topics about enzyme function:

Size: px
Start display at page:

Download "topics about enzyme function:"

Transcription

1 6 Enzymes

2 CHAPTER 6 Enzymes topics about enzyme function: Physiological significance of enzymes Origin of catalytic power of enzymes Chemical mechanisms of catalysis Mechanisms of chymotrypsin and lysozyme Description of enzyme kinetics and inhibition

3 What are enzymes? Enzymes are catalysts Increase reaction rates without being used up Most enzymes are globular proteins However, some RNA (ribozymes and ribosomal RNA) also catalyze reactions We will celebrate my inspiration, the Biochemist Louis Pasteur.

4 Why do cells evolve biocatalysis over inorganic catalysts? Greater reaction specificity: avoids side products Milder reaction conditions: conducive to conditions in cells Higher reaction rates: in a biologically useful timeframe Capacity for regulation: control of biological pathways COO - - COO OH - COO NH 2 O - COO Metabolites have many potential pathways of decomposition - COO NH 2 OH O - COO Chorismate mutase - OOC OH - COO O Enzymes make the desired one most favorable

5 Enzyme-Substrate Complex Enzymes act by binding substrates The noncovalent enzyme substrate complex is known as the Michaelis complex Description of chemical interactions Development of kinetic equations v k cat K [ E][ S] m [ S]

6 Enzyme-Substrate Complex Binding of a substrate to an enzyme at the active site. The enzyme chymotrypsin with bound substrate (PDB ID 7GCH). Some key active-site amino acid residues appear as a red splotch on the enzyme surface.

7 Enzymatic Catalysis Enzymes do not affect equilibrium (ΔG) Slow reactions face significant activation barriers (ΔG ) that must be surmounted during the reaction Enzymes increase reaction rates (k) by decreasing ΔG k k BT h G exp RT

8 Reaction Coordinate Diagram Reaction coordinate diagram. The free energy of the system is plotted against the progress of the reaction S P. A diagram of this kind is a description of the energy changes during the reaction, and the horizontal axis (reaction coordinate) reflects the progressive chemical changes (e.g., bond breakage or formation) as S is converted to P. The activation energies, G, for the S P and P S reactions are indicated. G is the overall standard freeenergy change in the direction S P.

9 Enzymes Decrease ΔG Reaction coordinate diagram comparing enzyme-catalyzed and uncatalyzed reactions. In the reaction S P, the ES and EP intermediates occupy minima in the energy progress curve of the enzymecatalyzed reaction. The terms G uncat and G cat correspond to the activation energy for the uncatalyzed reaction and the overall activation energy for the catalyzed reaction, respectively. The activation energy is lower when the enzyme catalyzes the reaction.

10 Rate Enhancement by Enzymes

11 How to Lower G Enzymes organize reactive groups into close proximity and proper orientation Uncatalyzed bimolecular reactions two free reactants single restricted transition state conversion is entropically unfavorable Uncatalyzed unimolecular reactions flexible reactant rigid transition state conversion is entropically unfavorable for flexible reactants Catalyzed reactions Enzyme uses the binding energy of substrates to organize the reactants to a fairly rigid ES complex Entropy cost is paid during binding Rigid reactant complex transition state conversion is entropically OK

12 Support for the Proximity Model The rate of anhydride formation from esters and carboxylates shows a strong dependence on proximity of two reactive groups.

13 From previous slide; Shown here are reactions of an ester with a carboxylate group to form an anhydride. The R group is the same in each case. (a) For this bimolecular reaction, the rate constant k is second-order, with units of M -1 s -1. (b) When the two reacting groups are in a single molecule, and thus have less freedom of motion, the reaction is much faster. For this unimolecular reaction, k has units of s -1. Dividing the rate constant for (b) by the rate constant for (a) gives a rate enhancement of about 10 5 M. (The enhancement has units of molarity because we are comparing a unimolecular and a bimolecular reaction.) Put another way, if the reactant in (b) were present at a concentration of 1 M, the reacting groups would behave as though they were present at a concentration of 10 5 M. Note that the reactant in (b) has freedom of rotation about three bonds (shown with curved arrows), but this still represents a substantial reduction of entropy over (a). If the bonds that rotate in (b) are constrained as in (c), the entropy is reduced further and the reaction exhibits a rate enhancement of 10 8 M relative to (a).

14 How to Lower G Enzymes bind transition states best The idea was proposed by Linus Pauling in 1946 Enzyme active sites are complimentary to the transition state of the reaction Enzymes bind transition states better than substrates Stronger/additional interactions with the transition state as compared to the ground state lower the activation barrier

15 Illustration of TS Stabilization Idea: Imaginary Stickase

16 An imaginary enzyme (stickase) designed to catalyze breakage of a metal stick. (a) Before the stick is broken, it must first be bent (the transition state). In both stickase examples, magnetic interactions take the place of weak bonding interactions between enzyme and substrate. (b) A stickase with a magnet-lined pocket complementary in structure to the stick (the substrate) stabilizes the substrate. Bending is impeded by the magnetic attraction between stick and stickase. (c) An enzyme with a pocket complementary to the reaction transition state helps to destabilize the stick, contributing to catalysis of the reaction. The binding energy of the magnetic interactions compensates for the increase in free energy required to bend the stick. Reaction coordinate diagrams (right) show the energy consequences of complementarity to substrate versus complementarity to transition state (EP complexes are omitted). G M, the difference between the transition-state energies of the uncatalyzed and catalyzed reactions, is contributed by the magnetic interactions between the stick and stickase. When the enzyme is complementary to the substrate (b), the ES complex is more stable and has less free energy in the ground state than substrate alone. The result is an increase in the activation energy.

17 Catalytic Mechanisms acid-base catalysis: give and take protons covalent catalysis: change reaction paths metal ion catalysis: use redox cofactors, pk a shifters electrostatic catalysis: preferential interactions with TS

18 General Acid-Base Catalysis How a catalyst circumvents unfavorable charge development during cleavage of an amide. The hydrolysis of an amide bond, shown here, is the same reaction as that catalyzed by chymotrypsin and other proteases. Charge development is unfavorable and can be circumvented by donation of a proton by H 3 O + (specific acid catalysis) or HA (general acid catalysis), where HA represents any acid. Similarly, charge can be neutralized by proton abstraction by OH (specific base catalysis) or B: (general base catalysis), where B: represents any base.

