Turbulence and Fluent

Size: px
Start display at page:

Download "Turbulence and Fluent"

Transcription

1 Turbulence and Fluent

2 Turbulence Modeling

3 What is Turbulence? We do not really know 3D, unsteady, irregular motion in which transported quantities fluctuate in time and space. Turbulent eddies (spatial structures). Diffusive (mixing). Self-sustaining if a mean shear exist. Entrainment. Energy cascade. Energy is added at the large eddies. Energy is dissipated at the small eddies.

4 Turbulent Flows Smaller Structures Larger Structures

5 Computational Approaches DNS (Direct Numerical Simulation) Solves the Navier-Stokes (N-S) equations. No turbulence modeling required. Not practical for industrial flows (requires Low Re and simple geometries). LES (Large Eddy Simulation) Solves a filtered version of the N-S equations. Less expensive than DNS, but still too expensive for most applications. RANS (Reynolds-Averaged N-S) Solve the ensemble-averaged N-S equations. All turbulence is modeled. The most widely used approach for calculating industrial flows. There is not yet a single turbulence model that can reliably predict all turbulent flows found in industrial applications with sufficient accuracy.

6 Computational Approaches(2) LES, DNS RANS

7 RANS Modeling Reynolds decomposition: The Reynolds-averaged momentum equations are as follows: where is called the Reynolds stresses. The Reynolds stresses must be modeled to close the equations. j ij j i j i k i k i x R x U x x p x U U t U + + = + µ ρ j i ij u u R = ρ ( ) ( ) ( ) t x u t x U t x u i i i,,, r r r + = Turbulent fluctuation Mean u' i U i u i time u

8 The Closure Problem Reynolds equations does not contain enough equations to solve for all the uknown variables. Thus, the Reynolds stresses must be modeled. Eddy-Viscosity Models (EVM): Modeling approaches Boussinesq hypothesis: Reynolds stresses are modeled using an eddy (or turbulent) viscosity µ t. Assumes Isotropic turbulence. R ij = ρu u i j Ui µ = t x j U + x i j 2 U µ t 3 x k k 2 δij ρkδ ij 3 Reynolds-Stress Models (RSM): solves transport equations for all individual Reynolds stresses. Require modeling for many terms in the Reynolds stress equations. Does NOT assume isotropic turbulence.

9 Modeling the Eddy Viscosity Basic approach made through dimensional arguments Units of ν t = µ t /ρ are [m 2 /s] Typically one needs 2 out of the 3 scales: velocity - length - time Commonly used scales is the turbulent kinetic energy [L 2 /T 2 ] is the turbulence dissipation rate [L 2 /T 3 ] is the specific dissipation rate [1/T] Models classified in terms of number of transport equations solved, zero-equation models one-equation models two-equation models

10 Spalart-Allmaras A one-equation RANS model A low-cost model solving an equation for the modified eddy viscosity ν ~ Eddy-viscosity is obtained from µ = t ρ ~ ν f v1, f v1 ~ 3 ( ν / ν ) 3 3 ( ~ ν / ν ) + C v1 Mainly for aerodynamic/turbo-machinery applications with mild separation (supersonic/transonic flows over airfoils, boundary-layer flows, etc).

11 Standard k-ε (SKE) Transport equations for k and ε: where D Dt D Dt C ( ρk) ( ρε ) = x A two-equation RANS model j = x j µ + µ t k σ k x + G µ t ε µ + + C σ ε x j ε G k ρc The most widely-used engineering turbulence model for industrial applications Robust Performs poorly for flows with strong separation, large streamline curvature, and large pressure gradient. j k e1 ρε k ε 2 2 ε k µ = σ ε 0.09, Cε1 = 1.44, Cε 2 = 1.92, σ k = 1.0, = 1.3

12 Realizable k-ε (RKE) Realizable k-ε (RKE) Positivity of normal stresses Schwarz inequality for Reynolds shear-stresses Good performance for flows with axisymmetric jets. RNG k-ε (RNG) Constants in the k-ε equations are derived using the Renormalization Group theory. RNG s sub-models include: Differential viscosity model to account for low-re effects Analytically derived algebraic formula for turbulent Prandtl/Schmidt number Swirl modification Performs better than SKE for more complex shear flows, and flows with high strain rates, swirl, and separation.

