Hypothesis Testing: General Framework 1 1

Size: px
Start display at page:

Download "Hypothesis Testing: General Framework 1 1"

Transcription

1 Hypothesis Testing: General Framework Lecture 2 K. Zuev February 22, 26 In previous lectures we learned how to estimate parameters in parametric and nonparametric settings. Quite often, however, researchers are interesting in checking a certain statement about a parameter, not its exact value. Suppose, for instance, that someone developed a new drug for reducing blood pressure. Let θ denote the average change in a patient s blood pressure after taking a drug. The big question is to test H : θ = versus H : θ =. () The hypothesis H is called the null hypothesis. It states that, on average, the new treatment has zero effect 2 on blood pressure. The alternative hypothesis 3 states that there is some effect. In this context, testing H against H is a primary problem. Even if we find out that θ = 4, estimating the value of θ is important, yet a secondary problem. A part of statics that deals with this sort of yes/no problems is called hypothesis testing. In this lecture, we discus a general framework of hypothesis testing. To get started let us consider the following toy example, that will help us to illustrate all main notions and ideas. 2 Hence the name null. 3 Also sometimes called the research hypothesis. 4 Hopefully, θ <! Two Coins Example Suppose that Alice has two coins: fair and unfair, with the probabilities of heads p =.5 and p =.7 respectively. Alice chooses one of the coins, tosses it n = times and tells Bob the number of heads, but does not tell him what coin she tossed. Based of the number of heads k, Bob has to decide which coin it was. Intuitively, it is clear that the larger k =,,..., n, the more likely it was an unfair coin. If Alice tossed coin i (i = is fair and i = is unfair), then the probability of getting exactly k heads is given by the Binomial distribution Bin(n, p i ): ( ) n P i (k) = pi k k ( p i) n k, i =,. (2) Figure : Alice and Bob are two archetypal characters commonly used in cryptography, game theory, physics, and now... in statistics. Comics source: Figure 2 shows the values of these probabilities for different k. Suppose that Bob observed only k = 2 heads. Then P (k = 2) 3, (3) P (k = 2) and, therefore, the fair coin is about 3 times more likely to produce this result than the unfair one. On the other hand, if there were k = 8 heads, then P (k = 8).9, (4) P (k = 8)

2 hypothesis testing: general framework Coin Coin Figure 2: Probabilities (2)..25 Probabiity Number of Heads which would favor the unfair coin. So, based on Fig. (2), Bob should guess that the coin is unfair if k {7, 8, 9, }, (5) and unfair otherwise. This is the simplest example of testing. General Framework Suppose that data X,..., X n is modeled as a sample from a distribution f F 5. Let θ be the parameter of interest, and Θ be the set of all its possible values, called the parameter space. Let Θ = Θ Θ be a partition of the parameter space into two disjoint sets 6. Suppose we wish to test H : θ Θ versus H : θ Θ. (6) We call H the null hypothesis and H the alternative hypothesis. Let Ω be the samples space, i.e. the range of data, X = (X,..., X n ) Ω. We test a hypothesis by finding an appropriate subset of outcomes R Ω, called the rejection region: 5 The statistical model F can be either parametric or nonparametric. 6 Recall that A = B C means that A = B C and B C =. If X R reject H, If X / R accept H. (7) Usually, the rejection region has the following form: R = {X Ω : s(x) > c}, (8) where s is a test statistic and c is a critical value. The problem of testing is then boils down to finding an appropriate statistic s and an appropriate critical value c.