19

20

21

22 Amino Acids in General Acid-Base Catalysis Amino acids in general acidbase catalysis. Many organic reactions that are used to model biochemical processes are promoted by proton donors (general acids) or proton acceptors (general bases). The active sites of some enzymes contain amino acid functional groups, such as those shown here, that can participate in the catalytic process as proton donors or proton acceptors.

23 Covalent Catalysis A transient covalent bond between the enzyme and the substrate Changes the reaction Pathway Uncatalyzed: A B H2O A B Catalyzed: A B X : A X H2O B A X : B Requires a nucleophile on the enzyme Can be a reactive serine, thiolate, amine, or carboxylate

24 Metal Ion Catalysis Involves a metal ion bound to the enzyme Interacts with substrate to facilitate binding Stabilizes negative charges Participates in oxidation reactions

25 Chymotrypsin uses most of the enzymatic mechanisms Structure of chymotrypsin. (PDB ID 7GCH) (c) The polypeptide backbone as a ribbon structure. Disulfide bonds are yellow; the three chains are colored as in part (a).

26 Active Site of Chymotrypsin with Substrate Structure of chymotrypsin. (PDB ID 7GCH) (d) A close-up of the active site with a substrate (white and yellow) bound. The hydroxyl of Ser 195 attacks the carbonyl group of the substrate (the oxygens are red); the developing negative charge on the oxygen is stabilized by the oxyanion hole (amide nitrogens from Ser 195 and Gly 193, in blue), as explained in Figure The aromatic amino acid side chain of the substrate (yellow) sits in the hydrophobic pocket. The amide nitrogen of the peptide bond to be cleaved (protruding toward the viewer and projecting the path of the rest of the substrate polypeptide chain) is shown in white.

27 Chymotrypsin Mechanism Step 1: Substrate Binding (step 1) Hydrolytic cleavage of a peptide bond by chymotrypsin. The reaction has two phases. In the acylation phase (steps 1 to 4), formation of a covalent acyl-enzyme intermediate is coupled to cleavage of the peptide bond. In the deacylation phase (steps 5 to 7), deacylation regenerates the free enzyme; this is essentially the reverse of the acylation phase, with water mirroring, in reverse, the role of the amine component of the substrate.

28 Chymotrypsin Mechanism Step 2: Nucleophilic Attack

29 Chymotrypsin Mechanism Step 3: Substrate Cleavage

30 Chymotrypsin Mechanism Step 4: Water Comes In

31 Chymotrypsin Mechanism Step 5: Water Attacks

32 Chymotrypsin Mechanism Step 6: Break-off from the Enzyme

33 Chymotrypsin Mechanism Step 7: Product Dissociates

34 Peptidoglycan and Lysozyme Peptidoglycan is a polysaccharide found in many bacterial cell walls Cleavage of the cell wall leads to the lysis of bacteria Lysozyme is an antibacterial enzyme

35 Peptidoglycan and Lysozyme Hen egg white lysozyme and the reaction it catalyzes. (b) Reaction catalyzed by hen egg white lysozyme. A segment of a peptidoglycan polymer is shown, with the lysozyme binding sites A through F shaded. The glycosidic C O bond between sugar residues bound to sites D and E is cleaved, as indicated by the red arrow. The hydrolytic reaction is shown in the inset, with the fate of the oxygen in the H 2 O traced in red. Mur2Ac is N-acetylmuramic acid; GlcNAc, N-acetylglucosamine. RO represents a lactyl (lactic acid) group; NAc and AcN, an N-acetyl group (see key).

36 General Acid-Base + Covalent Catalysis: Cleavage of Peptidoglycan by Lysozyme X-ray structures of lysozyme with bound substrate analogs show that the C-1 carbon is located between Glu 35 and Asp 52 residues.

37 From previous slide; Lysozyme reaction. In this reaction, the water introduced into the product at C-1 of Mur2Ac is in the same configuration as the original glycosidic bond. The reaction is thus a molecular substitution with retention of configuration. (b) A surface rendering of the lysozyme active site with the covalent enzyme-substrate intermediate shown as a ball-and-stick structure. Side-chains of active-site residues are shown as ball-and-stick structures protruding from ribbons (PDB ID 1H6M).

38 Cleavage of Peptidoglycan by Lysozyme: Two Successive S N 2 Steps Model Asp 52 acts as a nucleophile to attack the anomeric carbon in the first S N 2 step Glu 35 acts as a general acid and protonates the leaving group in the transition state Water hydrolyzes the covalent glycosyl-enzyme intermediate Glu 35 acts as a general base to deprotonate water in the second S N 2 step

39

40

41

42 Experimental work I am no longer allowed to enjoy!

43 What are enzymes? Enzymes are catalysts Increase reaction rates without being used up Most enzymes are globular proteins However, some RNA (ribozymes and ribosomal RNA) also catalyze reactions We will celebrate my inspiration, the Biochemist Louis Pasteur.

44 Why biocatalysis over inorganic catalysts? Greater reaction specificity: avoids side products Milder reaction conditions: conducive to conditions in cells Higher reaction rates: in a biologically useful timeframe Capacity for regulation: control of biological pathways COO - - COO OH - COO NH 2 O - COO Metabolites have many potential pathways of decomposition - COO NH 2 OH O - COO Chorismate mutase - OOC OH - COO O Enzymes make the desired one most favorable

45 What is enzyme kinetics? Kinetics is the study of the rate at which compounds react Rate of enzymatic reaction is affected by: enzyme substrate effectors temperature

46 Why study enzyme kinetics? Quantitative description of biocatalysis Determine the order of binding of substrates Elucidate acid-base catalysis Understand catalytic mechanism Find effective inhibitors Understand regulation of activity

47 How to Do Kinetic Measurements Experiment: 1)Mix enzyme + substrate 2)Record rate of substrate disappearance/product formation as a function of time (the velocity of reaction) 3)Plot initial velocity versus substrate concentration. 4)Change substrate concentration and repeat

48 From previous slide; Initial velocities of enzymecatalyzed reactions A theoretical enzyme catalyzes the reaction S P, and is present at a concentration sufficient to catalyze the reaction at a maximum velocity, V max, of 1 μm/min. The Michaelis constant, K m (explained in the text), is 0.5 μm. Progress curves are shown for substrate concentrations below, at, and above the K m. The rate of an enzymecatalyzed reaction declines as substrate is converted to product. A tangent to each curve taken at time = 0 defines the initial velocity, V 0, of each reaction.