13 k-ω models + + = + + = = j t j j i ij j k t j j i ij t x x f x U k Dt D x k x k f x U Dt Dk k ω σ µ µ ω ρ β τ ω α ω ρ σ µ µ ω ρ β τ ρ ω ρ α µ ω β β 2 * * * τ ε ω 1 k specific dissipation rate: ω Two-equation RANS models Fluent supports the standard k-ω model by Wilcox (1998), and Menter s SST k- ω model (1994). k-ω models are inherently low-re models: Can be integrated to the wall without using any damping functions Accurate and robust for a wide range of boundary layer flows with pressure gradient Most widely adopted in the aerospace and turbo-machinery communities. Several sub-models/options of k-ω : compressibility effects, transitional flows and shear-flow corrections.

14 Reynolds-Stress Model (RSM) t x ( ) ( ) T ρu iu j + ρ U k u iu j = Pij + Fij + Dij + Φij εij Stress-production Rotation-production k Turbulent diffusion Dissipation Pressure strain Modeling required for these terms Attempts to address the deficiencies of the EVM. Anisotropy, history effects of Reynolds stresses. RSM requires more modeling (the pressure-strain is most critical and difficult one among them). More expensive and harder to converge. Most suitable for complex 3-D flows with strong streamline curvature, swirl and rotation.

15 Near Wall Modeling

16 The Structure of Near-Wall Flows The structure of turbulent boundary layers in the near-wall region:

17 Near-Wall Modeling Wall Functions Wall Integration Accurate near-wall modeling is important to correctly predict frictional drag, pressure drop, separation, heat transfer etc.

18 Near-Wall Modeling Options Wall functions provide boundary conditions for momentum, energy, species and turbulent quantities. The Standard and Non-equilibrium Wall Functions (SWF and NWF) use the law of the wall. Enhanced Wall Treatment Combines the use of blended law-of-the wall and a two-layer zonal model. Suitable for low-re flows or flows with complex near-wall phenomena. Turbulence models are modified for the inner layer. Generally requires a fine near-wall mesh capable of resolving the viscous sub-layer (more than 10 cells within the inner layer) outer layer inner layer

19 Placement of The First Grid Point For standard or non-equilibrium wall functions, each wall-adjacent + cell s centroid should be located within: y p For the enhanced wall treatment (EWT), each wall-adjacent cell s centroid should be located: + Within the viscous sublayer, y p 1, for the two-layer zonal model: + Preferably within for the blended wall function y p How to estimate the size of wall-adjacent cells before creating the grid: + + y y u / ν y y ν u, u τ ρ = U c / 2 p p τ p p / w / e f The skin friction coefficient can be estimated from empirical correlations: τ τ

20 Near-Wall Modeling: Recommended Strategy Use SWF or NWF in high Re applications (Re > 10 6 ) where you cannot afford to resolve the viscous sub-layer. Use NWF for mildly separating, reattaching, or impinging flows. You may consider using EWT if: Near wall characteristics are important. The physics and near-wall mesh of the case is such that y + is likely to vary significantly over a wide portion of the wall region. Try to make the mesh either coarse or fine enough to avoid placing the wall-adjacent cells in the buffer layer (y + = 5 ~ 30).

21 Enhanced Wall Treatment Fully-Developed Channel Flow (Re t = 590) For fixed pressure drop cross periodic boundaries, different nearwall mesh resolutions yielded different volume flux as follows y + = 1 y + = 4 y + = 8 y + = 16 Std. Wall fn EWT The enhanced near-wall treatment gives a much smaller variation for different near-wall mesh resolutions compared to the variations found using standard wall functions.