3 hypothesis testing: general framework 3 In the two coin example, the data is the total number of heads X = k, which is modeled as a sample from the binomial distribution Bin(n, θ), where n = and θ Θ = {.5,.7}. The hull hypothesis is that the coin is fair: H : θ Θ = {.5}, and the alternative is that the coin is not fair, H : θ Θ = {.7}. The sample space is Ω = {,..., }. Bob tested the hypothesis using the rejection region R given by (5) 7. 7 What is the test statistic and the critical value in this example? The Null and Alternative Mathematically, the null and alternative hypotheses seem to play symmetric roles. Traditionally, however, the null hypothesis H says that nothing interesting is going on 8, the current theory is correct, no new effects, etc. The null hypothesis is a status quo. The alternative hypothesis, on the other hand, says that something interesting, something unexpected is happening: the old theory needs to be updated, new previously unseen effects are present, etc 9. It is useful to think of hypothesis testing is a legal trial. By default, we assume that someone is innocent (the null hypothesis) unless there is strong evidence that s/he is guilty (alternative). Question: Suppose an engineer designed a new earthquakeresistant building. Let p F be the failure probability of the building under earthquake excitation. How would you formulate the null and alternative hypotheses if you wish to test whether or not the failure probability is smaller than a certain acceptable threshold p F? 8 Recall the drag example from the beginning. H says the new drag no effect on the blood pressure. 9 This explains why we focus on the rejection region and not the acceptance region. The rejection region is where the surprise is living. Presumption of innocence. Errors in Testing Can we guarantee that we make no errors when making conclusions from data? Of course, not. Data provides some, but not full, information about the unknown quantity of interest and helps to reduce the uncertainty, but not completely illuminate it. The errors are thus unavoidable. There are two types of errors in hypothesis testing with very boring names: type I error and type II error: Figure 3: Unfortunately, the presumption of innocence does on always work in real life. The unfair coin may produce 5 heads in which case Bob will make in error by accepting the hypothesis that the coin is fair. Type I error: rejecting H when it is true. Type II error: accepting H when it is not true. Purely mathematically 2, making both errors are equally bad. But, given the context discussed in the previous section, making a type I error is much worse than making a type II error: declaring an innocent person guilty is much worse than declaring a guilty person innocent. Probabilities of both errors can be computed using the so-called power function. 2 That is when we focus on equations and forget about the context.

4 Power function -(3) Power function -(3) hypothesis testing: general framework 4 Power Function If R is the rejection region, then the probability of a type I error is P(Type I error) = P(X R θ Θ ). (9) The probability of a type II error is P(Type II error) = P(X / R θ Θ ) = P(X R θ Θ ). () From (9) and (), we see that probabilities of both error are determined by function on the parameter space P(X R θ). This leads to the following definition. Definition. The power function of a hypothesis test with rejection region R is the function of θ defined by β(θ) = P(X R θ). () In term of error probabilities: P(Type I error), if θ Θ, β(θ) = P(Type II error), if θ Θ. (2) Ideal Test The ideal test will thus have the power function which is zero on Θ and one on Θ, see Fig. 4. This ideal is rarely (never) achieved in practice. Example: In the two coin example, the parameter space is a two point set Θ = {.5,.7}, Θ = {.5}, Θ = {.7}, and the power function is β(θ) = P(k {7, 8, 9, } θ) = k=7 ( ) θ k ( θ) k k.7, if θ =.5,.65, if θ =.7. (3) # # Parameter space # Figure 4: The ideal power function. This power function is not exactly what Bob would like to have, but in some sense (will discuss later) this is the best possible test. In reality, a reasonable test has power function near zero on Θ and near one on Θ. So, qualitatively, the power function of a good test looks like the one in Fig Level, Reasonable Test.2 Controlling Errors Usually it is impossible to control both types of errors and make their probabilities arbitrary small. Roughly, the reason behind this is the following. Choosing a test is choosing the rejection region R Ω. If # Parameter space # Figure 5: The power function of a reasonably good test of size α. #

