes Optimal integration with gas turbine efficiency

31 ASU unit in IGCC power plant Figure3 simplified ASU unit

32 The GEM (Gasification Enabled Module )unit Use coal slurry oxygen and air to produce syngas; CO shift promotes the CO2 content in syngas and prepare for the PSA removal; Supply HP &LP steam to HRSG.

33 Main model based on gas and solid phase mass balance and energy conservation; Chemical reaction submodel inculdes devolatilization and drying, homogeneous reactions and heterogeneous reactions; Heat transfer submodel; Slag layer submodel. CO+H O CO +H -41MJ /kmol Water gas shift reaction provide high partial pressure of CO2 preferred in PSA system Improved hydrogen extraction; Direct contact gas / liquid exchange Increased power output through improved where water flows against a gas gasification waste heat recovery. stream passing upwards; Considerably aid waste heat recover and lower costs, and is especially advantageous in a shifted scheme All of the cooling train heat exchang are liquid liquid making them much smaller and cheaper Figure 4 the GEM unit

34 Gas turbine components: Brayton cycle

35 Gas turbine mathematical model: The Compressor (Isentropic) block increases the pressure of an incoming flow to a given outlet pressure. It determines the thermodynamic state of the outgoing flow along with the compressor's required mechanical power consumption at a given isentropic efficiency. The realized output mass flow rate A characteristic time is used to delay the mass flow.

36 Gas turbine mathematical model: Mixes two fluids with or without phase change. The Mixer block calculates temperature, composition and pressure after an adiabatic mixing of two fluids. The output enthalpy is the sum of the input enthalpies. The pressure of the resulting flow Pressure loss K is the pressure loss factor

37 Gas turbine mathematical model: The Reactor block computes the outgoing flow bus (FB) after one reaction, a heat exchange with the environment and a pressure loss. Heat exchange with the surrounding environment is taken into account. In general, the outgoing flow is not in chemical equilibrium as the Reactor performs a chemical reaction depending on a rate of reaction.

38 Gas turbine mathematical model: The Turbine (Isentropic) block decreases the pressure of an incoming flow to a given outlet pressure. It determines the thermodynamic state of the outgoing flow along with the produced mechanical power at a given isentropic efficiency. Subscripts, s and ac states for isentropic and actual change of state. oi h h h 3 4 ' h 3 4 Turbine is adiabatic and used with gaseous flows

39

40 This heat exchanger support counter flow The Heat Exchanger block calculates the change of state of two media caused by indirect heat exchange. It is assumed, that this heat transfer rate is constant over the area of the heat exchanger or it represents a mean of the heat exchange rate. To approximate the dynamic thermal behavior of the block, the heat exchanger is assumed to have a thermal mass The heat exchange with environment is divided in four parts: both thermal masses (for flow 1 and flow 2) exchange heat with environment, both output flows exchange heat with environment. Each of the two flows entering the heat exchanger exchanges heat with its own thermal mass, The two thermal masses are not interacting, but they have a term representing the heat exchange with environment.

41 to complete the whole system modelling implementation of the model to software environment; integrate the model with CCS process model.

42

Comparison of commercial and new developed adsorbent materials for pre-combustion CO 2 capture by pressure swing adsorption

Comparison of commercial and new developed adsorbent materials for pre-combustion CO 2 capture by pressure swing adsorption Comparison of commercial and new developed adsorbent materials for pre-combustion CO 2 capture by pressure swing adsorption Johanna Schell, Nathalie Casas, Lisa Joss, Marco Mazzotti - ETH Zurich, Switzerland

More information

Module 5: Combustion Technology. Lecture 33: Combustion air calculation

Module 5: Combustion Technology. Lecture 33: Combustion air calculation 1 P age Module 5: Combustion Technology Lecture 33: Combustion air calculation 2 P age Keywords: Heat of combustion, stoichiometric air, excess air, natural gas combustion Combustion air calculation The

More information

Impact of coal quality and gasifier technology on IGCC performance

Impact of coal quality and gasifier technology on IGCC performance Impact of coal quality and gasifier technology on IGCC performance Ola Maurstad 1 *, Howard Herzog**, Olav Bolland*, János Beér** *The Norwegian University of Science and Technology (NTNU), N-7491 Trondheim,

