# Integers are positive and negative whole numbers, that is they are; {... 3, 2, 1,0,1,2,3...}. The dots mean they continue in that pattern.

Size: px
Start display at page:

Download "Integers are positive and negative whole numbers, that is they are; {... 3, 2, 1,0,1,2,3...}. The dots mean they continue in that pattern."

Transcription

1 INTEGERS Integers are positive and negative whole numbers, that is they are; {... 3, 2, 1,0,1,2,3...}. The dots mean they continue in that pattern. Like all number sets, integers were invented to describe things that happen in our environment. When we work with signed numbers, we are often working with two different signs that look exactly alike. They are signs of value and signs of operation. A sign of value tells you if the number you are working with is greater than zero (positive) or less than zero (negative). Signs of operation tell you to add, subtract, multiply or divide. Example Sign of Operation (+3) + (+2) Sign of Value Sign of Value Notice that the signs of value and the sign of operation are identical. Adding Integers One way of explaining integers is with a number line. Let s say I was standing on zero and I walked three spaces to the right, then walked two more spaces to the right. Where would I be?

2 You ve got it. You d be 5 spaces to the right. Piece of cake, you re thinking. Now let s see that same example incorporating mathematical notation. Let s agree that walking to the right is positive, walking to the left will be negative. Easy enough. So 3 spaces to the right could be labeled, 3R or +3 2 spaces to the right could be labeled, 2 R or + 2. Now we said we d end up 5 spaces to the right, 5R, or +5. Now let s define walking mathematically, we ll agree to define that as addition. Translating that problem of walking to the right, then walking further to the right mathematically, we have 3R + 2R = 5R ( +3) + ( +2) = + 5 The sign of operation tells you to walk, the sign of value tells you which direction. Guess what happens next, that s right we make a rule that will allow us to do problems like this without drawing a picture. Rule 1. When adding two positive numbers, find the sum of their absolute values, the answer is positive. Example 8 + ( +9) = +17 From the above example, notice that the 8 does not have a sign of value. We will now agree that when a number does not have a sign of value, it is understood to be positive. Integers - 2

3 Using those same agreements we just made, walking is still defined by addition, going right is positive, going left is negative. Let s see what happens when we walk 4 steps to the left from zero, then 3 steps to the left. Where will we end up? If you said we d up 7 spaces to the left, we re in good shape Mathematically, we d express that like this 4L + 3L = 7L ( 4) + 3 ( ) = 7 This idea of walking around the number line is pretty cooool! Of course, now what we do is generalize this and make that into a rule so we don t have to always draw a picture. Rule 2. When adding two negative numbers, find the sum of their absolute values, the answer is negative. Example ( 5) + ( 6) = 11 Try a couple for yourself 1. ( 12) + ( 8) 2. ( 9) + ( 6) Some real good news, the rules we are developing also work for other number sets like fractions or decimals. Integers - 3

4 Yes, I know you love to walk, so let s take another walk on the number line. This time we are going to walk in different directions. Again, starting from zero, let s walk two steps to the left, then 5 steps to the right. Where will I end up? Hopefully, by using the number line, you see that we ll end up 3 spaces to the right. Mathematically, changing 2L + 5R = 3R to ( 2) + ( +5) = +3 Let s do another one, this time starting out walking 4 to the right, then going 9 to the left. Again, using the number line, where should we end up? If you said 5 to the left, you are making my life too easy. Mathematically, we ll change 4R + 9L = 5L to +4 ( ) + ( 9) = 5 Now if we play with the two preceding examples long enough, we ll come up with a rule (shortcut) that will allow us to do these problems without drawing a number line. Rule 3. When adding one positive and negative number, find the difference between their absolute values and use the sign of the Integer with the greater absolute value Examples: ( 12) + +8 ( ) = 4 ( ) = Integers - 4