49 Effect of Substrate Concentration Ideal rate: v V K max [ m S] S Deviations due to: limitation of measurements substrate inhibition substrate prep contains inhibitors enzyme prep contains inhibitors

50 Effect of Substrate Concentration Effect of substrate concentration on the initial velocity of an enzyme-catalyzed reaction. The maximum velocity, V max, is extrapolated from the plot because V 0 approaches but never quite reaches V max. The substrate concentration at which V 0 is half maximal is K m, the Michaelis constant. The concentration of enzyme in an experiment such as this is generally so low that [S] >> [E] even when [S] is described as low or relatively low. The units shown are typical for enzyme-catalyzed reactions and are given only to help illustrate the meaning of V 0 and [S]. (Note that the curve describes part of a rectangular hyperbola, with one asymptote at V max. If the curve were continued below [S] = 0, it would approach a vertical asymptote at [S] = K m.)

51 Saturation Kinetics: At high [S] velocity does not depend on [S] Dependence of initial velocity on substrate concentration. This graph shows the kinetic parameters that define the limits of the curve at high and low [S]. At low [S], K m >> [S] and the [S] term in the denominator of the Michaelis-Menten equation (Eqn 6-9) becomes insignificant. The equation simplifies to V 0 = V max [S]/K m and V 0 exhibits a linear dependence on [S], as observed here. At high [S], where [S] >> K m, the K m term in the denominator of the Michaelis-Menten equation becomes insignificant and the equation simplifies to V 0 = V max ; this is consistent with the plateau observed at high [S]. The Michaelis-Menten equation is therefore consistent with the observed dependence of V 0 on [S], and the shape of the curve is defined by the terms V max /K m at low [S] and V max at high [S].

52 Determination of Kinetic Parameters Nonlinear Michaelis-Menten plot should be used to calculate parameters K m and V max. Linearized double-reciprocal plot is good for analysis of two-substrate data or inhibition.

53 Lineweaver-Burk Plot: Linearized, Double-Reciprocal

54 Derivation of Enzyme Kinetics Equations Start with a model mechanism Identify constraints and assumptions Carry out algebra or graph theory for complex reactions Simplest Model Mechanism: E + S ES E + P One reactant, one product, no inhibitors

55 Identify Constraints and Assumptions Total enzyme concentration is constant Mass balance equation for enzyme: E Tot = [E] + [ES] It is also implicitly assumed that: S Tot = [S] + [ES] [S] Steady state assumption d[ ES] dt rateof formationof ES rateof breakdown of ES 0 What is the observed rate? Rate of product formation v net dp dt k[es]

56 Carry out the algebra The final form in case of a single substrate is v k cat K [ E m tot ][ S] [ S] k cat (turnover number): how many substrate molecules can one enzyme molecule convert per second K m (Michaelis constant): an approximate measure of substrate s affinity for enzyme Microscopic meaning of K m and k cat depends on the details of the mechanism

57 Enzyme efficiency is limited by diffusion: k cat /K M Can gain efficiency by having high velocity or affinity for substrate Catalase vs. acetylcholinesterase

58 Two-Substrate Reactions Kinetic mechanism: the order of binding of substrates and release of products When two or more reactants are involved, enzyme kinetics allows to distinguish between different kinetic mechanisms Sequential mechanism Ping-Pong mechanism

59 Common mechanisms for enzymecatalyzed bisubstrate reactions. (a) The enzyme and both substrates come together to form a ternary complex. In ordered binding, substrate 1 must bind before substrate 2 can bind productively. In random binding, the substrates can bind in either order. (b) An enzymesubstrate complex forms, a product leaves the complex, the altered enzyme forms a second complex with another substrate molecule, and the second product leaves, regenerating the enzyme. Substrate 1 may transfer a functional group to the enzyme (to form the covalently modified E ), which is subsequently transferred to substrate 2. This is called a Ping-Pong or double-displacement mechanism.

60 Sequential Kinetic Mechanism We cannot easily distinguish random from ordered Random mechanisms in equilibrium will give intersection point at y-axis Lineweaver-Burk: lines intersect Steady-state kinetic analysis of bisubstrate reactions. In these double-reciprocal plots (see Box 6-1), the concentration of substrate 1 is varied while the concentration of substrate 2 is held constant. This is repeated for several values of [S 2 ], generating several separate lines. (a) Intersecting lines indicate that a ternary complex is formed in the reaction.

61 Ping-Pong Kinetic Mechanism Steady-state kinetic analysis of bisubstrate reactions. In these doublereciprocal plots (see Box 6-1), the concentration of substrate 1 is varied while the concentration of substrate 2 is held constant. This is repeated for several values of [S 2 ], generating several separate lines. (b) parallel lines indicate a Ping-Pong (doubledisplacement) pathway. Lineweaver-Burk: lines are parallel

62 Enzyme Inhibition Inhibitors are compounds that decrease enzyme s activity Irreversible inhibitors (inactivators) react with the enzyme One inhibitor molecule can permanently shut off one enzyme molecule They are often powerful toxins but also may be used as drugs Reversible inhibitors bind to and can dissociate from the enzyme They are often structural analogs of substrates or products They are often used as drugs to slow down a specific enzyme Reversible inhibitor can bind: to the free enzyme and prevent the binding of the substrate to the enzyme-substrate complex and prevent the reaction

63 Competitive Inhibition Competes with substrate for binding Binds active site Does not affect catalysis No change in V max ; apparent increase in K M Lineweaver-Burk: lines intersect at the y-axis

64 Competitive Inhibition

65 Competitive Inhibition

66 Uncompetitive Inhibition Only binds to ES complex Does not affect substrate binding Inhibits catalytic function Decrease in V max ; apparent decrease in K M No change in K M /V max Lineweaver-Burk: lines are parallel

67 Uncompetitive Inhibition

68 Uncompetitive Inhibition

69 Mixed Inhibition Binds enzyme with or without substrate Binds to regulatory site Inhibits both substrate binding and catalysis Decrease in V max ; apparent change in K M Lineweaver-Burk: lines intersect left from the y-axis Noncompetitive inhibitors are mixed inhibitors such that there is no change in K M

70 Mixed Inhibition

71 Mixed Inhibition

72 Enzyme activity can be regulated Regulation can be: noncovalent modification covalent modification irreversible reversible

73 Noncovalent Modification: Allosteric Regulators The kinetics of allosteric regulators differ from Michaelis-Menten kinetics.