More information

Hybrid Power Generations Systems, LLC

Hybrid Power Generations Systems, LLC Coal Integrated Gasification Fuel Cell System Study Pre-Baseline Topical Report April 2003 to July 2003 Gregory Wotzak, Chellappa Balan, Faress Rahman, Nguyen Minh August 2003 Performed under DOE/NETL

More information

Exergy: the quality of energy N. Woudstra

Exergy: the quality of energy N. Woudstra Exergy: the quality of energy N. Woudstra Introduction Characteristic for our society is a massive consumption of goods and energy. Continuation of this way of life in the long term is only possible if

More information

Development of Coal Gasification System for Producing Chemical Synthesis Source Gas

Development of Coal Gasification System for Producing Chemical Synthesis Source Gas 27 Development of Coal Gasification System for Producing Chemical Synthesis Source Gas TAKAO HASHIMOTO *1 KOICHI SAKAMOTO *1 KATSUHIRO OTA *2 TAKASHI IWAHASHI *3 YUUICHIROU KITAGAWA *4 KATSUHIKO YOKOHAMA

More information

From solid fuels to substitute natural gas (SNG) using TREMP

From solid fuels to substitute natural gas (SNG) using TREMP From solid fuels to substitute natural gas (SNG) using TREMP Topsøe Recycle Energy-efficient Methanation Process Introduction Natural gas is a clean, environmentally friendly energy source and is expected

More information

Outlook on Integrated Gasification Combined Cycle (IGCC) Technology

Outlook on Integrated Gasification Combined Cycle (IGCC) Technology The IGCC Process: From Coal To Clean Electric Power Outlook on Integrated Gasification Combined Cycle (IGCC) Technology Testimony of Edward Lowe Gas Turbine-Combined Cycle Product Line Manager General

More information

Simulation of a base case for future IGCC concepts with CO 2 capture

Simulation of a base case for future IGCC concepts with CO 2 capture Simulation of a base case for future IGCC concepts with CO 2 capture Christian Kunze, Hartmut Spliethoff Institute for Energy Systems TU München for 4 th Clean Coal Technology Conference 2009 18 20 May,

More information

Petroleum Refinery Hydrogen Production Unit: Exergy and Production Cost Evaluation

Petroleum Refinery Hydrogen Production Unit: Exergy and Production Cost Evaluation Int. J. of Thermodynamics ISSN 1301-9724 Vol. 11 (No. 4), pp. 187-193, December 2008 Petroleum Refinery Hydrogen Production Unit: and Production Cost Evaluation Flávio E. Cruz 1 and Silvio de Oliveira

More information

Concepts in Syngas Manufacture

Concepts in Syngas Manufacture CATALYTIC SCIENCE SERIES VOL. 10 Series Editor: Graham J. Hutchings Concepts in Syngas Manufacture Jens Rostrup-Nielsen Lars J. Christiansen Haldor Topsoe A/S, Denmark Imperial College Press Contents Preface

More information

Energy Savings in Methanol Synthesis : Use of Heat Integration Techniques and Simulation Tools.

Energy Savings in Methanol Synthesis : Use of Heat Integration Techniques and Simulation Tools. Page 1 Energy Savings in Methanol Synthesis : Use of Heat Integration Techniques and Simulation Tools. François Maréchal a, Georges Heyen a, Boris Kalitventzeff a,b a L.A.S.S.C., Université de Liège, Sart-Tilman

More information

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels 1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation

More information

Yu. F. Vasyuchkov*, M. Yu. Bykova* NEW TECHNOLOGY OF GAS EXTRACTION ON THE BASE OF A COAL TO A HYDROGEN TRANSFER

Yu. F. Vasyuchkov*, M. Yu. Bykova* NEW TECHNOLOGY OF GAS EXTRACTION ON THE BASE OF A COAL TO A HYDROGEN TRANSFER WIERTNICTWO NAFTA GAZ TOM 28 ZESZYT 1 2 2011 Yu. F. Vasyuchkov*, M. Yu. Bykova* NEW TECHNOLOGY OF GAS EXTRACTION ON THE BASE OF A COAL TO A HYDROGEN TRANSFER In modern period the useful extraction of energy

More information

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES

APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES APPLIED THERMODYNAMICS TUTORIAL 1 REVISION OF ISENTROPIC EFFICIENCY ADVANCED STEAM CYCLES INTRODUCTION This tutorial is designed for students wishing to extend their knowledge of thermodynamics to a more