22 Inlet/Outlet Conditions Boundary conditions for k, ε, wand/or u u i j must be specified. Direct or indirect specification of turbulence parameters: Explicitly input k, ε, w, or u u i j This method allows for profile definition. Turbulence intensity and length scale For boundary layer flows: l 0.4d 99 For flows downstream of grid: l opening size Turbulence intensity and hydraulic diameter Internal flows Turbulence intensity and turbulent viscosity ratio For external flows: 1 < m t /m < 10

23 Choosing Models

24 Is the Flow Turbulent? External Flows Rex Re D ,000 Internal Flows Re Dh 2,300 along a surface around an obstacle where Re L ρul µ L = x, D, D h, etc. Other factors such as free-stream turbulence, surface conditions, and disturbances may cause earlier transition to turbulent flow. Natural Convection 8 10 Ra where Ra 3 gβ TL ρ µα

25 Turbulence Models in Fluent Increase in Computational Cost Per Iteration Zero-Equation Models One-Equation Models Spalart-Allmaras Two-Equation Models Standard k-ε RNG k-ε Realizable k-ε Standard k-ω SST k-ω V2F Model Reynolds-Stress Model Detached Eddy Simulation Large-Eddy Simulation Direct Numerical Simulation RANS models Available in FLUENT Auxiliary Models Buoyancy effects Compressibility effects Low Re effects Pressure gradient effects Near-wall options Standard wall functions Non-equilibrium wall functions Enhanced wall treatment Customization Turbulent viscosity Source terms Turbulence transport equations

26 GUI for Turbulence Models Define Models Viscous... Inviscid, Laminar, or Turbulent Turbulence Model options Near Wall Treatments Additional Turbulence options

27 RANS Turbulence Model Behavior and Usage Model Spalart- Allmaras Standard k-ε RNG k-ε Realizable k-ε Standard k-ω SST k-ω RSM Behavior and Usage Economical for large meshes Performs poorly for 3D flows, free shear flows, flows with strong separation Suitable for mildy complex (quasi-2d) flows (turbo, wings, fuselages, missilies) Robust, but performs poorly for complex flows Suitable for initial conditions, fast design screening and parametric studies Suitable for complex shear flows involving rapid strain, moderate swirl, vortices, locally transitional flows (e.g. b.l. Separation, massive separation, vortex shedding) Similar benefits and applications as the RNG model Possibly more accurate and easier to converge Superior for wall-bounded, free shear, and low-re flows Suitable for complex b.l flows (e.g. external aero, turbomachinery, vortex shedding) Can predict transition (usually predict to early transition, though) Similar benefits as SKO, less sensitive to outer disturbances Suitable for wall bounded flows, less suited for free shear flows The most physically sound RANS model (handels anisotrophy) Computationally expensive and harder to converge Suitable for complex 3D flows with strong streamline curvature, strong swirl (e.g. Curved duct, swirl combustors, cyclones)

28 Examples

29 Heat Transfer Behind a 2D Backstep Heat transfer predictions along the bottom Measured by Vogel and Eaton (1980) SKE, RNG, and RKE models are employed with standard wall functions.

30 Factors affecting accuracy The accuracy of turbulent flow predictions can be affected by user decisions involving Turbulence model Boundary conditions Grid resolution and near wall modeling Grid quality

31 Impact of Turbulence Model k-ε Results

32 Impact of Boundary Conditions Run X-Velocity B.C. Thermal B.C. 1 Profile Uniform 2 Uniform Uniform Turbulence B.C. Profile Intensity & Hydraulic Diameter 3 Profile Uniform k=1, ε=1

33 Impact of Grid Quality Structured Tri w b/l Quad Pave Tri

34 Impact of Near Wall Modeling y+ values must be appropriate for selected near wall treatment Realizable k-ε with SWF

35 Stream Function Contours for 180 Degree Bend Spalart-Allmaras Standard k-ε RNG k-ε RSM

36 Rotating Flow in a Cyclone 0.1 m Highly swirling flows (W max = 1.8 U in ) High-order discretization on 40,000 cell hexahedral mesh Computed using a family of k-ε models (SKE, RNG, RKE), k-ω models (Wilcox, SST) and RSM models 0.97 m 0.12 m U in = 20 m/s 0.2 m

37 Cyclone Velocity Profiles

Customer Training Material. Lecture 6. Turbulence Modeling ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.