5 Simplify ( +7) + ( +3) ( +8 ) + ( +5) ( +2 ) + ( +4) ( 7) + ( 3) ( 8 ) + ( 5) ( 2 ) + ( 4) ( 7) + ( +9) ( +8 ) + ( 11) ( 5 ) + ( +2) ( 2) + ( 7) Subtracting Integers Now that we have learned to add positive and negative numbers, I ll bet you know what s coming next. Yes indeed, it s subtraction. Remember, we defined addition as walking the number line from zero. Well, we are going to define subtraction as finding the distance between two locations on the number line and the way you have to travel to get to the first address. Going right is still positive, going left is negative. Integers - 5

6 EXAMPLE Let s say I want to know how far you must travel if you were standing on +8 ( ) and you wanted to go to the location marked as ( 2) Looking at the number line, you are standing on +8. Which direction will you have to go to get to 2? If you said left, that s good news and mathematically it translates to a negative number. Now, how far away from 2 are we? Using the number line we see we would have to walk 10 spaces to the left or 10. Mathematically, that would look like this ( 2) ( +8) _ walking 10 spaces to the left, ( 10) Another example. This time you are standing on 5 and want to go to 1. How far and what direction would you have to move? 4 spaces to the right would be the correct answer. Mathematically, we have ( 1) ( 5) = +4 Rule 4. When subtracting signed numbers, change the sign of the subtrahend (second number) and add using rule 1, 2 or 3, whichever applies. Example 6 ( +13) = ( ) change sign & add = 7 Integers - 6

7 Simplify ( +4) ( +6) ( 5 ) ( 7) 8 ( 3) 8 ( +3 ) 4 ( 6) 8 ( +7) 10 ( 3) 10 ( 3) 6 ( +2) ( +7 ) ( +11) ( 2) ( 12) ( +2 ) ( 12) Up to this point, we have developed rules for adding and subtracting signed numbers. Those rules came from observations that we made that allowed us to do problems without drawing pictures or using manipulatives. Using pictures and/or manipulatives is important so the kids have an understanding of the concepts being introduced. Multiplying/Dividing Integers Here s a new agreement for multiplication and division. Traveling east (right) is positive, traveling west (left) is negative. Sounds familiar, doesn t it? Integers - 7

8 Now, future time will be defined as positive, past time as a negative number. And you ll be at your lovely home which will be designated as zero. ILLUSTRATION 1 If you were at home (at zero) and a plane heading east at 400 mph passed directly overhead, where will it be in 2 hours? If you don t know what distance equals rate x time, now you do. Translating English to math, going 400 mph East is +400, and since we are looking at future time, 2 hours will be +2. W E Now, standing at zero and the plane heading east for 2 hours at 400 mph, it will be 800 miles east in 2 hours. Mathematically, we have: 400 mph east x 2 hrs future = 80 miles east (+400) x (+2) = +800 Makes sense. ILLUSTRATION 2 W E The plane is directly over your house heading east at 400 mph. Where was it 2 hours ago? Going east at 400 mph is written as +400, we are using past time, so that s 2. Integers - 8

9 He d be 800 miles west. Translating English to math we have 400 mph east x 2 hrs past = 800 miles west (+400) x (- 2) = -800 Oh, yes, this is a piece of cake. Don t you just love math? ILLUSTRATION 3 W E The plane is heading west at 400 mph, where will it be in 2 hours if it is directly over your head now? He d be 800 miles west. Translating English to math we have 400 mph west x 2 hours future = 800 miles west (-400) x (+2) = -800 ILLUSTRATION 4 Using the last illustration The plane is heading west at 400 mph, where was it 2 hours ago if it is directly over your home now? Translating English to math we have 400 mph west x 2 hours past = 800 miles east (-400) x (-2) = +800 Now, if we looked at those 4 illustrations and checked out the math, this is what we would see. Integers - 9