More information

Making Coal Use Compatible with Measures to Counter Global Warming

Making Coal Use Compatible with Measures to Counter Global Warming Making Use Compatible with Measures to Counter Global Warming The J-POWER Group is one of the biggest coal users in Japan, consuming approximately 2 million tons of coal per year at eight coal-fired power

More information

B0401 Abstract 029 Oral Presentation Session B04 Innovative Applications and Designs - Tuesday, July 1, 2008 16:00 h

B0401 Abstract 029 Oral Presentation Session B04 Innovative Applications and Designs - Tuesday, July 1, 2008 16:00 h Reference System for a Power Plant Based on Biomass Gasification and SOFC Richard Toonssen, Nico Woudstra, Adrian H.M. Verkooijen Delft University of Technology Energy Technology, Process & Energy department

More information

Hydrogen from Natural Gas via Steam Methane Reforming (SMR)

Hydrogen from Natural Gas via Steam Methane Reforming (SMR) Hydrogen from Natural Gas via Steam Methane Reforming (SMR) John Jechura jjechura@mines.edu Updated: January 4, 2015 Energy efficiency of hydrogen from natural gas Definition of energy efficiency From

More information

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS

PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS ASME ORC 2015 3rd International Seminar on ORC Power Systems 12-14 October 2015, Brussels, Belgium PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS Vittorio

More information

F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7.

F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7. Moles 1 MOLES The mole the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro s constant (N A ) Avogadro s constant has a value of 6.02 x 10 23 mol -1.

More information

COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink

COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink COMBUSTION In order to operate a heat engine we need a hot source together with a cold sink Occasionally these occur together in nature eg:- geothermal sites or solar powered engines, but usually the heat

More information

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems DFC Technology Used as Electrochemical Membrane for CO 2 Purification and Capture during Power Generation FCE s Direct

More information

6 CONSIDERATION OF ALTERNATIVES

6 CONSIDERATION OF ALTERNATIVES 6 CONSIDERATION OF ALTERNATIVES 6.1.1 Schedule 4 of the Town and Country Planning (Environmental Impact Assessment) (Scotland) Regulations 2011 sets out the information for inclusion in Environmental Statements

More information

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

More information

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g) CHEM 15 HOUR EXAM III 28-OCT-99 NAME (please print) 1. a. given: Ni (s) + 4 CO (g) = Ni(CO) 4 (g) H Rxn = -163 k/mole determine H f for Ni(CO) 4 (g) b. given: Cr (s) + 6 CO (g) = Cr(CO) 6 (g) H Rxn = -26

More information

Gasification of Oil Refinery Waste for Power and Hydrogen Production

Gasification of Oil Refinery Waste for Power and Hydrogen Production Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management Bali, Indonesia, January 7 9, 2014 Gasification of Oil Refinery Waste for Power and Hydrogen Production

More information

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1

AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1 Moles 1 MOLES The mole the standard unit of amount of a substance the number of particles in a mole is known as Avogadro s constant (L) Avogadro s constant has a value of 6.023 x 10 23 mol -1. Example

More information

VALIDATION, MODELING, AND SCALE-UP OF CHEMICAL LOOPING COMBUSTION WITH OXYGEN UNCOUPLING

VALIDATION, MODELING, AND SCALE-UP OF CHEMICAL LOOPING COMBUSTION WITH OXYGEN UNCOUPLING VALIDATION, MODELING, AND SCALE-UP OF CHEMICAL LOOPING COMBUSTION WITH OXYGEN UNCOUPLING A research program funded by the University of Wyoming School of Energy Resources Executive Summary Principal Investigator:

More information

Continuous flow direct water heating for potable hot water

Continuous flow direct water heating for potable hot water Continuous flow direct water heating for potable hot water An independently produced White Paper for Rinnai UK 2013 www.rinnaiuk.com In the 35 years since direct hot water systems entered the UK commercial

More information

Thermodynamics - Example Problems Problems and Solutions

Thermodynamics - Example Problems Problems and Solutions Thermodynamics - Example Problems Problems and Solutions 1 Examining a Power Plant Consider a power plant. At point 1 the working gas has a temperature of T = 25 C. The pressure is 1bar and the mass flow

More information

Forgotten savings: Heat recovery from surface blowdown

Forgotten savings: Heat recovery from surface blowdown Forgotten savings: Heat recovery from surface blowdown 1. Introduction The purpose of this article is to inform thermal plant operators of the interesting fuel savings that can be obtained by recovering