5 hypothesis testing: general framework 5 we want to make the type I error probability (9) smaller, we need to shrink R. In the extreme case, we can completely exclude the type I error by taking R =. On the other hand, to make the type II error probability () smaller, we need to inflate R. By taking R = Ω, we can guaranty that the type II error will not be made. So, typically, decrease in the probability of one error leads to the increase of the probability of the other error 3. As we discussed previously, type I error is more dangerous, and therefore, controlling its probability is more important. This leads to the following definition. 3 The provided intuition is rough because instead of shrinking and inflating R we could move it around. Definition 2. The size of a test with power function β(θ) is α = sup θ Θ β(θ). (4) A test is said to have level α if its size is α 4. In words, the size of the test is the largest possible probability of the type I error (rejecting H when it is true). See Fig. 5. Researchers usually specify the size of the test they wish to use 5 (to make sure that the type I error is under control), and then search for the test with the highest power under H (i.e. on Θ ) among all test with level α. Such a test, if it exists, is called most powerful. Finding most powerful tests is hard and, in many cases, they don t even exist. So in practice, researchers use a test with power which is high enough. Example: Let X,..., X n N (µ, 2 ), where 2 is known 6. We want to test H : µ versus H : µ >. (5) 4 In practice, the terms size and level are often used interchangeably because both are upper-bounds for the type I error probability. 5 With typical choice being α =.,.5, and.. 6 i.e. estimated. So, here Θ = R, Θ = (, ], and Θ = (, ). It seems reasonable to use the sample mean X n as a test statistic and reject H if X n is large enough. The rejection region is thus R = {(X,..., X n ) : X n > c} Ω = R n, (6) where c is the critical value. Let us find the power function of this test. β(µ) = P(X n > c µ). (7) ( Since X n N µ, 2 n ), we have that n(xn µ) ( ) n(xn µ) n(c µ) β(µ) = P > ( ) n(c µ) = Φ. N (, ). Therefore, The power function is an increasing function of µ. It is shown in Fig. 6 for n =, =, and different values of c. As expected, (8)

6 Power function -(7) Power function -(7) hypothesis testing: general framework 6 when the rejection region (6) shrinks (the critical value c increases), the size of the test α decreases meaning that it becomes less and less likely to make the type I error. On the other hand, the type II error probability increases. To make a test with a specific size α, we c=. c=.5 c=.75 Normal model, sample size n= Figure 6: The normal power function (8) for n =, =, and different values of c. Notice that as c increases (rejection region shrinks), the size of the test decreases, as expected size,.3.2. size, Parameter 7 need to find the corresponding critical value c. Thanks to monotonicity of β, α = β(). Together with (8), this give an equation for c, whose solution is c = Φ ( α) n. (9) A halfway summary: the test which rejects H whenever X n > c, where c is given by (9), has size α. Suppose now that we can also control the sample size n 7. Note that the power function does depend on the sample size, and by choosing n large enough we can hope to reduce the type II error probability. Since β is continuous and β() = α, β(µ) in the neighborhood of zero, and, therefore, the type II error probability is large in this neighborhood. However, we may step apart from zero by δ >, δ and ask the power function to be large at δ: 7 For example, we are designing an experiment, and trying to determine what sample size is appropriate. β(δ) = ɛ, (2) where ɛ >, ɛ plays similar role to type II error as α plays for the type I error. Combining (8), (9), and (2), gives an equation for the sample size, whose solution is ( ) n = Φ ( α) Φ (ɛ)). (2) δ Normal model, sample size n= size, / Parameter 7 Figure 7: The normal power function (8) with n and c defined from (2) and (9) with α = δ = ɛ =.. Notice the sample size increase!

7 hypothesis testing: general framework 7 Thus, the test which rejects H whenever X n > c, where n and c are given by (2) and (9), has size α and, moreover, the type II error probability is at most ɛ if µ [δ, ] Θ. If µ [, δ], this probability is, unfortunately, larger. Figure 7 shows the power function for α = δ = ɛ =.. The strategy described in this example is often employed in other cases. Namely, to design a test, we need to specify the rejection region R = {X Ω : s(x) > c} by choosing a test statistic s and its critical value c. Choosing the test statistic is an art, but often reasonable candidates are rather obvious 8 8. After choosing s, the rejection Sometimes after long analysis :) region is parametrized by c. We chose c to get the desired size α. To this end, we need to solve 9 9 for c the following equation: Analytically if you are lucky, but most likely numericlly. sup P(X R c θ) = α, (22) θ Θ where X = (X,..., X n ). If we can t control n 2, then we are done. If we can control n, then we may try to reduce the type II error probability by exploiting the fact that the power function depends on n. 2 The data comes from an observational study, or experiments are too expensive. Further Reading. The most complete book on testing is Lehman (986) Testing Statistical Hypothesis, Wiley. Next Time In real applications, finding most powerful tests is a very hard problem which often does not have a solution. So, instead of focusing on the theory of most powerful tests, we will consider several widely used tests that often perform reasonably well.