10 From the illustrations, we have 1. ( +400) x ( +2) = ( +400) x( 2) = ( 400) x ( +2) = ( 400) x( 2) = +800 That might lead us to believe multiplying numbers with like signs results in a positive answer, while a negative answer appears when you multiply numbers with unlike signs. Those observations leads us to a couple more rules. Rule 5. When multiplying or dividing numbers with the same sign, the answer is positive. Example: ( +5) x ( +4) = +20 ( 6) x( 7) = +42 Rule 6. When multiplying or dividing numbers with different signs, the answer is negative. Example: ( 5) x ( +8) = 40 ( +9) x( 3) = 27 Don t you just love it when things work out? Multiply or Divide 1) 7 ( +6) Integers - 10

11 2) 6 ( +10) 8 ( 3 ) ) ( 3 ) 6 ( 12 ) 4) 8( 7) 6 ( 3 ) 8 ( 5 ) 5) ( 9 ) 6) ( 9 ) 8 ( +6) 7) 7 ( +9) ( 12) Let s look at the rules we developed by looking at those patterns on the number line. We have three rules for addition, one for subtraction and two for multiplication/division. Integers - 11

12 Addition Rule 1: Rule 2: Two positive numbers, take the sum of their absolute values, the answer is positive. Two negative numbers, take the sum of their absolute values, the answer is negative. Rule 3: One positive, one negative, take the difference between their absolute values, use the sign of the number with the greater absolute value. Subtraction Rule 4: Change the sign of the subtrahend and add using rule 1, 2, or 3,. whichever applies. Multiplication/Division Rule 5: Rule 6: Two numbers with the same sign are positive. Two numbers with different signs are negative. When working with these rules, we must understand the rules work for only two numbers at a time. In other words, if I asked you to simplify 3 answer would be 60. The reason is ( 3) ( 4) = +12, then a ( +12) ( 5) = 60 ( )( 4) ( 5), the In math, when we have two parentheses coming together without a sign of operation, it is understood to be a multiplication problem. We leave out the X sign because in algebra it might be confused with the variable x. Stay with me on this, often times, for the sake of convenience, we also leave out the + sign when adding integers. Example: +8 ( ) + +5 ( ) can be written without the sign of operation _ , it still equals +13 or 8+5=13. Integers - 12

13 Example: Example: ( 8) + 5 still equals 13 or -8-5 = -13 ( ) can be written without the sign of operation _ 8 5, it ( 8) + +5 still equals 3 or = -3. ( ), can be written without the sign of operation _ 8 + 5, it For ease, we have eliminated the X sign for multiplication and the + sign for addition. That can be confusing. Now the question is: How do I know what operation to use if we eliminate the signs of operation? The answer:: If you have two parentheses coming together as we do here, ( 5) ( +3), you need to recognize that as a multiplication problem. A subtraction problem will always have an additional sign, the sign of operation. For example, 12 5 ( ), you need to recognize the negative sign inside the parentheses is a sign of value, the extra sign outside the parentheses is a sign of operation. It tells you to subtract. Now, if a problem does not have two parentheses coming together and it does not have an extra sign of operation, then it s an addition problem. For example, 8 4, and 9-12 are all samples of addition problems. Naturally, you would have to use the rule that applies. Simplify and name the appropriate operation 1. ( 4) + ( 9) 2. ( 5) ( 6) 3. 7 ( +3) Answers: 1. add, -13, 2. mult, sub, add -14. Integers - 13

14 Simplify. First determine if the problem is +,, X, or, then write the rule that applies to the problem. 1. ( +8) + ( 3) 2. ( 5) + ( 4) 3. ( 5) ( +6) ( 6) 6. 5 ( 3) 7. ( 5) ( +8) ( 6) ( 5) 10. ( 5 ) ( 4) ( 2) ( 4) Problem Solving 1) In a certain game one couple made a score of 320, while another couple made a score of 30, what was the difference in scores? 2) At noon the thermometer stood at , at 5 pm it was 8. How many degrees had the temperature fallen? Integers - 14

15 3) The height of Mt. Everest is 29,000, the greatest known depth of the ocean is 32,000 ft. Find their difference. 4) On 6 examination questions, Bob received the follow deductions for errors 4, 2, 0, 5, 0, 8. What was his mark based on 100 pts? 5) A team lost 4 yards on the 1 st play and gained 12 yards on the 2 nd play. What was the net result? 6) The average temperature of Mars is 60. The average temperature of Venus is What is the difference in temperature? 7) How long did a man live who was born in 73 B.C. and died in 25 B.C.? 8) Roberto traveled from an altitude of 113 ft. below sea level to an altitude of 200 ft below sea level. What was the change in altitude? Integers - 15