More information

Overview of Integrated Coal Gasification Combined-cycle Technology Using Low-rank Coal

Overview of Integrated Coal Gasification Combined-cycle Technology Using Low-rank Coal 19 Overview of Integrated Coal Gasification Combined-cycle Technology Using Low-rank Coal TAKAO HASHIMOTO *1 KOICHI SAKAMOTO *2 YOSHIKI YAMAGUCHI *3 KOJI OURA *4 KENICHI ARIMA *5 TAKESHI SUZUKI *6 Mitsubishi

More information

Viresco Energy s Advanced Gasification Technology

Viresco Energy s Advanced Gasification Technology Viresco Energy s Advanced Gasification Technology Arun Raju, Director of Research Viresco Energy, LLC arun.raju@virescoenergy.com Presentation Outline 2 Introduction to Viresco Energy Gasification Technology

More information

Coal-To-Gas & Coal-To-Liquids

Coal-To-Gas & Coal-To-Liquids Located in the Energy Center at Discovery Park, Purdue University Coal-To-Gas & Coal-To-Liquids CCTR Basic Facts File #3 Brian H. Bowen, Marty W. Irwin The Energy Center at Discovery Park Purdue University

More information

Sixth Annual Conference on Carbon Capture & Sequestration

Sixth Annual Conference on Carbon Capture & Sequestration Sixth Annual Conference on Carbon Capture & Sequestration Expediting Deployment of Industrial Scale Systems Geologic Storage - EOR An Opportunity for Enhanced Oil Recovery in Texas Using CO 2 from IGCC

More information

Power Generation through Surface Coal Gasification

Power Generation through Surface Coal Gasification Paper ID : 20100412 Power Generation through Surface Coal Gasification Sri Tapas Maiti, Sri S. Mustafi IEOT, ONGC, MUMBAI, INDIA Email : maiti.tapas@gmail.com Abstract Introduction India s oil reserve

More information

The Mole and Molar Mass

The Mole and Molar Mass The Mole and Molar Mass 1 Molar mass is the mass of one mole of a substance. Molar mass is numerically equal to atomic mass, molecular mass, or formula mass. However the units of molar mass are g/mol.

More information

Hydrogen Production via Steam Reforming with CO 2 Capture

Hydrogen Production via Steam Reforming with CO 2 Capture Hydrogen Production via Steam Reforming with CO 2 Capture Guido Collodi Foster Wheeler Via Caboto 1, 20094 Corsico Milan - Italy Hydrogen demand in refineries is increasing vigorously due to the stringent

More information

INTI COLLEGE MALAYSIA A? LEVEL PROGRAMME CHM 111: CHEMISTRY MOCK EXAMINATION: DECEMBER 2000 SESSION. 37 74 20 40 60 80 m/e

INTI COLLEGE MALAYSIA A? LEVEL PROGRAMME CHM 111: CHEMISTRY MOCK EXAMINATION: DECEMBER 2000 SESSION. 37 74 20 40 60 80 m/e CHM111(M)/Page 1 of 5 INTI COLLEGE MALAYSIA A? LEVEL PROGRAMME CHM 111: CHEMISTRY MOCK EXAMINATION: DECEMBER 2000 SESSION SECTION A Answer ALL EIGHT questions. (52 marks) 1. The following is the mass spectrum

More information

AMMONIA AND UREA PRODUCTION

AMMONIA AND UREA PRODUCTION AMMONIA AND UREA PRODUCTION Urea (NH 2 CONH 2 ) is of great importance to the agriculture industry as a nitrogen-rich fertiliser. In Kapuni, Petrochem manufacture ammonia and then convert the majority

More information

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla

Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Boiler Calculations Sebastian

More information

AN OFFER TECHNOLOGY FOR THE DISPOSAL OF M6 PROPELLANT WASTE. Wrocław, POLAND, 02-2015.