Customer Training Material. Lecture 6. Turbulence Modeling ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved. Lecture 6 Turbulence Modeling Introduction to ANSYS FLUENT L6-1 Introduction Most engineering flows are turbulent. Unlike everything else we have discussed on this course, turbulence is essentially a random

More information

Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics

Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics Lecture 11 Boundary Layers and Separation Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Overview Drag. The boundary-layer

More information

Lecture 8 - Turbulence. Applied Computational Fluid Dynamics

Lecture 8 - Turbulence. Applied Computational Fluid Dynamics Lecture 8 - Turbulence Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Turbulence What is turbulence? Effect of turbulence

More information

Basic Equations, Boundary Conditions and Dimensionless Parameters

Basic Equations, Boundary Conditions and Dimensionless Parameters Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

More information

International Journal of Food Engineering

International Journal of Food Engineering International Journal of Food Engineering Volume 6, Issue 1 2010 Article 13 Numerical Simulation of Oscillating Heat Pipe Heat Exchanger Benyin Chai, Shandong University Min Shao, Shandong Academy of Sciences

More information

Numerical simulations of heat transfer in plane channel

Numerical simulations of heat transfer in plane channel Numerical simulations of heat transfer in plane channel flow Najla El Gharbi, Rafik Absi, Ahmed Benzaoui To cite this version: Najla El Gharbi, Rafik Absi, Ahmed Benzaoui. Numerical simulations of heat

More information

A Validation Study of SC/Tetra CFD Code

A Validation Study of SC/Tetra CFD Code A Validation Study of SC/Tetra CFD Code A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering by Hongtao Yu B.E., Dalian Jiaotong University,

More information

Application of Wray-Agarwal Model to Turbulent Flow in a 2D Lid-Driven Cavity and a 3D Lid- Driven Box

Application of Wray-Agarwal Model to Turbulent Flow in a 2D Lid-Driven Cavity and a 3D Lid- Driven Box Washington University in St. Louis Washington University Open Scholarship Engineering and Applied Science Theses & Dissertations Engineering and Applied Science Summer 8-14-2015 Application of Wray-Agarwal

More information

Abaqus/CFD Sample Problems. Abaqus 6.10

Abaqus/CFD Sample Problems. Abaqus 6.10 Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel

More information

TECHNICAL NOTES. Computational Fluid Mixing

TECHNICAL NOTES. Computational Fluid Mixing TECHNICAL NOTES TN144 Computational Fluid Mixing Elizabeth M. Marshall and André Bakker Fluent Inc. 10 Cavendish Court, Centerra Resource Park Lebanon, NH 03766 Software: Fluent, Polyflow Submitted to

More information

TFAWS AUGUST 2003 VULCAN CFD CODE OVERVIEW / DEMO. Jeffery A. White. Hypersonic Airbreathing Propulsion Branch

TFAWS AUGUST 2003 VULCAN CFD CODE OVERVIEW / DEMO. Jeffery A. White. Hypersonic Airbreathing Propulsion Branch TFAWS AUGUST 2003 VULCAN CFD CODE OVERVIEW / DEMO Jeffery A. White Hypersonic Airbreathing Propulsion Branch VULCAN DEVELOPMENT HISTORY Evolved from the LARCK code development project (1993-1996). LARCK

More information

Simulation of Turbulent Flows

Simulation of Turbulent Flows Simulation of Turbulent Flows From the Navier-Stokes to the RANS equations Turbulence modeling k-ε model(s) Near-wall turbulence modeling Examples and guidelines ME469B/3/GI 1 Navier-Stokes equations The

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

More information

Transition Modelling for General Purpose CFD Codes

Transition Modelling for General Purpose CFD Codes Flow Turbulence Combust (2006) 77: 277 303 DOI 10.1007/s10494-006-9047-1 Transition Modelling for General Purpose CFD Codes F. R. Menter R. Langtry S. Völker Accepted: 21 March 2006 / Published online:

More information

Lecturer, Department of Engineering, ar45@le.ac.uk, Lecturer, Department of Mathematics, sjg50@le.ac.uk

Lecturer, Department of Engineering, ar45@le.ac.uk, Lecturer, Department of Mathematics, sjg50@le.ac.uk 39 th AIAA Fluid Dynamics Conference, San Antonio, Texas. A selective review of CFD transition models D. Di Pasquale, A. Rona *, S. J. Garrett Marie Curie EST Fellow, Engineering, ddp2@le.ac.uk * Lecturer,