Introduction to Hypothesis Testing

Introduction to Hypothesis Testing I. Terms, Concepts. Introduction to Hypothesis Testing A. In general, we do not know the true value of population parameters - they must be estimated. However, we do have hypotheses about what the true

More information

Introduction to Hypothesis Testing OPRE 6301

Introduction to Hypothesis Testing OPRE 6301 Introduction to Hypothesis Testing OPRE 6301 Motivation... The purpose of hypothesis testing is to determine whether there is enough statistical evidence in favor of a certain belief, or hypothesis, about

More information

Chapter 2. Hypothesis testing in one population

Chapter 2. Hypothesis testing in one population Chapter 2. Hypothesis testing in one population Contents Introduction, the null and alternative hypotheses Hypothesis testing process Type I and Type II errors, power Test statistic, level of significance

More information

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015 ECON 459 Game Theory Lecture Notes Auctions Luca Anderlini Spring 2015 These notes have been used before. If you can still spot any errors or have any suggestions for improvement, please let me know. 1

More information

22. HYPOTHESIS TESTING

22. HYPOTHESIS TESTING 22. HYPOTHESIS TESTING Often, we need to make decisions based on incomplete information. Do the data support some belief ( hypothesis ) about the value of a population parameter? Is OJ Simpson guilty?

More information

HYPOTHESIS TESTING: POWER OF THE TEST

HYPOTHESIS TESTING: POWER OF THE TEST HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,

More information

The normal approximation to the binomial

The normal approximation to the binomial The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very

More information

The normal approximation to the binomial

The normal approximation to the binomial The normal approximation to the binomial In order for a continuous distribution (like the normal) to be used to approximate a discrete one (like the binomial), a continuity correction should be used. There

More information

NPV Versus IRR. W.L. Silber -1000 0 0 +300 +600 +900. We know that if the cost of capital is 18 percent we reject the project because the NPV

NPV Versus IRR. W.L. Silber -1000 0 0 +300 +600 +900. We know that if the cost of capital is 18 percent we reject the project because the NPV NPV Versus IRR W.L. Silber I. Our favorite project A has the following cash flows: -1 + +6 +9 1 2 We know that if the cost of capital is 18 percent we reject the project because the net present value is

More information

Unit 26 Estimation with Confidence Intervals

Unit 26 Estimation with Confidence Intervals Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference

More information

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products

Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing

More information

Hypothesis testing - Steps

Hypothesis testing - Steps Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

Lesson 9 Hypothesis Testing

Lesson 9 Hypothesis Testing Lesson 9 Hypothesis Testing Outline Logic for Hypothesis Testing Critical Value Alpha (α) -level.05 -level.01 One-Tail versus Two-Tail Tests -critical values for both alpha levels Logic for Hypothesis

More information

1 Review of Least Squares Solutions to Overdetermined Systems

1 Review of Least Squares Solutions to Overdetermined Systems cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares

More information

SIMULATION STUDIES IN STATISTICS WHAT IS A SIMULATION STUDY, AND WHY DO ONE? What is a (Monte Carlo) simulation study, and why do one?

SIMULATION STUDIES IN STATISTICS WHAT IS A SIMULATION STUDY, AND WHY DO ONE? What is a (Monte Carlo) simulation study, and why do one? SIMULATION STUDIES IN STATISTICS WHAT IS A SIMULATION STUDY, AND WHY DO ONE? What is a (Monte Carlo) simulation study, and why do one? Simulations for properties of estimators Simulations for properties

More information

CHI-SQUARE: TESTING FOR GOODNESS OF FIT

CHI-SQUARE: TESTING FOR GOODNESS OF FIT CHI-SQUARE: TESTING FOR GOODNESS OF FIT In the previous chapter we discussed procedures for fitting a hypothesized function to a set of experimental data points. Such procedures involve minimizing a quantity

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

More information

Non-Inferiority Tests for Two Proportions

Non-Inferiority Tests for Two Proportions Chapter 0 Non-Inferiority Tests for Two Proportions Introduction This module provides power analysis and sample size calculation for non-inferiority and superiority tests in twosample designs in which

More information

Topic 8. Chi Square Tests

Topic 8. Chi Square Tests BE540W Chi Square Tests Page 1 of 5 Topic 8 Chi Square Tests Topics 1. Introduction to Contingency Tables. Introduction to the Contingency Table Hypothesis Test of No Association.. 3. The Chi Square Test

More information

Tutorial 5: Hypothesis Testing

Tutorial 5: Hypothesis Testing Tutorial 5: Hypothesis Testing Rob Nicholls nicholls@mrc-lmb.cam.ac.uk MRC LMB Statistics Course 2014 Contents 1 Introduction................................ 1 2 Testing distributional assumptions....................