AN OFFER TECHNOLOGY FOR THE DISPOSAL OF M6 PROPELLANT WASTE. Wrocław, POLAND, 02-2015. AN OFFER TECHNOLOGY FOR THE DISPOSAL OF M6 PROPELLANT WASTE Wrocław, POLAND, 02-2015. 002664 AN OFFER The ATON-HT SA co has developed technology to neutralize, and utilize hazardous wastes. This also includes

More information

Performance of the Boiler and To Improving the Boiler Efficiency Using Cfd Modeling

Performance of the Boiler and To Improving the Boiler Efficiency Using Cfd Modeling IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 8, Issue 6 (Sep. - Oct. 2013), PP 25-29 Performance of the Boiler and To Improving the Boiler Efficiency

More information

Half the cost Half the carbon

Half the cost Half the carbon Half the cost Half the carbon the world s most efficient micro-chp What is BlueGEN? The most efficient small-scale electricity generator BlueGEN uses natural gas from the grid to generate electricity within

More information

Chapter 8 Maxwell relations and measurable properties

Chapter 8 Maxwell relations and measurable properties Chapter 8 Maxwell relations and measurable properties 8.1 Maxwell relations Other thermodynamic potentials emerging from Legendre transforms allow us to switch independent variables and give rise to alternate

More information

COAL GASIFICATION AND CO 2 CAPTURE

COAL GASIFICATION AND CO 2 CAPTURE COAL GASIFICATION AND CO 2 CAPTURE an overview of some process options and their consequences Use this area for cover image (height 6.5cm, width 8cm) Evert Wesker Shell Global Solutions International B.V.

More information

Integrated Modeling of Carbon Management Technologies for Electric Power Systems. Some Questions to be Addressed

Integrated Modeling of Carbon Management Technologies for Electric Power Systems. Some Questions to be Addressed Integrated Modeling of Carbon Management Technologies for Electric Power Systems Edward S. Rubin and Anand B. Rao Department of Engineering & Public Policy Carnegie Mellon University July 20, 2000 Some

More information

How To Power A Coal Plant With Electricity From A Gasifier

How To Power A Coal Plant With Electricity From A Gasifier 1 Hybrid Power for Cracking Power Plant CO 2 Sequestration (pumping enormous volumes of CO 2 underground and hoping it won't leak out) is impractical for several technical and political reasons. The clear

More information

The Future of Coal-Based Power Generation With CCS UN CCS Summit James Katzer MIT Energy Initiative web.mit.edu/coal/

The Future of Coal-Based Power Generation With CCS UN CCS Summit James Katzer MIT Energy Initiative web.mit.edu/coal/ The Future of Coal-Based Power Generation With CCS UN CCS Summit James Katzer MIT Energy Initiative web.mit.edu/coal/ 1 Times Are Changing As Yogi Berra said: The Future Ain t What It Used to Be 2 Overview

More information

SKI Coal Gasification Technology. Feb. 23, 2012

SKI Coal Gasification Technology. Feb. 23, 2012 SKI Coal Gasification Technology Feb. 23, 2012 1 Contents Overview of SK Organization Coal SKI Coal Gasification Technology 2 SK Group [ Sales ] Unit: USD Billion SK Telecom SK C&C SK Broadband SK Telesys

More information

Chapter Three: STOICHIOMETRY

Chapter Three: STOICHIOMETRY p70 Chapter Three: STOICHIOMETRY Contents p76 Stoichiometry - The study of quantities of materials consumed and produced in chemical reactions. p70 3-1 Counting by Weighing 3-2 Atomic Masses p78 Mass Mass

More information

COMPARISON OF PROCESS FLOWS: FLUID BED COMBUSTOR AND GLASSPACK

COMPARISON OF PROCESS FLOWS: FLUID BED COMBUSTOR AND GLASSPACK COMPARISON OF PROCESS FLOWS: FLUID BED COMBUSTOR AND GLASSPACK PURPOSE The purpose of this document is to present the assumptions and calculations used to prepare Minergy Drawing 100-0204-PP00 (attached).

More information

STEADY STATE MODELING AND SIMULATION OF HYDROCRACKING REACTOR

STEADY STATE MODELING AND SIMULATION OF HYDROCRACKING REACTOR Petroleum & Coal ISSN 1337-7027 Available online at www.vurup.sk/petroleum-coal Petroleum & Coal 54 (1) 59-64, 2012 STEADY STATE MODELING AND SIMULATION OF HYDROCRACKING REACTOR Abhinanyu Kumar, Shishir

More information

Study of a Supercritical CO2 Power Cycle Application in a Cogeneration Power Plant

Study of a Supercritical CO2 Power Cycle Application in a Cogeneration Power Plant Supercritical CO2 Power Cycle Symposium September 9-10, 2014 Pittsburg, Pennsylvania USA Study of a Supercritical CO2 Power Cycle Application in a Cogeneration Power Plant Dr. Leonid Moroz, Dr. Maksym