74 Aspartate transcarbamylase;

75 From previous slide Substrate-activity curves for representative allosteric enzymes. Three examples of complex responses of allosteric enzymes to their modulators. (a) The sigmoid curve of a homotropic enzyme, in which the substrate also serves as a positive (stimulatory) modulator, or activator. Note the resemblance to the oxygen-saturation curve of hemoglobin. The sigmoidal curve is a hybrid curve in which the enzyme is present primarily in the relatively inactive T state at low substrate concentration, and primarily in the more active R state at high substrate concentration. The curves for the pure T and R states are plotted separately in color. ATCase exhibits a kinetic pattern similar to this. (b) The effects of several different concentrations of a positive modulator (+) or a negative modulator (-) on an allosteric enzyme in which K 0.5 is altered without a change in V max. The central curve shows the substrate-activity relationship without a modulator. For ATCase, CTP is a negative modulator and ATP is a positive modulator.

76 Some Reversible Covalent Modifications

77 Zymogens are activated by irreversible covalent modification

78 From previous slide; Activation of zymogens by proteolytic cleavage. Shown here is the formation of chymotrypsin and trypsin from their zymogens, chymotrypsinogen and trypsinogen. The bars represent the amino acid sequences of the polypeptide chains, with numbers indicating the positions of the residues (the aminoterminal residue is number 1). Residues at the termini of the polypeptide fragments generated by cleavage are indicated below the bars. Note that in the final active forms, some numbered residues are missing. Recall that the three polypeptide chains (A, B, and C) of chymotrypsin are linked by disulfide bonds (see Fig. 6 19).

79 The blood coagulation cascade uses irreversible covalent modification The coagulation cascades. The interlinked intrinsic and extrinsic pathways leading to the cleavage of fibrinogen to form active fibrin are shown. Active serine proteases in the pathways are shown in blue. Green arrows denote activating steps, and red arrows indicate inhibitory processes.

80 Some enzymes use multiple types of regulation

81 Regulation of muscle glycogen phosphorylase activity by phosphorylation. The activity of glycogen phosphorylase in muscle is subjected to a multilevel system of regulation involving much more than the covalent modification (phosphorylation) shown in Figure Allosteric regulation, and a regulatory cascade sensitive to hormonal status that acts on the enzymes involved in phosphorylation and dephosphorylation, also play important roles. The activity of both forms of the enzyme is allosterically regulated by an activator (AMP) and by inhibitors (glucose 6-phosphate and ATP) that bind to separate sites on the enzyme. The activities of phosphorylase kinase and phosphorylase phosphatase 1 (PP1) are also regulated by covalent modification, via a short pathway that responds to the hormones glucagon and epinephrine. One path leads to the phosphorylation of phosphorylase kinase and phosphoprotein phosphatase inhibitor 1 (PPI-1). The phosphorylated phosphorylase kinase is activated and in turn phosphorylates and activates glycogen phosphorylase. At the same time, the phosphorylated PPI-1 interacts with and inhibits PP1. PPI-1 also keeps itself active (phosphorylated) by inhibiting phosphoprotein phosphatase 2B (PP2B), the enzyme that dephosphorylates (inactivates) it. In this way, the equilibrium between the a and b forms of glycogen phosphorylase is shifted decisively toward the more active glycogen phosphorylase a. Note that the two forms of phosphorylase kinase are both activated to a degree by Ca 2+ ion (not shown). This pathway is discussed in more detail in Chapters 14, 15, and 23.

Lecture 15: Enzymes & Kinetics Mechanisms

Lecture 15: Enzymes & Kinetics Mechanisms ROLE OF THE TRANSITION STATE Lecture 15: Enzymes & Kinetics Mechanisms Consider the reaction: H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl Reactants Transition state Products Margaret A. Daugherty Fall 2004

More information

Enzymes reduce the activation energy

Enzymes reduce the activation energy Enzymes reduce the activation energy Transition state is an unstable transitory combination of reactant molecules which occurs at the potential energy maximum (free energy maximum). Note - the ΔG of the

More information

Lecture 11 Enzymes: Kinetics

Lecture 11 Enzymes: Kinetics Lecture 11 Enzymes: Kinetics Reading: Berg, Tymoczko & Stryer, 6th ed., Chapter 8, pp. 216-225 Key Concepts Kinetics is the study of reaction rates (velocities). Study of enzyme kinetics is useful for

More information

Enzymes. Enzyme Structure. Enzyme Classification. CHEM464/Medh, J.D. Reaction Rate and Enzyme Activity

Enzymes. Enzyme Structure. Enzyme Classification. CHEM464/Medh, J.D. Reaction Rate and Enzyme Activity Enzymes Enzymes are biological catalysts They are not consumed or altered during the reaction They do not change the equilibrium, just reduce the time required to reach equilibrium. They increase the rate

More information

How To Understand Enzyme Kinetics

How To Understand Enzyme Kinetics Chapter 12 - Reaction Kinetics In the last chapter we looked at enzyme mechanisms. In this chapter we ll see how enzyme kinetics, i.e., the study of enzyme reaction rates, can be useful in learning more

More information

Chemistry 20 Chapters 15 Enzymes

Chemistry 20 Chapters 15 Enzymes Chemistry 20 Chapters 15 Enzymes Enzymes: as a catalyst, an enzyme increases the rate of a reaction by changing the way a reaction takes place, but is itself not changed at the end of the reaction. An

More information

Enzymes. Enzymes are characterized by: Specificity - highly specific for substrates

Enzymes. Enzymes are characterized by: Specificity - highly specific for substrates Enzymes Enzymes are characterized by: Catalytic Power - rates are 10 6-10 12 greater than corresponding uncatalyzed reactions Specificity - highly specific for substrates Regulation - acheived in many

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. The totality of an organism

More information

Lecture 3: Enzyme kinetics

Lecture 3: Enzyme kinetics Computational Systems Biology Lecture 3: Enzyme kinetics Fri 19 Jan 2009 1 Images from: D. L. Nelson, Lehninger Principles of Biochemistry, IV Edition, W. H. Freeman ed. A. Cornish-Bowden Fundamentals

More information

ENZYMES. Serine Proteases Chymotrypsin, Trypsin, Elastase, Subtisisin. Principle of Enzyme Catalysis

ENZYMES. Serine Proteases Chymotrypsin, Trypsin, Elastase, Subtisisin. Principle of Enzyme Catalysis ENZYMES Serine Proteases Chymotrypsin, Trypsin, Elastase, Subtisisin Principle of Enzyme Catalysis Linus Pauling (1946) formulated the first basic principle of enzyme catalysis Enzyme increase the rate

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy Module 2D - Energy and Metabolism Objective # 19 All living organisms require energy for survival. In this module we will examine some general principles about chemical reactions and energy usage within

More information

Previous lecture: Today:

Previous lecture: Today: Previous lecture: The energy requiring step from substrate to transition state is an energy barrier called the free energy of activation G Transition state is the unstable (10-13 seconds) highest energy

More information

Regulation of enzyme activity

Regulation of enzyme activity 1 Regulation of enzyme activity Regulation of enzyme activity is important to coordinate the different metabolic processes. It is also important for homeostasis i.e. to maintain the internal environment

More information

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d.