More information

1 Sufficient statistics

1 Sufficient statistics 1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =

More information

2. Information Economics

2. Information Economics 2. Information Economics In General Equilibrium Theory all agents had full information regarding any variable of interest (prices, commodities, state of nature, cost function, preferences, etc.) In many

More information

Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test

Experimental Design. Power and Sample Size Determination. Proportions. Proportions. Confidence Interval for p. The Binomial Test Experimental Design Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 To this point in the semester, we have largely

More information

IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem

IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem Time on my hands: Coin tosses. Problem Formulation: Suppose that I have

More information

Lecture 16 : Relations and Functions DRAFT

Lecture 16 : Relations and Functions DRAFT CS/Math 240: Introduction to Discrete Mathematics 3/29/2011 Lecture 16 : Relations and Functions Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT In Lecture 3, we described a correspondence

More information

Chapter 4: Statistical Hypothesis Testing

Chapter 4: Statistical Hypothesis Testing Chapter 4: Statistical Hypothesis Testing Christophe Hurlin November 20, 2015 Christophe Hurlin () Advanced Econometrics - Master ESA November 20, 2015 1 / 225 Section 1 Introduction Christophe Hurlin

More information

Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing

Chapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 8-1 Overview 8-2 Basics of Hypothesis Testing 8-3 Testing a Claim About a Proportion 8-5 Testing a Claim About a Mean: s Not Known 8-6 Testing

More information

This asserts two sets are equal iff they have the same elements, that is, a set is determined by its elements.

This asserts two sets are equal iff they have the same elements, that is, a set is determined by its elements. 3. Axioms of Set theory Before presenting the axioms of set theory, we first make a few basic comments about the relevant first order logic. We will give a somewhat more detailed discussion later, but

More information

CONTENTS OF DAY 2. II. Why Random Sampling is Important 9 A myth, an urban legend, and the real reason NOTES FOR SUMMER STATISTICS INSTITUTE COURSE

CONTENTS OF DAY 2. II. Why Random Sampling is Important 9 A myth, an urban legend, and the real reason NOTES FOR SUMMER STATISTICS INSTITUTE COURSE 1 2 CONTENTS OF DAY 2 I. More Precise Definition of Simple Random Sample 3 Connection with independent random variables 3 Problems with small populations 8 II. Why Random Sampling is Important 9 A myth,

More information

Sample Size and Power in Clinical Trials

Sample Size and Power in Clinical Trials Sample Size and Power in Clinical Trials Version 1.0 May 011 1. Power of a Test. Factors affecting Power 3. Required Sample Size RELATED ISSUES 1. Effect Size. Test Statistics 3. Variation 4. Significance

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

Testing Hypotheses About Proportions

Testing Hypotheses About Proportions Chapter 11 Testing Hypotheses About Proportions Hypothesis testing method: uses data from a sample to judge whether or not a statement about a population may be true. Steps in Any Hypothesis Test 1. Determine

More information

Playing with Numbers

Playing with Numbers PLAYING WITH NUMBERS 249 Playing with Numbers CHAPTER 16 16.1 Introduction You have studied various types of numbers such as natural numbers, whole numbers, integers and rational numbers. You have also

More information

A Study to Predict No Show Probability for a Scheduled Appointment at Free Health Clinic

A Study to Predict No Show Probability for a Scheduled Appointment at Free Health Clinic A Study to Predict No Show Probability for a Scheduled Appointment at Free Health Clinic Report prepared for Brandon Slama Department of Health Management and Informatics University of Missouri, Columbia

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 18. A Brief Introduction to Continuous Probability

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 18. A Brief Introduction to Continuous Probability CS 7 Discrete Mathematics and Probability Theory Fall 29 Satish Rao, David Tse Note 8 A Brief Introduction to Continuous Probability Up to now we have focused exclusively on discrete probability spaces