### Unit 7 The Number System: Multiplying and Dividing Integers

Unit 7 The Number System: Multiplying and Dividing Integers Introduction In this unit, students will multiply and divide integers, and multiply positive and negative fractions by integers. Students will

### Section 4.1 Rules of Exponents

Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells

### How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.

The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics

### MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

### Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20

SECTION.4 Multiplying and Dividing Signed Numbers.4 OBJECTIVES 1. Multiply signed numbers 2. Use the commutative property of multiplication 3. Use the associative property of multiplication 4. Divide signed

### Exponents. Exponents tell us how many times to multiply a base number by itself.

Exponents Exponents tell us how many times to multiply a base number by itself. Exponential form: 5 4 exponent base number Expanded form: 5 5 5 5 25 5 5 125 5 625 To use a calculator: put in the base number,

### Sample Problems. Practice Problems

Lecture Notes Quadratic Word Problems page 1 Sample Problems 1. The sum of two numbers is 31, their di erence is 41. Find these numbers.. The product of two numbers is 640. Their di erence is 1. Find these

### Pre-Algebra Lecture 6

Pre-Algebra Lecture 6 Today we will discuss Decimals and Percentages. Outline: 1. Decimals 2. Ordering Decimals 3. Rounding Decimals 4. Adding and subtracting Decimals 5. Multiplying and Dividing Decimals

### Decimal Notations for Fractions Number and Operations Fractions /4.NF

Decimal Notations for Fractions Number and Operations Fractions /4.NF Domain: Cluster: Standard: 4.NF Number and Operations Fractions Understand decimal notation for fractions, and compare decimal fractions.

### + = has become. has become. Maths in School. Fraction Calculations in School. by Kate Robinson

+ has become 0 Maths in School has become 0 Fraction Calculations in School by Kate Robinson Fractions Calculations in School Contents Introduction p. Simplifying fractions (cancelling down) p. Adding

WARDEN AVE P.S. Adding & Subtracting Integers Number Sense & Numeration Unit #1 Grade 7 Math 2014-2015 School Year This mini-unit will run from September 15-26 and must be handed in on Friday Sept. 26th

### 3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

### Session 7 Fractions and Decimals

Key Terms in This Session Session 7 Fractions and Decimals Previously Introduced prime number rational numbers New in This Session period repeating decimal terminating decimal Introduction In this session,

### MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.

1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with

### The GMAT Guru. Prime Factorization: Theory and Practice

. Prime Factorization: Theory and Practice The following is an ecerpt from The GMAT Guru Guide, available eclusively to clients of The GMAT Guru. If you would like more information about GMAT Guru services,

### No Solution Equations Let s look at the following equation: 2 +3=2 +7

5.4 Solving Equations with Infinite or No Solutions So far we have looked at equations where there is exactly one solution. It is possible to have more than solution in other types of equations that are

### Solving Rational Equations

Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

### Vectors Math 122 Calculus III D Joyce, Fall 2012

Vectors Math 122 Calculus III D Joyce, Fall 2012 Vectors in the plane R 2. A vector v can be interpreted as an arro in the plane R 2 ith a certain length and a certain direction. The same vector can be

### A Short Guide to Significant Figures

A Short Guide to Significant Figures Quick Reference Section Here are the basic rules for significant figures - read the full text of this guide to gain a complete understanding of what these rules really

### CHAPTER 4 DIMENSIONAL ANALYSIS

CHAPTER 4 DIMENSIONAL ANALYSIS 1. DIMENSIONAL ANALYSIS Dimensional analysis, which is also known as the factor label method or unit conversion method, is an extremely important tool in the field of chemistry.