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d. 1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d. Solar energy A. Answer a is incorrect. Kinetic energy is the energy of

More information

CHM333 LECTURE 13 14: 2/13 15/13 SPRING 2013 Professor Christine Hrycyna

CHM333 LECTURE 13 14: 2/13 15/13 SPRING 2013 Professor Christine Hrycyna INTRODUCTION TO ENZYMES Enzymes are usually proteins (some RNA) In general, names end with suffix ase Enzymes are catalysts increase the rate of a reaction not consumed by the reaction act repeatedly to

More information

Enzymes Enzyme Mechanism

Enzymes Enzyme Mechanism Mechanisms of Enzymes BCMB 3100 Chapters 6, 7, 8 Enzymes Enzyme Mechanism 1 Energy diagrams Binding modes of enzyme catalysis Chemical modes of enzyme catalysis Acid-Base catalysis Covalent catalysis Binding

More information

Biochemistry - I. Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture-11 Enzyme Mechanisms II

Biochemistry - I. Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture-11 Enzyme Mechanisms II Biochemistry - I Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture-11 Enzyme Mechanisms II In the last class we studied the enzyme mechanisms of ribonuclease A

More information

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy.

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. Energy & Enzymes Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. 1 Energy exists in two forms - potential and kinetic. Potential

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Most components of energy conversion systems evolved very early; thus, the most fundamental aspects of energy metabolism tend to be: A. quite different among a diverse group

More information

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 4 ENZYMATIC CATALYSIS

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 4 ENZYMATIC CATALYSIS ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 4 ENZYMATIC CATALYSIS We will continue today our discussion on enzymatic catalysis

More information

CHAPTER 4: Enzyme Structure ENZYMES

CHAPTER 4: Enzyme Structure ENZYMES CHAPTER 4: ENZYMES Enzymes are biological catalysts. There are about 40,000 different enzymes in human cells, each controlling a different chemical reaction. They increase the rate of reactions by a factor

More information

CHAPTER 6 AN INTRODUCTION TO METABOLISM. Section B: Enzymes

CHAPTER 6 AN INTRODUCTION TO METABOLISM. Section B: Enzymes CHAPTER 6 AN INTRODUCTION TO METABOLISM Section B: Enzymes 1. Enzymes speed up metabolic reactions by lowering energy barriers 2. Enzymes are substrate specific 3. The active site in an enzyme s catalytic

More information

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme. CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by

More information

Chapter 8: Energy and Metabolism

Chapter 8: Energy and Metabolism Chapter 8: Energy and Metabolism 1. Discuss energy conversions and the 1 st and 2 nd law of thermodynamics. Be sure to use the terms work, potential energy, kinetic energy, and entropy. 2. What are Joules

More information

Enzymes: Introduction

Enzymes: Introduction Enzymes: Introduction Firefly bioluminescence is produced by an oxidation reaction catalyzed by the enzyme firefly luciferase. The oxidized substrate (product of the reaction) is in an electronically excited

More information

Lecture 10 Enzymes: Introduction

Lecture 10 Enzymes: Introduction Lecture 10 Enzymes: Introduction Reading: Berg, Tymoczko & Stryer, 6th ed., Chapter 8, pp. 205-217 (These pages in textbook are very important -- concepts of thermodynamics are fundamental to all of biochemistry.)

More information

How To Understand The Chemistry Of An Enzyme

How To Understand The Chemistry Of An Enzyme Chapt. 8 Enzymes as catalysts Ch. 8 Enzymes as catalysts Student Learning Outcomes: Explain general features of enzymes as catalysts: Substrate -> Product Describe nature of catalytic sites general mechanisms

More information

CHM333 LECTURE 13 14: 2/13 15/12 SPRING 2012 Professor Christine Hrycyna

CHM333 LECTURE 13 14: 2/13 15/12 SPRING 2012 Professor Christine Hrycyna INTRODUCTION TO ENZYMES Enzymes are usually proteins (some RNA) In general, names end with suffix ase Enzymes are catalysts increase the rate of a reaction not consumed by the reaction act repeatedly to

More information

Enzymes. Enzyme Classification

Enzymes. Enzyme Classification Enzyme Classification Simple Enzymes: composed of whole proteins Complex Enzymes: composed of protein plus a relatively small organic molecule holoenzyme = apoenzyme + prosthetic group / coenzyme A prosthetic

More information

Enzymes and Metabolic Pathways

Enzymes and Metabolic Pathways Enzymes and Metabolic Pathways Enzyme characteristics Made of protein Catalysts: reactions occur 1,000,000 times faster with enzymes Not part of reaction Not changed or affected by reaction Used over and

More information

A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys

A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys Questions- Proteins & Enzymes A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys Reaction of the intact peptide

More information

green B 1 ) into a single unit to model the substrate in this reaction. enzyme

green B 1 ) into a single unit to model the substrate in this reaction. enzyme Teacher Key Objectives You will use the model pieces in the kit to: Simulate enzymatic actions. Explain enzymatic specificity. Investigate two types of enzyme inhibitors used in regulating enzymatic activity.

More information

8/20/2012 H C OH H R. Proteins

8/20/2012 H C OH H R. Proteins Proteins Rubisco monomer = amino acids 20 different amino acids polymer = polypeptide protein can be one or more polypeptide chains folded & bonded together large & complex 3-D shape hemoglobin Amino acids

More information

ENZYMES (DR. NUGENT)

ENZYMES (DR. NUGENT) ENZYMES (DR. NUGENT) I. INTRODUCTION TO ENZYMES/CATALYSTS a. Definition: enzyme = biological catalyst (catalyst = speeds rate of reaction) b. Features of enzymes: i. Enzymes speeds up the rate of a reaction

More information

Lecture 4 Enzymes Catalytic proteins. Enzymes. Enzymes 10/21/10. What enzymes do therefore is:

Lecture 4 Enzymes Catalytic proteins. Enzymes. Enzymes 10/21/10. What enzymes do therefore is: Lecture 4 Catalytic proteins Are a type of protein that acts as a catalyst-speeding up chemical reactions A catalyst is defined as a chemical agent that changes the rate of a reaction without being consumed

More information

18.2 Protein Structure and Function: An Overview

18.2 Protein Structure and Function: An Overview 18.2 Protein Structure and Function: An Overview Protein: A large biological molecule made of many amino acids linked together through peptide bonds. Alpha-amino acid: Compound with an amino group bonded

More information

Catalysis by Enzymes. Enzyme A protein that acts as a catalyst for a biochemical reaction.