More information

Basic Principles in Microfluidics

Basic Principles in Microfluidics Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

More information

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL 14 th European Conference on Mixing Warszawa, 10-13 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski

More information

Steady Flow: Laminar and Turbulent in an S-Bend

Steady Flow: Laminar and Turbulent in an S-Bend STAR-CCM+ User Guide 6663 Steady Flow: Laminar and Turbulent in an S-Bend This tutorial demonstrates the flow of an incompressible gas through an s-bend of constant diameter (2 cm), for both laminar and

More information

Effect of Aspect Ratio on Laminar Natural Convection in Partially Heated Enclosure

Effect of Aspect Ratio on Laminar Natural Convection in Partially Heated Enclosure Universal Journal of Mechanical Engineering (1): 8-33, 014 DOI: 10.13189/ujme.014.00104 http://www.hrpub.org Effect of Aspect Ratio on Laminar Natural Convection in Partially Heated Enclosure Alireza Falahat

More information

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology

Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry

More information

RANS SIMULATION OF RAF6 AIRFOIL

RANS SIMULATION OF RAF6 AIRFOIL RANS SIMULATION OF RAF6 AIRFOIL László NAGY Ph.D. Student, Budapest University of Technology and Economics János VAD Associate Professor, Budapest University of Technology and Economics Máté Márton LOHÁSZ

More information

CHAPTER 4 CFD ANALYSIS OF THE MIXER

CHAPTER 4 CFD ANALYSIS OF THE MIXER 98 CHAPTER 4 CFD ANALYSIS OF THE MIXER This section presents CFD results for the venturi-jet mixer and compares the predicted mixing pattern with the present experimental results and correlation results

More information

Embedded LES Methodology for General-Purpose CFD Solvers

Embedded LES Methodology for General-Purpose CFD Solvers Embedded LES Methodology for General-Purpose CFD Solvers Davor Cokljat Domenico Caridi ANSYS UK Ltd., Sheffield S9 1XH, UK davor.cokljat@ansys.com domenico.caridi@ansys.com Gerhard Link Richard Lechner

More information

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemble-mean equations of fluid motion/transport? Force balance in a quasi-steady turbulent boundary

More information

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA

THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA THE CFD SIMULATION OF THE FLOW AROUND THE AIRCRAFT USING OPENFOAM AND ANSA Adam Kosík Evektor s.r.o., Czech Republic KEYWORDS CFD simulation, mesh generation, OpenFOAM, ANSA ABSTRACT In this paper we describe

More information

Simulation of Fluid-Structure Interactions in Aeronautical Applications

Simulation of Fluid-Structure Interactions in Aeronautical Applications Simulation of Fluid-Structure Interactions in Aeronautical Applications Martin Kuntz Jorge Carregal Ferreira ANSYS Germany D-83624 Otterfing Martin.Kuntz@ansys.com December 2003 3 rd FENET Annual Industry

More information

FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER

FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect

More information

Keywords: Heat transfer enhancement; staggered arrangement; Triangular Prism, Reynolds Number. 1. Introduction

Keywords: Heat transfer enhancement; staggered arrangement; Triangular Prism, Reynolds Number. 1. Introduction Heat transfer augmentation in rectangular channel using four triangular prisms arrange in staggered manner Manoj Kumar 1, Sunil Dhingra 2, Gurjeet Singh 3 1 Student, 2,3 Assistant Professor 1.2 Department

More information

11 Navier-Stokes equations and turbulence

11 Navier-Stokes equations and turbulence 11 Navier-Stokes equations and turbulence So far, we have considered ideal gas dynamics governed by the Euler equations, where internal friction in the gas is assumed to be absent. Real fluids have internal

More information

Aerodynamics of Rotating Discs

Aerodynamics of Rotating Discs Proceedings of ICFD 10: Tenth International Congress of FluidofDynamics Proceedings ICFD 10: December 16-19, 2010, Stella Di MareTenth Sea Club Hotel, Ain Soukhna, Egypt International Congress of Red FluidSea,