### Section 1.5 Exponents, Square Roots, and the Order of Operations

Section 1.5 Exponents, Square Roots, and the Order of Operations Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Identify perfect squares.

### MATH-0910 Review Concepts (Haugen)

Unit 1 Whole Numbers and Fractions MATH-0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,

### NF5-12 Flexibility with Equivalent Fractions and Pages 110 112

NF5- Flexibility with Equivalent Fractions and Pages 0 Lowest Terms STANDARDS preparation for 5.NF.A., 5.NF.A. Goals Students will equivalent fractions using division and reduce fractions to lowest terms.

### UNIT 3 VOCABULARY: INTEGERS

1º ESO Bilingüe Page 1 UNIT 3 VOCABULARY: INTEGERS 3.1. Some uses of negative numbers There are many situations in which you need to use negative numbers. POSITIONS A submarine which is sailing 700 m below

### Fractions. If the top and bottom numbers of a fraction are the same then you have a whole one.

What do fractions mean? Fractions Academic Skills Advice Look at the bottom of the fraction first this tells you how many pieces the shape (or number) has been cut into. Then look at the top of the fraction

### Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving

Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words

### Quick Reference ebook

This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference ebook Click on Contents or Index in the left panel to locate a topic. The math facts listed

### Subtracting Negative Integers

Subtracting Negative Integers Notes: Comparison of CST questions to the skill of subtracting negative integers. 5 th Grade/65 NS2.1 Add, subtract, multiply and divide with decimals; add with negative integers;

### Right Triangles 4 A = 144 A = 16 12 5 A = 64

Right Triangles If I looked at enough right triangles and experimented a little, I might eventually begin to notice a relationship developing if I were to construct squares formed by the legs of a right

### PREPARATION FOR MATH TESTING at CityLab Academy

PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST

### Integers (pages 294 298)

A Integers (pages 294 298) An integer is any number from this set of the whole numbers and their opposites: { 3, 2,, 0,, 2, 3, }. Integers that are greater than zero are positive integers. You can write

### Adding Integers Using a Number Line

Adding Integers The addition of integers can be done in a variety of ways, such as using number lines, manipulatives and a T-chart, calculators or shortcuts. Parentheses (or brackets) are often used around

### Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.

Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L-34) is a summary BLM for the material

### Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is

### (Refer Slide Time: 2:03)

Control Engineering Prof. Madan Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 11 Models of Industrial Control Devices and Systems (Contd.) Last time we were

### Fractions Packet. Contents

Fractions Packet Contents Intro to Fractions.. page Reducing Fractions.. page Ordering Fractions page Multiplication and Division of Fractions page Addition and Subtraction of Fractions.. page Answer Keys..

### Training Manual. Pre-Employment Math. Version 1.1

Training Manual Pre-Employment Math Version 1.1 Created April 2012 1 Table of Contents Item # Training Topic Page # 1. Operations with Whole Numbers... 3 2. Operations with Decimal Numbers... 4 3. Operations

### Contents. Subtraction (Taking Away)... 6. Multiplication... 7 by a single digit. by a two digit number by 10, 100 or 1000

This booklet outlines the methods we teach pupils for place value, times tables, addition, subtraction, multiplication, division, fractions, decimals, percentages, negative numbers and basic algebra Any

### Using games to support. Win-Win Math Games. by Marilyn Burns

4 Win-Win Math Games by Marilyn Burns photos: bob adler Games can motivate students, capture their interest, and are a great way to get in that paperand-pencil practice. Using games to support students

### The theory of the six stages of learning with integers (Published in Mathematics in Schools, Volume 29, Number 2, March 2000) Stage 1

The theory of the six stages of learning with integers (Published in Mathematics in Schools, Volume 29, Number 2, March 2000) Stage 1 Free interaction In the case of the study of integers, this first stage

### A positive exponent means repeated multiplication. A negative exponent means the opposite of repeated multiplication, which is repeated

Eponents Dealing with positive and negative eponents and simplifying epressions dealing with them is simply a matter of remembering what the definition of an eponent is. division. A positive eponent means