Catalysis by Enzymes. Enzyme A protein that acts as a catalyst for a biochemical reaction. Catalysis by Enzymes Enzyme A protein that acts as a catalyst for a biochemical reaction. Enzymatic Reaction Specificity Enzyme Cofactors Many enzymes are conjugated proteins that require nonprotein portions

More information

ENZYMES - EXTRA QUESTIONS

ENZYMES - EXTRA QUESTIONS ENZYMES - EXTRA QUESTIONS 1. A chemical reaction has a G o = -60 kj/mol. If this were an enzyme-catalyzed reaction what can you predict about the kinetics? A. It will exhibit very rapid kinetics. B. It

More information

PHYSIOLOGY AND MAINTENANCE Vol. II Enzymes: The Biological Catalysts of Life - Pekka Mäntsälä and Jarmo Niemi

PHYSIOLOGY AND MAINTENANCE Vol. II Enzymes: The Biological Catalysts of Life - Pekka Mäntsälä and Jarmo Niemi ENZYMES: THE BIOLOGICAL CATALYSTS OF LIFE Pekka Mäntsälä and Jarmo Niemi University of Turku, Department of Biochemistry, Finland Keywords: enzymes, specificity, catalysis, cofactors, enzyme turnover,

More information

Enzymes and Metabolism

Enzymes and Metabolism Enzymes and Metabolism Enzymes and Metabolism Metabolism: Exergonic and Endergonic Reactions Chemical Reactions: Activation Every chemical reaction involves bond breaking and bond forming A chemical reaction

More information

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes? Keystone Review Practice Test Module A Cells and Cell Processes 1. Which characteristic is shared by all prokaryotes and eukaryotes? a. Ability to store hereditary information b. Use of organelles to control

More information

AP BIOLOGY 2008 SCORING GUIDELINES

AP BIOLOGY 2008 SCORING GUIDELINES AP BIOLOGY 2008 SCORING GUIDELINES Question 1 1. The physical structure of a protein often reflects and affects its function. (a) Describe THREE types of chemical bonds/interactions found in proteins.

More information

IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins

IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon A. Acid/Base properties 1. carboxyl group is proton donor! weak acid 2. amino group is proton acceptor! weak base 3. At physiological ph: H

More information

1. The diagram below represents a biological process

1. The diagram below represents a biological process 1. The diagram below represents a biological process 5. The chart below indicates the elements contained in four different molecules and the number of atoms of each element in those molecules. Which set

More information

Figure 5. Energy of activation with and without an enzyme.

Figure 5. Energy of activation with and without an enzyme. Biology 20 Laboratory ENZYMES & CELLULAR RESPIRATION OBJECTIVE To be able to list the general characteristics of enzymes. To study the effects of enzymes on the rate of chemical reactions. To demonstrate

More information

Copyright 2000-2003 Mark Brandt, Ph.D. 54

Copyright 2000-2003 Mark Brandt, Ph.D. 54 Pyruvate Oxidation Overview of pyruvate metabolism Pyruvate can be produced in a variety of ways. It is an end product of glycolysis, and can be derived from lactate taken up from the environment (or,

More information

Carbohydrates, proteins and lipids

Carbohydrates, proteins and lipids Carbohydrates, proteins and lipids Chapter 3 MACROMOLECULES Macromolecules: polymers with molecular weights >1,000 Functional groups THE FOUR MACROMOLECULES IN LIFE Molecules in living organisms: proteins,

More information

Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport.

Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport. 1. The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism s cells. As a basis for understanding this concept: 1.

More information

NO CALCULATORS OR CELL PHONES ALLOWED

NO CALCULATORS OR CELL PHONES ALLOWED Biol 205 Exam 1 TEST FORM A Spring 2008 NAME Fill out both sides of the Scantron Sheet. On Side 2 be sure to indicate that you have TEST FORM A The answers to Part I should be placed on the SCANTRON SHEET.

More information

Cellular Energy: ATP & Enzymes. What is it? Where do organism s get it? How do they use it?

Cellular Energy: ATP & Enzymes. What is it? Where do organism s get it? How do they use it? Cellular Energy: ATP & Enzymes What is it? Where do organism s get it? How do they use it? Where does Energy come from? Ultimately, from the sun. It is transferred between organisms in the earth s lithosphere,

More information

Name: Hour: Elements & Macromolecules in Organisms

Name: Hour: Elements & Macromolecules in Organisms Name: Hour: Elements & Macromolecules in Organisms Most common elements in living things are carbon, hydrogen, nitrogen, and oxygen. These four elements constitute about 95% of your body weight. All compounds

More information

Experiment 10 Enzymes

Experiment 10 Enzymes Experiment 10 Enzymes Enzymes are proteins that act as catalysts for biological reactions. Enzymes, like all catalysts, speed up reactions without being used up themselves. They do this by lowering the

More information

Oxygen-Binding Proteins

Oxygen-Binding Proteins Oxygen-Binding Proteins Myoglobin, Hemoglobin, Cytochromes bind O 2. Oxygen is transported from lungs to various tissues via blood in association with hemoglobin In muscle, hemoglobin gives up O 2 to myoglobin

More information

Name Date Period. Keystone Review Enzymes

Name Date Period. Keystone Review Enzymes Name Date Period Keystone Review Enzymes 1. In order for cells to function properly, the enzymes that they contain must also function properly. What can be inferred using the above information? A. Cells

More information

Enzymes. A. a lipid B. a protein C. a carbohydrate D. a mineral

Enzymes. A. a lipid B. a protein C. a carbohydrate D. a mineral Enzymes 1. All cells in multicellular organisms contain thousands of different kinds of enzymes that are specialized to catalyze different chemical reactions. Given this information, which of the following

More information

Helices From Readily in Biological Structures

Helices From Readily in Biological Structures The α Helix and the β Sheet Are Common Folding Patterns Although the overall conformation each protein is unique, there are only two different folding patterns are present in all proteins, which are α