More information

AN INTRODUCTION TO CFD CODE VERIFICATION INCLUDING EDDY-VISCOSITY MODELS

AN INTRODUCTION TO CFD CODE VERIFICATION INCLUDING EDDY-VISCOSITY MODELS European Conference on Computational Fluid Dynamics ECCOMAS CFD 26 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 26 AN INTRODUCTION TO CFD CODE VERIFICATION INCLUDING EDDY-VISCOSITY

More information

Effect of Pressure Ratio on Film Cooling of Turbine Aerofoil Using CFD

Effect of Pressure Ratio on Film Cooling of Turbine Aerofoil Using CFD Universal Journal of Mechanical Engineering 1(4): 122-127, 2013 DOI: 10.13189/ujme.2013.010403 http://www.hrpub.org Effect of Pressure Ratio on Film Cooling of Turbine Aerofoil Using CFD Vibhor Baghel

More information

Introduction to CFD Analysis

Introduction to CFD Analysis Introduction to CFD Analysis 2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT

Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT Adam Dziubiński CFD group IoA FLUENT Content Fluent CFD software 1. Short description of main features of Fluent 2. Examples of usage in CESAR Analysis of flow around an airfoil with a flap: VZLU + ILL4xx

More information

AUTOMOTIVE COMPUTATIONAL FLUID DYNAMICS SIMULATION OF A CAR USING ANSYS

AUTOMOTIVE COMPUTATIONAL FLUID DYNAMICS SIMULATION OF A CAR USING ANSYS International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 2, March-April 2016, pp. 91 104, Article ID: IJMET_07_02_013 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=2

More information

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows

Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows Lecture 3 Fluid Dynamics and Balance Equa6ons for Reac6ng Flows 3.- 1 Basics: equations of continuum mechanics - balance equations for mass and momentum - balance equations for the energy and the chemical

More information

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012

O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012 O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749

More information

Heat Transfer From A Heated Vertical Plate

Heat Transfer From A Heated Vertical Plate Heat Transfer From A Heated Vertical Plate Mechanical and Environmental Engineering Laboratory Department of Mechanical and Aerospace Engineering University of California at San Diego La Jolla, California

More information

NUMERICAL INVESTIGATION OF HEAT AND MASS TRANSFER IN A REFRIGERATED TRUCK COMPARTMENT

NUMERICAL INVESTIGATION OF HEAT AND MASS TRANSFER IN A REFRIGERATED TRUCK COMPARTMENT NUMERICAL INVESTIGATION OF HEAT AND MASS TRANSFER IN A REFRIGERATED TRUCK COMPARTMENT T. LAFAYE DE MICHEAUX (a), V. SARTRE (a)*, A. STUMPF (b), J. BONJOUR (a) (a) Université de Lyon, CNRS INSA-Lyon, CETHIL,

More information

External bluff-body flow-cfd simulation using ANSYS Fluent

External bluff-body flow-cfd simulation using ANSYS Fluent External bluff-body flow-cfd simulation using ANSYS Fluent External flow over a bluff body is complex, three-dimensional, and vortical. It is massively separated and it exhibits vortex shedding. Thus,

More information

Distinguished Professor George Washington University. Graw Hill

Distinguished Professor George Washington University. Graw Hill Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok

More information

CFD Simulation of the NREL Phase VI Rotor

CFD Simulation of the NREL Phase VI Rotor CFD Simulation of the NREL Phase VI Rotor Y. Song* and J. B. Perot # *Theoretical & Computational Fluid Dynamics Laboratory, Department of Mechanical & Industrial Engineering, University of Massachusetts

More information

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey csert@metu.edu.tr

More information

DEVELOPMENT OF CFD MODELS OF MINERAL FLOTATION CELLS

DEVELOPMENT OF CFD MODELS OF MINERAL FLOTATION CELLS Third International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 10-12 December 2003 DEVELOPMENT OF CFD MODELS OF MINERAL FLOTATION CELLS P.T.L. KOH 1, M.P. SCHWARZ

More information

- momentum conservation equation ρ = ρf. These are equivalent to four scalar equations with four unknowns: - pressure p - velocity components

- momentum conservation equation ρ = ρf. These are equivalent to four scalar equations with four unknowns: - pressure p - velocity components J. Szantyr Lecture No. 14 The closed system of equations of the fluid mechanics The above presented equations form the closed system of the fluid mechanics equations, which may be employed for description