### Decimals and other fractions

Chapter 2 Decimals and other fractions How to deal with the bits and pieces When drugs come from the manufacturer they are in doses to suit most adult patients. However, many of your patients will be very

### Number Sense and Operations

Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents

### Pigeonhole Principle Solutions

Pigeonhole Principle Solutions 1. Show that if we take n + 1 numbers from the set {1, 2,..., 2n}, then some pair of numbers will have no factors in common. Solution: Note that consecutive numbers (such

### Mathematics Navigator. Misconceptions and Errors

Mathematics Navigator Misconceptions and Errors Introduction In this Guide Misconceptions and errors are addressed as follows: Place Value... 1 Addition and Subtraction... 4 Multiplication and Division...

### A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents

Appendix A. Exponents and Radicals A11 A. Exponents and Radicals What you should learn Use properties of exponents. Use scientific notation to represent real numbers. Use properties of radicals. Simplify

### Introduction to Fractions, Equivalent and Simplifying (1-2 days)

Introduction to Fractions, Equivalent and Simplifying (1-2 days) 1. Fraction 2. Numerator 3. Denominator 4. Equivalent 5. Simplest form Real World Examples: 1. Fractions in general, why and where we use

### Maths Workshop for Parents 2. Fractions and Algebra

Maths Workshop for Parents 2 Fractions and Algebra What is a fraction? A fraction is a part of a whole. There are two numbers to every fraction: 2 7 Numerator Denominator 2 7 This is a proper (or common)

### 0.8 Rational Expressions and Equations

96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

Overview of Mathematics Task Arcs: Mathematics Task Arcs A task arc is a set of related lessons which consists of eight tasks and their associated lesson guides. The lessons are focused on a small number

### Chapter 1: Order of Operations, Fractions & Percents

HOSP 1107 (Business Math) Learning Centre Chapter 1: Order of Operations, Fractions & Percents ORDER OF OPERATIONS When finding the value of an expression, the operations must be carried out in a certain

### Sunny Hills Math Club Decimal Numbers Lesson 4

Are you tired of finding common denominators to add fractions? Are you tired of converting mixed fractions into improper fractions, just to multiply and convert them back? Are you tired of reducing fractions

CONTENTS Introduction...iv. Number Systems... 2. Algebraic Expressions.... Factorising...24 4. Solving Linear Equations...8. Solving Quadratic Equations...0 6. Simultaneous Equations.... Long Division

### Solution Guide Chapter 14 Mixing Fractions, Decimals, and Percents Together

Solution Guide Chapter 4 Mixing Fractions, Decimals, and Percents Together Doing the Math from p. 80 2. 0.72 9 =? 0.08 To change it to decimal, we can tip it over and divide: 9 0.72 To make 0.72 into a

### 1.6 The Order of Operations

1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

### Vocabulary Cards and Word Walls Revised: June 29, 2011

Vocabulary Cards and Word Walls Revised: June 29, 2011 Important Notes for Teachers: The vocabulary cards in this file match the Common Core, the math curriculum adopted by the Utah State Board of Education,

### Free Pre-Algebra Lesson 8 page 1

Free Pre-Algebra Lesson 8 page 1 Lesson 8 Factor Pairs Measuring more accurately requires breaking our inches into fractions of an inch, little parts smaller than a whole inch. You can think ahead and

### Accentuate the Negative: Homework Examples from ACE

Accentuate the Negative: Homework Examples from ACE Investigation 1: Extending the Number System, ACE #6, 7, 12-15, 47, 49-52 Investigation 2: Adding and Subtracting Rational Numbers, ACE 18-22, 38(a),

CCSSM: Grade 7 DOMAIN: The Number System Cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers. Standard: 7.NS.1: Apply

### Week 13 Trigonometric Form of Complex Numbers

Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working

### Vieta s Formulas and the Identity Theorem

Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion

### Lesson 2. Operations with Integers. Objectives

Student Name: Date: Contact Person Name: Phone Number: Lesson 2 Operations with Integers Objectives Add and subtract integers Determine the absolute value of a number Solve word problems that involve adding