More information

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms Chapter 5: Microbial Metabolism Microbial Metabolism Metabolism refers to all chemical reactions that occur within a living a living organism. These chemical reactions are generally of two types: Catabolic:

More information

The Kinetics of Enzyme Reactions

The Kinetics of Enzyme Reactions The Kinetics of Enzyme Reactions This activity will introduce you to the chemical kinetics of enzyme-mediated biochemical reactions using an interactive Excel spreadsheet or Excelet. A summarized chemical

More information

Enzymes Enzymes Enzymes: proteins ( metabolic pathways & biological Lysozyme Purification of Enzymes:

Enzymes Enzymes Enzymes: proteins ( metabolic pathways &  biological Lysozyme Purification of Enzymes: Enzymes: Enzymes More than 2000 different enzymes are currently known. The function of enzymes and other catalysts is to lower the activation energy, ΔG, for a reaction and thereby enhance the reaction

More information

Elements & Macromolecules in Organisms

Elements & Macromolecules in Organisms Name: Date: Per: Table # Elements & Macromolecules in rganisms Most common elements in living things are carbon, hydrogen, nitrogen, and oxygen. These four elements constitute about 95% of your body weight.

More information

Chapter 3 Molecules of Cells

Chapter 3 Molecules of Cells Bio 100 Molecules of cells 1 Chapter 3 Molecules of Cells Compounds containing carbon are called organic compounds Molecules such as methane that are only composed of carbon and hydrogen are called hydrocarbons

More information

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes Chapter 5: Microbial Metabolism 1. Enzymes 2. ATP Production 3. Autotrophic Processes 1. Enzymes Biochemical Reactions All living cells depend on biochemical reactions to maintain homeostasis. All of the

More information

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage. CH 5 Structure & Function of Large Molecules: Macromolecules Molecules of Life All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and nucleic

More information

Chapter 3: Biological Molecules. 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids

Chapter 3: Biological Molecules. 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids Chapter 3: Biological Molecules 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids Elements in Biological Molecules Biological macromolecules are made almost entirely of just 6 elements: Carbon (C)

More information

Computational Systems Biology. Lecture 2: Enzymes

Computational Systems Biology. Lecture 2: Enzymes Computational Systems Biology Lecture 2: Enzymes 1 Images from: David L. Nelson, Lehninger Principles of Biochemistry, IV Edition, Freeman ed. or under creative commons license (search for images at http://search.creativecommons.org/)

More information

Chapter 2 Polar Covalent Bonds; Acids and Bases

Chapter 2 Polar Covalent Bonds; Acids and Bases John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 2 Polar Covalent Bonds; Acids and Bases Javier E. Horta, M.D., Ph.D. University of Massachusetts Lowell Polar Covalent Bonds: Electronegativity

More information

Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7. 4. Which of the following weak acids would make the best buffer at ph = 5.0?

Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7. 4. Which of the following weak acids would make the best buffer at ph = 5.0? Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7 4. Which of the following weak acids would make the best buffer at ph = 5.0? A) Acetic acid (Ka = 1.74 x 10-5 ) B) H 2 PO - 4 (Ka =

More information

Bioenergetics. Free Energy Change

Bioenergetics. Free Energy Change Bioenergetics Energy is the capacity or ability to do work All organisms need a constant supply of energy for functions such as motion, transport across membrane barriers, synthesis of biomolecules, information

More information

Preliminary MFM Quiz

Preliminary MFM Quiz Preliminary MFM Quiz 1. The major carrier of chemical energy in all cells is: A) adenosine monophosphate B) adenosine diphosphate C) adenosine trisphosphate D) guanosine trisphosphate E) carbamoyl phosphate

More information

Enzymes: Practice Questions #1

Enzymes: Practice Questions #1 Enzymes: Practice Questions #1 1. Compound X increases the rate of the reaction below. Compound X is most likely A. an enzyme B. a lipid molecule C. an indicator D. an ADP molecule 2. The equation below

More information

The purpose of this lab is to investigate the impact of temperature, substrate concentration,

The purpose of this lab is to investigate the impact of temperature, substrate concentration, Lee 1 Jessica Lee AP Biology Mrs. Kingston 23 October 2013 Abstract: The purpose of this lab is to investigate the impact of temperature, substrate concentration, enzyme concentration, and the presence

More information

The Citric Acid Cycle

The Citric Acid Cycle The itric Acid ycle February 14, 2003 Bryant Miles I. itrate Synthase + 3 SoA The first reaction of the citric acid cycle is the condensation of acetyloa and oxaloacetate to form citrate and oas. The enzyme

More information

Introduction, Noncovalent Bonds, and Properties of Water

Introduction, Noncovalent Bonds, and Properties of Water Lecture 1 Introduction, Noncovalent Bonds, and Properties of Water Reading: Berg, Tymoczko & Stryer: Chapter 1 problems in textbook: chapter 1, pp. 23-24, #1,2,3,6,7,8,9, 10,11; practice problems at end

More information

(c) How would your answers to problem (a) change if the molecular weight of the protein was 100,000 Dalton?

(c) How would your answers to problem (a) change if the molecular weight of the protein was 100,000 Dalton? Problem 1. (12 points total, 4 points each) The molecular weight of an unspecified protein, at physiological conditions, is 70,000 Dalton, as determined by sedimentation equilibrium measurements and by

More information

Amino Acids, Peptides, Proteins

Amino Acids, Peptides, Proteins Amino Acids, Peptides, Proteins Functions of proteins: Enzymes Transport and Storage Motion, muscle contraction Hormones Mechanical support Immune protection (Antibodies) Generate and transmit nerve impulses

More information

Biological molecules:

Biological molecules: Biological molecules: All are organic (based on carbon). Monomers vs. polymers: Monomers refer to the subunits that, when polymerized, make up a larger polymer. Monomers may function on their own in some

More information

Recognizing Organic Molecules: Carbohydrates, Lipids and Proteins

Recognizing Organic Molecules: Carbohydrates, Lipids and Proteins Recognizing Organic Molecules: Carbohydrates, Lipids and Proteins Oct 15 8:05 PM What is an Organic Molecule? An Organic Molecule is a molecule that contains carbon and hydrogen and oxygen Carbon is found

More information

Chapter 3. Protein Structure and Function

Chapter 3. Protein Structure and Function Chapter 3 Protein Structure and Function Broad functional classes So Proteins have structure and function... Fine! -Why do we care to know more???? Understanding functional architechture gives us POWER