More information

Lecture 10: Depicting Sampling Distributions of a Sample Proportion

Lecture 10: Depicting Sampling Distributions of a Sample Proportion Lecture 10: Depicting Sampling Distributions of a Sample Proportion Chapter 5: Probability and Sampling Distributions 2/10/12 Lecture 10 1 Sample Proportion 1 is assigned to population members having a

More information

HYPOTHESIS TESTING WITH SPSS:

HYPOTHESIS TESTING WITH SPSS: HYPOTHESIS TESTING WITH SPSS: A NON-STATISTICIAN S GUIDE & TUTORIAL by Dr. Jim Mirabella SPSS 14.0 screenshots reprinted with permission from SPSS Inc. Published June 2006 Copyright Dr. Jim Mirabella CHAPTER

More information

Games of Incomplete Information

Games of Incomplete Information Games of Incomplete Information Jonathan Levin February 00 Introduction We now start to explore models of incomplete information. Informally, a game of incomplete information is a game where the players

More information

Stat 5102 Notes: Nonparametric Tests and. confidence interval

Stat 5102 Notes: Nonparametric Tests and. confidence interval Stat 510 Notes: Nonparametric Tests and Confidence Intervals Charles J. Geyer April 13, 003 This handout gives a brief introduction to nonparametrics, which is what you do when you don t believe the assumptions

More information

CHAPTER 5 Round-off errors

CHAPTER 5 Round-off errors CHAPTER 5 Round-off errors In the two previous chapters we have seen how numbers can be represented in the binary numeral system and how this is the basis for representing numbers in computers. Since any

More information

Tests of Hypotheses Using Statistics

Tests of Hypotheses Using Statistics Tests of Hypotheses Using Statistics Adam Massey and Steven J. Miller Mathematics Department Brown University Providence, RI 0292 Abstract We present the various methods of hypothesis testing that one

More information

Normal distribution. ) 2 /2σ. 2π σ

Normal distribution. ) 2 /2σ. 2π σ Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for

More information

Tests for One Proportion

Tests for One Proportion Chapter 100 Tests for One Proportion Introduction The One-Sample Proportion Test is used to assess whether a population proportion (P1) is significantly different from a hypothesized value (P0). This is

More information

Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.

Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4. Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than

More information

Chapter 6 Experiment Process

Chapter 6 Experiment Process Chapter 6 Process ation is not simple; we have to prepare, conduct and analyze experiments properly. One of the main advantages of an experiment is the control of, for example, subjects, objects and instrumentation.

More information

People have thought about, and defined, probability in different ways. important to note the consequences of the definition:

People have thought about, and defined, probability in different ways. important to note the consequences of the definition: PROBABILITY AND LIKELIHOOD, A BRIEF INTRODUCTION IN SUPPORT OF A COURSE ON MOLECULAR EVOLUTION (BIOL 3046) Probability The subject of PROBABILITY is a branch of mathematics dedicated to building models

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice,

More information

Bayesian Model Averaging Continual Reassessment Method BMA-CRM. Guosheng Yin and Ying Yuan. August 26, 2009

Bayesian Model Averaging Continual Reassessment Method BMA-CRM. Guosheng Yin and Ying Yuan. August 26, 2009 Bayesian Model Averaging Continual Reassessment Method BMA-CRM Guosheng Yin and Ying Yuan August 26, 2009 This document provides the statistical background for the Bayesian model averaging continual reassessment

More information

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as... HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

More information

Unified Lecture # 4 Vectors

Unified Lecture # 4 Vectors Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

More information

Mind on Statistics. Chapter 12

Mind on Statistics. Chapter 12 Mind on Statistics Chapter 12 Sections 12.1 Questions 1 to 6: For each statement, determine if the statement is a typical null hypothesis (H 0 ) or alternative hypothesis (H a ). 1. There is no difference

More information

Lecture 8. Confidence intervals and the central limit theorem

Lecture 8. Confidence intervals and the central limit theorem Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

Non Parametric Inference

Non Parametric Inference Maura Department of Economics and Finance Università Tor Vergata Outline 1 2 3 Inverse distribution function Theorem: Let U be a uniform random variable on (0, 1). Let X be a continuous random variable