More information

How To Run A Power Plant

How To Run A Power Plant CO 2 Capture at the Kemper County IGCC Project 2011 NETL CO 2 Capture Technology Meeting Kemper County IGCC Overview 2x1 Integrated Gasification Combined Cycle (IGCC) 2 TRansport Integrated Gasifiers (TRIG

More information

SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES

SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES Filippo Turra Product Manager Cooling Technology INTRODUCTION

More information

Simulation of small-scale hydrogen production

Simulation of small-scale hydrogen production Simulation of small-scale hydrogen production Tony Persson Department of Chemical Engineering, Lund University, P. O. Box 14, SE-1 00 Lund, Sweden Since the oil prices and the environmental awareness have

More information

Optimization of Natural Gas Processing Plants Including Business Aspects

Optimization of Natural Gas Processing Plants Including Business Aspects Page 1 of 12 Optimization of Natural Gas Processing Plants Including Business Aspects KEITH A. BULLIN, Bryan Research & Engineering, Inc., Bryan, Texas KENNETH R. HALL, Texas A&M University, College Station,

More information

Figure 56. Simple mixing process with process specification for the outlet stream.

Figure 56. Simple mixing process with process specification for the outlet stream. Flowsheet Analysis One of the most useful functions of process simulators is the ability to manipulate and analyze the different design variables to determine the required value or study its effect on

More information

Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide

Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide 2.1 Introduction In order to appreciate the impact of the properties of liquid sulphur dioxide and liquid sulphur trioxide

More information

Possibility of Combustion Furnace Operation with Oxygen-Enriched Gas from Nitrogen Generator

Possibility of Combustion Furnace Operation with Oxygen-Enriched Gas from Nitrogen Generator Possibility of Combustion Furnace Operation with Oxygen-Enriched Gas from Nitrogen Generator Xinyu Ming, Dan S. Borgnakke, Marco A. Campos, Pawel Olszewski, Arvind Atreya, Claus Borgnakke University of

More information

Biogas as transportation fuel

Biogas as transportation fuel Biogas as transportation fuel Summary Biogas is used as transportation fuel in a number of countries, but in Europe it has only reached a major breakthrough in Sweden. All of the biogas plants in Sweden

More information

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by

More information

How To Make A Coal Gasification Combined Cycle

How To Make A Coal Gasification Combined Cycle Environmental Enterprise: Carbon Sequestration using Texaco Gasification Process Jeff Seabright Arthur Lee Richard Weissman, PhD. Texaco Inc. White Plains, New York Presented at: First National Conference

More information

The Second Law of Thermodynamics

The Second Law of Thermodynamics The Second aw of Thermodynamics The second law of thermodynamics asserts that processes occur in a certain direction and that the energy has quality as well as quantity. The first law places no restriction

More information

Dynamic Process Modeling. Process Dynamics and Control

Dynamic Process Modeling. Process Dynamics and Control Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits

More information

1.3 Properties of Coal

1.3 Properties of Coal 1.3 Properties of Classification is classified into three major types namely anthracite, bituminous, and lignite. However there is no clear demarcation between them and coal is also further classified

More information

a) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L

a) Use the following equation from the lecture notes: = ( 8.314 J K 1 mol 1) ( ) 10 L hermodynamics: Examples for chapter 4. 1. One mole of nitrogen gas is allowed to expand from 0.5 to 10 L reversible and isothermal process at 300 K. Calculate the change in molar entropy using a the ideal

More information

Process Integration of Chemical Looping Combustion with Oxygen Uncoupling in a Coal-Fired Power Plant

Process Integration of Chemical Looping Combustion with Oxygen Uncoupling in a Coal-Fired Power Plant Process Integration of Chemical Looping Combustion with Oxygen Uncoupling in a Coal-Fired Power Plant Petteri Peltola 1, Maurizio Spinelli 2, Aldo Bischi 2, Michele Villani 2, Matteo C. Romano 2, Jouni

More information

Coal waste slurries as a fuel for integrated gasification combined cycle plants

Coal waste slurries as a fuel for integrated gasification combined cycle plants Coal waste slurries as a fuel for integrated gasification combined cycle plants Marcin A. Lutynski 1,a, and Aleksander Lutynski 2 1 Silesian University of Technology, Faculty of Mining and Geology, ul.