More information

CHAPTER 11 Mechanism of Enzyme Action

CHAPTER 11 Mechanism of Enzyme Action CHAPTER 11 Mechanism of Enzyme Action 1. General properties of enzymes 2. Activation energy and the reaction coordinate 3. Catalytic mechanism 4. Lysozyme 5. Serine proteases Enzyme act with great speed

More information

Myoglobin and Hemoglobin

Myoglobin and Hemoglobin Myoglobin and Hemoglobin Myoglobin and hemoglobin are hemeproteins whose physiological importance is principally related to their ability to bind molecular oxygen. Myoglobin (Mb) The oxygen storage protein

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Name Period Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four main classes. Name them. 2. Circle the three classes that are called

More information

Overview of Glycolysis Under anaerobic conditions, the glycolytic pathway present in most species results in a balanced reaction:

Overview of Glycolysis Under anaerobic conditions, the glycolytic pathway present in most species results in a balanced reaction: Glycolysis Glucose is a valuable molecule. It can be used to generate energy (in red blood cells and in brain under normal conditions, glucose is the sole energy source), and it can be used to generate

More information

Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group.

Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group. Protein Structure Amino Acids Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain Alpha Carbon Amino Group Carboxyl Group Amino Acid Properties There are

More information

Chemical Basis of Life Module A Anchor 2

Chemical Basis of Life Module A Anchor 2 Chemical Basis of Life Module A Anchor 2 Key Concepts: - Water is a polar molecule. Therefore, it is able to form multiple hydrogen bonds, which account for many of its special properties. - Water s polarity

More information

Chapter 16 Amino Acids, Proteins, and Enzymes

Chapter 16 Amino Acids, Proteins, and Enzymes Chapter 16 Amino Acids, Proteins, and Enzymes 1 Functions of Proteins Proteins in the body are polymers made from 20 different amino acids differ in characteristics and functions that depend on the order

More information

ph: Measurement and Uses

ph: Measurement and Uses ph: Measurement and Uses One of the most important properties of aqueous solutions is the concentration of hydrogen ion. The concentration of H + (or H 3 O + ) affects the solubility of inorganic and organic

More information

Introduction to Proteins and Enzymes

Introduction to Proteins and Enzymes Introduction to Proteins and Enzymes Basics of protein structure and composition The life of a protein Enzymes Theory of enzyme function Not all enzymes are proteins / not all proteins are enzymes Enzyme

More information

Combinatorial Biochemistry and Phage Display

Combinatorial Biochemistry and Phage Display Combinatorial Biochemistry and Phage Display Prof. Valery A. Petrenko Director - Valery Petrenko Instructors Galina Kouzmitcheva and I-Hsuan Chen Auburn 2006, Spring semester COMBINATORIAL BIOCHEMISTRY

More information

Summary of Metabolism. Mechanism of Enzyme Action

Summary of Metabolism. Mechanism of Enzyme Action Summary of Metabolism Mechanism of Enzyme Action 1. The substrate contacts the active site 2. The enzyme-substrate complex is formed. 3. The substrate molecule is altered (atoms are rearranged, or the

More information

Molecular Models in Biology

Molecular Models in Biology Molecular Models in Biology Objectives: After this lab a student will be able to: 1) Understand the properties of atoms that give rise to bonds. 2) Understand how and why atoms form ions. 3) Model covalent,

More information

H H N - C - C 2 R. Three possible forms (not counting R group) depending on ph

H H N - C - C 2 R. Three possible forms (not counting R group) depending on ph Amino acids - 0 common amino acids there are others found naturally but much less frequently - Common structure for amino acid - C, -N, and functional groups all attached to the alpha carbon N - C - C

More information

Regulation of the Citric Acid Cycle

Regulation of the Citric Acid Cycle Regulation of the itric Acid ycle I. hanges in Free Energy February 17, 2003 Bryant Miles kj/mol 40 20 0 20 40 60 80 Reaction DGo' DG TA Free Energy hanges 1 2 3 4 5 6 7 8 9 1.) itrate Synthase 2.) Aconitase

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

Ionization of amino acids

Ionization of amino acids Amino Acids 20 common amino acids there are others found naturally but much less frequently Common structure for amino acid COOH, -NH 2, H and R functional groups all attached to the a carbon Ionization

More information

PROTEINS THE PEPTIDE BOND. The peptide bond, shown above enclosed in the blue curves, generates the basic structural unit for proteins.

PROTEINS THE PEPTIDE BOND. The peptide bond, shown above enclosed in the blue curves, generates the basic structural unit for proteins. Ca 2+ The contents of this module were developed under grant award # P116B-001338 from the Fund for the Improvement of Postsecondary Education (FIPSE), United States Department of Education. However, those

More information

Review of Chemical Equilibrium 7.51 September 1999. free [A] (µm)

Review of Chemical Equilibrium 7.51 September 1999. free [A] (µm) Review of Chemical Equilibrium 7.51 September 1999 Equilibrium experiments study how the concentration of reaction products change as a function of reactant concentrations and/or reaction conditions. For

More information

Lecture 6. Regulation of Protein Synthesis at the Translational Level

Lecture 6. Regulation of Protein Synthesis at the Translational Level Regulation of Protein Synthesis (6.1) Lecture 6 Regulation of Protein Synthesis at the Translational Level Comparison of EF-Tu-GDP and EF-Tu-GTP conformations EF-Tu-GDP EF-Tu-GTP Next: Comparison of GDP

More information

Chapter 6 An Overview of Organic Reactions

Chapter 6 An Overview of Organic Reactions John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 6 An Overview of Organic Reactions Why this chapter? To understand organic and/or biochemistry, it is necessary to know: -What occurs -Why and

More information

Biochemistry 462a Hemoglobin Structure and Function Reading - Chapter 7 Practice problems - Chapter 7: 1-6; Proteins extra problems

Biochemistry 462a Hemoglobin Structure and Function Reading - Chapter 7 Practice problems - Chapter 7: 1-6; Proteins extra problems Biochemistry 462a Hemoglobin Structure and Function Reading - Chapter 7 Practice problems - Chapter 7: 1-6; Proteins extra problems Myoglobin and Hemoglobin Oxygen is required for oxidative metabolism

More information

Exam 4 Outline CH 105 Spring 2012

Exam 4 Outline CH 105 Spring 2012 Exam 4 Outline CH 105 Spring 2012 You need to bring a pencil and your ACT card. Chapter 24: Lipids 1. Describe the properties and types of lipids a. All are hydrophobic b. Fatty acid-based typically contain

More information