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

AN ANALYSIS OF A WAR-LIKE CARD GAME. Introduction

AN ANALYSIS OF A WAR-LIKE CARD GAME. Introduction AN ANALYSIS OF A WAR-LIKE CARD GAME BORIS ALEXEEV AND JACOB TSIMERMAN Abstract. In his book Mathematical Mind-Benders, Peter Winkler poses the following open problem, originally due to the first author:

More information

5.1 Identifying the Target Parameter

5.1 Identifying the Target Parameter University of California, Davis Department of Statistics Summer Session II Statistics 13 August 20, 2012 Date of latest update: August 20 Lecture 5: Estimation with Confidence intervals 5.1 Identifying

More information

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k. REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game

More information

6.3 Conditional Probability and Independence

6.3 Conditional Probability and Independence 222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted

More information

Exact Nonparametric Tests for Comparing Means - A Personal Summary

Exact Nonparametric Tests for Comparing Means - A Personal Summary Exact Nonparametric Tests for Comparing Means - A Personal Summary Karl H. Schlag European University Institute 1 December 14, 2006 1 Economics Department, European University Institute. Via della Piazzuola

More information

Chapter 4. Probability and Probability Distributions

Chapter 4. Probability and Probability Distributions Chapter 4. robability and robability Distributions Importance of Knowing robability To know whether a sample is not identical to the population from which it was selected, it is necessary to assess the

More information

Formal Languages and Automata Theory - Regular Expressions and Finite Automata -

Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Formal Languages and Automata Theory - Regular Expressions and Finite Automata - Samarjit Chakraborty Computer Engineering and Networks Laboratory Swiss Federal Institute of Technology (ETH) Zürich March

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

Hypothesis Testing for Beginners

Hypothesis Testing for Beginners Hypothesis Testing for Beginners Michele Piffer LSE August, 2011 Michele Piffer (LSE) Hypothesis Testing for Beginners August, 2011 1 / 53 One year ago a friend asked me to put down some easy-to-read notes

More information

E3: PROBABILITY AND STATISTICS lecture notes

E3: PROBABILITY AND STATISTICS lecture notes E3: PROBABILITY AND STATISTICS lecture notes 2 Contents 1 PROBABILITY THEORY 7 1.1 Experiments and random events............................ 7 1.2 Certain event. Impossible event............................

More information

Characteristics of Binomial Distributions

Characteristics of Binomial Distributions Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation

More information

Comparison of frequentist and Bayesian inference. Class 20, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Comparison of frequentist and Bayesian inference. Class 20, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Comparison of frequentist and Bayesian inference. Class 20, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Be able to explain the difference between the p-value and a posterior

More information

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes

9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of

More information

Minimax Strategies. Minimax Strategies. Zero Sum Games. Why Zero Sum Games? An Example. An Example

Minimax Strategies. Minimax Strategies. Zero Sum Games. Why Zero Sum Games? An Example. An Example Everyone who has studied a game like poker knows the importance of mixing strategies With a bad hand, you often fold But you must bluff sometimes Lectures in Microeconomics-Charles W Upton Zero Sum Games

More information

Thinking of a (block) cipher as a permutation (depending on the key) on strings of a certain size, we would not want such a permutation to have many

Thinking of a (block) cipher as a permutation (depending on the key) on strings of a certain size, we would not want such a permutation to have many Fixed points of permutations Let f : S S be a permutation of a set S. An element s S is a fixed point of f if f(s) = s. That is, the fixed points of a permutation are the points not moved by the permutation.

More information

StatCrunch and Nonparametric Statistics

StatCrunch and Nonparametric Statistics StatCrunch and Nonparametric Statistics You can use StatCrunch to calculate the values of nonparametric statistics. It may not be obvious how to enter the data in StatCrunch for various data sets that

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 3 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

More information

Language Modeling. Chapter 1. 1.1 Introduction

Language Modeling. Chapter 1. 1.1 Introduction Chapter 1 Language Modeling (Course notes for NLP by Michael Collins, Columbia University) 1.1 Introduction In this chapter we will consider the the problem of constructing a language model from a set