### Figure 1. A typical Laboratory Thermometer graduated in C.

SIGNIFICANT FIGURES, EXPONENTS, AND SCIENTIFIC NOTATION 2004, 1990 by David A. Katz. All rights reserved. Permission for classroom use as long as the original copyright is included. 1. SIGNIFICANT FIGURES

### Grade 7 Mathematics. Unit 2. Integers. Estimated Time: 15 Hours

Grade 7 Mathematics Integers Estimated Time: 15 Hours [C] Communication [CN] Connections [ME] Mental Mathematics and Estimation [PS] Problem Solving [R] Reasoning [T] Technology [V] Visualization Grade

### Using Proportions to Solve Percent Problems I

RP7-1 Using Proportions to Solve Percent Problems I Pages 46 48 Standards: 7.RP.A. Goals: Students will write equivalent statements for proportions by keeping track of the part and the whole, and by solving

### Solutions of Linear Equations in One Variable

2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

### N Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities.

Performance Assessment Task Swimming Pool Grade 9 The task challenges a student to demonstrate understanding of the concept of quantities. A student must understand the attributes of trapezoids, how to

### Algebra Cheat Sheets

Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts

### 1.6 Division of Whole Numbers

1.6 Division of Whole Numbers 1.6 OBJECTIVES 1. Use repeated subtraction to divide whole numbers 2. Check the results of a division problem 3. Divide whole numbers using long division 4. Estimate a quotient

### Ways We Use Integers. Negative Numbers in Bar Graphs

Ways We Use Integers Problem Solving: Negative Numbers in Bar Graphs Ways We Use Integers When do we use negative integers? We use negative integers in several different ways. Most of the time, they are

### Rules of Exponents. Math at Work: Motorcycle Customization OUTLINE CHAPTER

Rules of Exponents CHAPTER 5 Math at Work: Motorcycle Customization OUTLINE Study Strategies: Taking Math Tests 5. Basic Rules of Exponents Part A: The Product Rule and Power Rules Part B: Combining the

### Mathematical goals. Starting points. Materials required. Time needed

Level S6 of challenge: B/C S6 Interpreting frequency graphs, cumulative cumulative frequency frequency graphs, graphs, box and box whisker and plots whisker plots Mathematical goals Starting points Materials

### Formulas and Problem Solving

2.4 Formulas and Problem Solving 2.4 OBJECTIVES. Solve a literal equation for one of its variables 2. Translate a word statement to an equation 3. Use an equation to solve an application Formulas are extremely

### Grade 6 Math Circles. Binary and Beyond

Faculty of Mathematics Waterloo, Ontario N2L 3G1 The Decimal System Grade 6 Math Circles October 15/16, 2013 Binary and Beyond The cool reality is that we learn to count in only one of many possible number

### Paramedic Program Pre-Admission Mathematics Test Study Guide

Paramedic Program Pre-Admission Mathematics Test Study Guide 05/13 1 Table of Contents Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 Page 12 Page 13 Page 14 Page 15 Page

### Grade 4 Unit 3: Multiplication and Division; Number Sentences and Algebra

Grade 4 Unit 3: Multiplication and Division; Number Sentences and Algebra Activity Lesson 3-1 What s My Rule? page 159) Everyday Mathematics Goal for Mathematical Practice GMP 2.2 Explain the meanings

### Multiplying Integers. Lesson Plan

Lesson Plan Video: 12 minutes Lesson: 38 minutes Pre-viewing :00 Warm up: Write 5 + 5 + 5 + 5 = on the board. Ask students for the answer. Then write 5 x 4 = on the board. Ask the students for the answer.

### Measurements 1. BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com. In this section we will look at. Helping you practice. Online Quizzes and Videos

BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com Measurements 1 In this section we will look at - Examples of everyday measurement - Some units we use to take measurements - Symbols for units and converting

### The Order of Operations Redesigned. Rachel McCloskey Dr. Valerie Faulkner

+ The Order of Operations Redesigned Rachel McCloskey Dr. Valerie Faulkner + Please simplify and answer the following: n 23 2 + 12 8 = n 4 + 3 x 7 - (5 + 2) 3 = n Why do we have the order of operations?