More information

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical

More information

Decaffeination of Raw, Green Coffee Beans Using Supercritical CO 2

Decaffeination of Raw, Green Coffee Beans Using Supercritical CO 2 Decaffeination of Raw, Green offee Beans Using Supercritical O 2 Background The worldwide coffee market and the industry that supplies it are among the world s largest. offee as a world commodity is second

More information

THERMODYNAMICS. TUTORIAL No.8 COMBUSTION OF FUELS. On completion of this tutorial you should be able to do the following.

THERMODYNAMICS. TUTORIAL No.8 COMBUSTION OF FUELS. On completion of this tutorial you should be able to do the following. THERMODYNAMICS TUTORIAL No.8 COMBUSTION OF FUELS On completion of this tutorial you should be able to do the following.. Let's start by revising the basics. Write down combustion equations. Solve the oxygen

More information

Assignment 8: Comparison of gasification, pyrolysis and combustion

Assignment 8: Comparison of gasification, pyrolysis and combustion AALTO UNIVERSITY SCHOOL OF CHEMICAL TECHNOLOGY KE-40.4120 Introduction to biorefineries and biofuels Assignment 8: Comparison of gasification, pyrolysis and combustion Aino Siirala 309141 Assignment submitted

More information

(205) 670-5088 (205) 670-5863

(205) 670-5088 (205) 670-5863 Ruth Ann Yongue Roxann Laird Senior Engineer Assistant Project Director rayongue@southernco.com rfleonar@southernco.com (205) 670-5088 (205) 670-5863 Southern Company Services Power Systems Development

More information

Steam Power Plants as Partners for Renewable Energy Systems

Steam Power Plants as Partners for Renewable Energy Systems Steam Power Plants as Partners for Renewable Energy Systems Hans-Joachim Meier Head of VGB Competence Centre 4 Environmental Technology, Chemistry, Safety and Health VGB PowerTech e.v., Essen, Germany

More information

Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

More information

Financing New Coal-Fired Power Plants

Financing New Coal-Fired Power Plants Financing New Coal-Fired Power Plants Guidance Note 2011 Coal is likely to be part of the energy mix for the foreseeable future. Therefore, to limit dangerous climate change, coal-fired power generation

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and

More information

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4)

Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1. A chemical equation. (C-4.4) Honors Chemistry: Unit 6 Test Stoichiometry PRACTICE TEST ANSWER KEY Page 1 1. 2. 3. 4. 5. 6. Question What is a symbolic representation of a chemical reaction? What 3 things (values) is a mole of a chemical

More information

ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

C H A P T E R 3 FUELS AND COMBUSTION

C H A P T E R 3 FUELS AND COMBUSTION 85 C H A P T E R 3 FUELS AND COMBUSTION 3.1 Introduction to Combustion Combustion Basics The last chapter set forth the basics of the Rankine cycle and the principles of operation of steam cycles of modern

More information

OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS

OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS UNIT 61: ENGINEERING THERMODYNAMICS Unit code: D/601/1410 QCF level: 5 Credit value: 15 OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS 2 Be able to evaluate

More information

IAPWS Certified Research Need - ICRN

IAPWS Certified Research Need - ICRN IAPWS Certified Research Need - ICRN ICRN 23 Dew Point for Flue Gas of Power-Plant Exhaust The IAPWS Working Group Industrial Requirements and Solutions has examined the published work in the area of dew-point

More information

Morris Argyle Assistant Professor Department of Chemical and Petroleum Engineering. School of Energy Resources Symposium Casper, WY February 28, 2007

Morris Argyle Assistant Professor Department of Chemical and Petroleum Engineering. School of Energy Resources Symposium Casper, WY February 28, 2007 Coal Gasification: What Does It Mean for Wyoming? Research and Development Initiatives of the University of Wyoming Morris Argyle Assistant Professor Department of Chemical and Petroleum Engineering School

More information

CO 2 -fangst: Separasjonsmetoder,

CO 2 -fangst: Separasjonsmetoder, CO -fangst: Separasjonsmetoder, energiforbruk og teknologier NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU CO -håndtering - er vi i rute? Kursdagene, 8. januar 009 1 C+ O CO How and why is CO formed

More information

IB Chemistry. DP Chemistry Review

IB Chemistry. DP Chemistry Review DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