More information

Hypothesis Testing --- One Mean

Hypothesis Testing --- One Mean Hypothesis Testing --- One Mean A hypothesis is simply a statement that something is true. Typically, there are two hypotheses in a hypothesis test: the null, and the alternative. Null Hypothesis The hypothesis

More information

Two-Sample T-Tests Assuming Equal Variance (Enter Means)

Two-Sample T-Tests Assuming Equal Variance (Enter Means) Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of

More information

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate

More information

Binomial Sampling and the Binomial Distribution

Binomial Sampling and the Binomial Distribution Binomial Sampling and the Binomial Distribution Characterized by two mutually exclusive events." Examples: GENERAL: {success or failure} {on or off} {head or tail} {zero or one} BIOLOGY: {dead or alive}

More information

Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm

Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm

More information

Statistics 100A Homework 4 Solutions

Statistics 100A Homework 4 Solutions Chapter 4 Statistics 00A Homework 4 Solutions Ryan Rosario 39. A ball is drawn from an urn containing 3 white and 3 black balls. After the ball is drawn, it is then replaced and another ball is drawn.

More information

Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.

Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing. Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative

More information

CURVE FITTING LEAST SQUARES APPROXIMATION

CURVE FITTING LEAST SQUARES APPROXIMATION CURVE FITTING LEAST SQUARES APPROXIMATION Data analysis and curve fitting: Imagine that we are studying a physical system involving two quantities: x and y Also suppose that we expect a linear relationship

More information

Principle of Data Reduction

Principle of Data Reduction Chapter 6 Principle of Data Reduction 6.1 Introduction An experimenter uses the information in a sample X 1,..., X n to make inferences about an unknown parameter θ. If the sample size n is large, then

More information

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.

Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0. Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard

More information

Permutation Tests for Comparing Two Populations

Permutation Tests for Comparing Two Populations Permutation Tests for Comparing Two Populations Ferry Butar Butar, Ph.D. Jae-Wan Park Abstract Permutation tests for comparing two populations could be widely used in practice because of flexibility of

More information

Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Conditional Probability, Independence and Bayes Theorem Class 3, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom 1 Learning Goals 1. Know the definitions of conditional probability and independence

More information

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1. MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

More information

Lecture 9: Bayesian hypothesis testing

Lecture 9: Bayesian hypothesis testing Lecture 9: Bayesian hypothesis testing 5 November 27 In this lecture we ll learn about Bayesian hypothesis testing. 1 Introduction to Bayesian hypothesis testing Before we go into the details of Bayesian

More information

6.2 Permutations continued

6.2 Permutations continued 6.2 Permutations continued Theorem A permutation on a finite set A is either a cycle or can be expressed as a product (composition of disjoint cycles. Proof is by (strong induction on the number, r, of

More information

Hypothesis testing. c 2014, Jeffrey S. Simonoff 1

Hypothesis testing. c 2014, Jeffrey S. Simonoff 1 Hypothesis testing So far, we ve talked about inference from the point of estimation. We ve tried to answer questions like What is a good estimate for a typical value? or How much variability is there

More information

Let s first see how precession works in quantitative detail. The system is illustrated below: ...

Let s first see how precession works in quantitative detail. The system is illustrated below: ... lecture 20 Topics: Precession of tops Nutation Vectors in the body frame The free symmetric top in the body frame Euler s equations The free symmetric top ala Euler s The tennis racket theorem As you know,

More information

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a 88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small

More information

UNDERSTANDING THE TWO-WAY ANOVA

UNDERSTANDING THE TWO-WAY ANOVA UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

How To Test For Significance On A Data Set

How To Test For Significance On A Data Set Non-Parametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A non-parametric equivalent of the 1 SAMPLE T-TEST. ASSUMPTIONS: Data is non-normally distributed, even after log transforming.

More information

11 Multivariate Polynomials

11 Multivariate Polynomials CS 487: Intro. to Symbolic Computation Winter 2009: M. Giesbrecht Script 11 Page 1 (These lecture notes were prepared and presented by Dan Roche.) 11 Multivariate Polynomials References: MC: Section 16.6

More information

Simple treatment structure

Simple treatment structure Chapter 3 Simple treatment structure 3.1 Replication of control treatments Suppose that treatment 1 is a control treatment and that treatments 2,..., t are new treatments which we want to compare with

More information

Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving

Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words

More information