More information

A CODE VERIFICATION EXERCISE FOR THE UNSTRUCTURED FINITE-VOLUME CFD SOLVER ISIS-CFD

A CODE VERIFICATION EXERCISE FOR THE UNSTRUCTURED FINITE-VOLUME CFD SOLVER ISIS-CFD European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 2006 A CODE VERIFICATION EXERCISE FOR THE UNSTRUCTURED FINITE-VOLUME

More information

Dimensional Analysis

Dimensional Analysis Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

More information

INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

HEAT TRANSFER CODES FOR STUDENTS IN JAVA

HEAT TRANSFER CODES FOR STUDENTS IN JAVA Proceedings of the 5th ASME/JSME Thermal Engineering Joint Conference March 15-19, 1999, San Diego, California AJTE99-6229 HEAT TRANSFER CODES FOR STUDENTS IN JAVA W.J. Devenport,* J.A. Schetz** and Yu.

More information

Drag Prediction of Engine Airframe Interference Effects with CFX-5

Drag Prediction of Engine Airframe Interference Effects with CFX-5 JOURNAL OF AIRCRAFT Vol. 42, No. 6, November December 2005 Drag Prediction of Engine Airframe Interference Effects with CFX-5 R. B. Langtry, M. Kuntz, and F. R. Menter ANSYS CFX Germany, 83624 Otterfing,

More information

Performance prediction of a centrifugal pump working in direct and reverse mode using Computational Fluid Dynamics

Performance prediction of a centrifugal pump working in direct and reverse mode using Computational Fluid Dynamics European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 10) Granada (Spain), 23rd

More information

Basics of vehicle aerodynamics

Basics of vehicle aerodynamics Basics of vehicle aerodynamics Prof. Tamás Lajos Budapest University of Technology and Economics Department of Fluid Mechanics University of Rome La Sapienza 2002 Influence of flow characteristics on the

More information

Introduction to CFD Analysis

Introduction to CFD Analysis Introduction to CFD Analysis Introductory FLUENT Training 2006 ANSYS, Inc. All rights reserved. 2006 ANSYS, Inc. All rights reserved. 2-2 What is CFD? Computational fluid dynamics (CFD) is the science

More information

Thermohydraulics of Rib-Roughened Helium Gas Running Cooling Channels for First Wall Applications

Thermohydraulics of Rib-Roughened Helium Gas Running Cooling Channels for First Wall Applications EUROFUSION WPBB PR(15)01 S. Ruck et al. Thermohydraulics of Rib-Roughened Helium Gas Running Cooling Channels for First Wall Applications Preprint of Paper to be submitted for publication in Fusion Engineering

More information

Best Practices Workshop: Heat Transfer

Best Practices Workshop: Heat Transfer Best Practices Workshop: Heat Transfer Overview This workshop will have a mixed format: we will work through a typical CHT problem in STAR-CCM+, stopping periodically to elucidate best practices or demonstrate

More information

THERMAL STRATIFICATION IN A HOT WATER TANK ESTABLISHED BY HEAT LOSS FROM THE TANK

THERMAL STRATIFICATION IN A HOT WATER TANK ESTABLISHED BY HEAT LOSS FROM THE TANK THERMAL STRATIFICATION IN A HOT WATER TANK ESTABLISHED BY HEAT LOSS FROM THE TANK J. Fan and S. Furbo Abstract Department of Civil Engineering, Technical University of Denmark, Brovej, Building 118, DK-28

More information

Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1

Contents. Microfluidics - Jens Ducrée Physics: Navier-Stokes Equation 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Adaptation and validation of OpenFOAM CFD-solvers for nuclear safety related flow simulations

Adaptation and validation of OpenFOAM CFD-solvers for nuclear safety related flow simulations Adaptation and validation of OpenFOAM CFD-solvers for nuclear safety related flow simulations SAFIR2010 Seminar, 10.-11.3.2011, Espoo Juho Peltola, Timo Pättikangas (VTT) Tomas Brockmann, Timo Siikonen