More information

Online monitoring of flue gas emissions in power plants having multiple fuels

Online monitoring of flue gas emissions in power plants having multiple fuels Preprints of the 19th World Congress The International Federation of Automatic Control Cape Town, South Africa. August 24-29, 214 Online monitoring of flue gas emissions in power plants having multiple

More information

Calculate Available Heat for Natural Gas Fuel For Industrial Heating Equipment and Boilers

Calculate Available Heat for Natural Gas Fuel For Industrial Heating Equipment and Boilers For Industrial Heating Equipment and Boilers Prepared for California Energy Commission (CEC) Prepared By: Southern California Gas Company (A Sempra Energy Utility) E3M Inc. May 2012 i Disclaimer The CEC

More information

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2

CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2 WASTE HEAT BOILERS CONTENTS 1 INTRODUCTION... 3 2 CONCEPTION OF WASTE HEAT BOILERS... 4 2.1 Complex Solution...4 2.2 Kind of Heat Exchange...5 2.3 Heat Recovery Units and Their Usage...5 2.4 Materials

More information

Lecture 35: Atmosphere in Furnaces

Lecture 35: Atmosphere in Furnaces Lecture 35: Atmosphere in Furnaces Contents: Selection of atmosphere: Gases and their behavior: Prepared atmospheres Protective atmospheres applications Atmosphere volume requirements Atmosphere sensors

More information

Thermo Conversions Gasification (TCG) Technology

Thermo Conversions Gasification (TCG) Technology Biomass Syngas Flame at Sunrise in Colorado Thermo Conversions Gasification (TCG) Technology TCG Global, LLC 8310 S. Valley Hwy Suite 285, Englewood CO 80112 (303) 867-4247 www.tcgenergy.com TCG Global,

More information

Syngas Purification Units

Syngas Purification Units Syngas Purification Units From Gasification to Chemicals www.airliquide.com Global experience Since the integration of Lurgi, a pioneer in gasification technologies, Air Liquide has widely expanded its

More information

The Empirical Formula of a Compound

The Empirical Formula of a Compound The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,

More information

7-5.5. Translate chemical symbols and the chemical formulas of common substances to show the component parts of the substances including:

7-5.5. Translate chemical symbols and the chemical formulas of common substances to show the component parts of the substances including: 7-5.5 Translate chemical symbols and the chemical formulas of common substances to show the component parts of the substances including: NaCl [salt], H 2 O [water], C 6 H 12 O 6 [simple sugar], O 2 [oxygen

More information

vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K

vap H = RT 1T 2 = 30.850 kj mol 1 100 kpa = 341 K Thermodynamics: Examples for chapter 6. 1. The boiling point of hexane at 1 atm is 68.7 C. What is the boiling point at 1 bar? The vapor pressure of hexane at 49.6 C is 53.32 kpa. Assume that the vapor

More information

Industrial Oxygen: Its Generation and Use

Industrial Oxygen: Its Generation and Use Industrial Oxygen: Its Generation and Use Prakash Rao and Michael Muller, Center for Advanced Energy Systems, Rutgers, the State University of New Jersey ABSTRACT This paper will look at the industrial

More information

Study Plan. MASTER IN (Energy Management) (Thesis Track)

Study Plan. MASTER IN (Energy Management) (Thesis Track) Plan 2005 T Study Plan MASTER IN (Energy Management) (Thesis Track) A. General Rules and Conditions: 1. This plan conforms to the regulations of the general frame of the programs of graduate studies. 2.

More information

From forest to gas in the transmission system. Ulf Molén, 2011-10-05

From forest to gas in the transmission system. Ulf Molén, 2011-10-05 From forest to gas in the transmission system Ulf Molén, 2011-10-05 EU climate target 20/20/20 year 2020 Carbon dioxide reduced by 20% (compared to 1990 years level) Energy efficiency increased by 20%

More information

Gas emission measurements with a FTIR gas analyzer - verification of the analysis method Kari Pieniniemi 1 * and Ulla Lassi 1, 2

Gas emission measurements with a FTIR gas analyzer - verification of the analysis method Kari Pieniniemi 1 * and Ulla Lassi 1, 2 ENERGY RESEARCH at the University of Oulu 117 Gas emission measurements with a FTIR gas analyzer - verification of the analysis method Kari Pieniniemi 1 * and Ulla Lassi 1, 2 1 University of Oulu, Department

More information