Integers Unit Overview In this unit, you will study negative numbers, and you will learn to add, subtract, multiply and divide them. You will graph positive and negative numbers on number lines and on

### MODERN APPLICATIONS OF PYTHAGORAS S THEOREM

UNIT SIX MODERN APPLICATIONS OF PYTHAGORAS S THEOREM Coordinate Systems 124 Distance Formula 127 Midpoint Formula 131 SUMMARY 134 Exercises 135 UNIT SIX: 124 COORDINATE GEOMETRY Geometry, as presented

### Unit 6 Number and Operations in Base Ten: Decimals

Unit 6 Number and Operations in Base Ten: Decimals Introduction Students will extend the place value system to decimals. They will apply their understanding of models for decimals and decimal notation,

### Lesson Plan -- Integers, Opposites, Absolute Value

Lesson Plan -- Integers, Opposites, Absolute Value Chapter Resources - Lesson 3-1 Integers and the Number Line - Lesson 3-1 Integers and the Number Line Answers - Lesson 3-2 Opposites and Absolute Value

### If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C?

Problem 3 If A is divided by B the result is 2/3. If B is divided by C the result is 4/7. What is the result if A is divided by C? Suggested Questions to ask students about Problem 3 The key to this question

### Mathematics. Steps to Success. and. Top Tips. Year 5

Pownall Green Primary School Mathematics and Year 5 1 Contents Page 1. Multiplication and Division 3 2. Positive and Negative Numbers 4 3. Decimal Notation 4. Reading Decimals 5 5. Fractions Linked to

### YOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!

DETAILED SOLUTIONS AND CONCEPTS - DECIMALS AND WHOLE NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! YOU MUST

### Measurement with Ratios

Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical

### Playing with Numbers

PLAYING WITH NUMBERS 249 Playing with Numbers CHAPTER 16 16.1 Introduction You have studied various types of numbers such as natural numbers, whole numbers, integers and rational numbers. You have also

### Section V.3: Dot Product

Section V.3: Dot Product Introduction So far we have looked at operations on a single vector. There are a number of ways to combine two vectors. Vector addition and subtraction will not be covered here,

### Answer Key for California State Standards: Algebra I

Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

### Math Matters: Why Do I Need To Know This? 1 Probability and counting Lottery likelihoods

Math Matters: Why Do I Need To Know This? Bruce Kessler, Department of Mathematics Western Kentucky University Episode Four 1 Probability and counting Lottery likelihoods Objective: To demonstrate the

### Order of Operations More Essential Practice

Order of Operations More Essential Practice We will be simplifying expressions using the order of operations in this section. Automatic Skill: Order of operations needs to become an automatic skill. Failure

### Linear Equations in One Variable

Linear Equations in One Variable MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this section we will learn how to: Recognize and combine like terms. Solve

### 25 Integers: Addition and Subtraction

25 Integers: Addition and Subtraction Whole numbers and their operations were developed as a direct result of people s need to count. But nowadays many quantitative needs aside from counting require numbers

### All the examples in this worksheet and all the answers to questions are available as answer sheets or videos.

BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com Numbers 3 In this section we will look at - improper fractions and mixed fractions - multiplying and dividing fractions - what decimals mean and exponents

### LAMC Beginners Circle: Parity of a Permutation Problems from Handout by Oleg Gleizer Solutions by James Newton

LAMC Beginners Circle: Parity of a Permutation Problems from Handout by Oleg Gleizer Solutions by James Newton 1. Take a two-digit number and write it down three times to form a six-digit number. For example,

### Solving Linear Equations in One Variable. Worked Examples

Solving Linear Equations in One Variable Worked Examples Solve the equation 30 x 1 22x Solve the equation 30 x 1 22x Our goal is to isolate the x on one side. We ll do that by adding (or subtracting) quantities