More information

A COMPUTATIONAL FLUID DYNAMICS STUDY ON THE ACCURACY OF HEAT TRANSFER FROM A HORIZONTAL CYLINDER INTO QUIESCENT WATER

A COMPUTATIONAL FLUID DYNAMICS STUDY ON THE ACCURACY OF HEAT TRANSFER FROM A HORIZONTAL CYLINDER INTO QUIESCENT WATER A COMPUTATIONAL FLUID DYNAMICS STUDY ON THE ACCURACY OF HEAT TRANSFER FROM A HORIZONTAL CYLINDER INTO QUIESCENT WATER William Logie and Elimar Frank Institut für Solartechnik SPF, 8640 Rapperswil (Switzerland)

More information

Toward the validation of a newly developed CFD code: the case of a jet in cross flow

Toward the validation of a newly developed CFD code: the case of a jet in cross flow Proceedings of the 11 th Brazilian Congress of Thermal Sciences and Engineering -- ENCIT 2006 Braz. Soc. of Mechanical Sciences and Engineering -- ABCM, Curitiba, Brazil,- Dec. 5-8, 2006 Paper CIT06-0781

More information

STCE. Outline. Introduction. Applications. Ongoing work. Summary. STCE RWTH-Aachen, Industrial Applications of discrete adjoint OpenFOAM, EuroAD 2014

STCE. Outline. Introduction. Applications. Ongoing work. Summary. STCE RWTH-Aachen, Industrial Applications of discrete adjoint OpenFOAM, EuroAD 2014 Industrial Applications of discrete adjoint OpenFOAM Arindam Sen Software and Tools for Computational Engineering Science RWTH Aachen University EuroAD 2014, Nice, 16-17. June 2014 Outline Introduction

More information

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S.

Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling. Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Computational Fluid Dynamics (CFD) and Multiphase Flow Modelling Associate Professor Britt M. Halvorsen (Dr. Ing) Amaranath S. Kumara (PhD Student), PO. Box 203, N-3901, N Porsgrunn, Norway What is CFD?

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

Along-wind self-excited forces of two-dimensional cables under extreme wind speeds

Along-wind self-excited forces of two-dimensional cables under extreme wind speeds The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China; September 2-6, 2012 Along-wind self-excited forces of two-dimensional cables under extreme wind

More information

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation

More information

Viscous flow in pipe

Viscous flow in pipe Viscous flow in pipe Henryk Kudela Contents 1 Laminar or turbulent flow 1 2 Balance of Momentum - Navier-Stokes Equation 2 3 Laminar flow in pipe 2 3.1 Friction factor for laminar flow...........................

More information

Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics

Lecture 4 Classification of Flows. Applied Computational Fluid Dynamics Lecture 4 Classification of Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (00-006) Fluent Inc. (00) 1 Classification: fluid flow vs. granular flow

More information

Dimensionless versus Dimensional Analysis in CFD and Heat Transfer

Dimensionless versus Dimensional Analysis in CFD and Heat Transfer Excerpt from the Proceedings of the COMSOL Conference 2 Boston Dimensionless versus Dimensional Analysis in CFD and Heat Transfer Heather E Dillon,, Ashley Emery, RJ Cochran 2, and Ann Mescher University

More information

Numerical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS

Numerical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS merical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS Abhilash Kumar 1, R. SaravanaSathiyaPrabhahar 2 Mepco Schlenk Engineering College, Sivakasi, Tamilnadu India 1,

More information

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics

Lecture 16 - Free Surface Flows. Applied Computational Fluid Dynamics Lecture 16 - Free Surface Flows Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Example: spinning bowl Example: flow in

More information

Simulation at Aeronautics Test Facilities A University Perspective Helen L. Reed, Ph.D., P.E. ASEB meeting, Irvine CA 15 October 2014 1500-1640

Simulation at Aeronautics Test Facilities A University Perspective Helen L. Reed, Ph.D., P.E. ASEB meeting, Irvine CA 15 October 2014 1500-1640 Simulation at Aeronautics Test A University Perspective Helen L. Reed, Ph.D., P.E. ASEB meeting, Irvine CA 15 October 2014 1500-1640 Questions How has the ability to do increasingly accurate modeling and

More information

NUCLEAR ENERGY RESEARCH INITIATIVE

NUCLEAR ENERGY RESEARCH INITIATIVE NUCLEAR ENERGY RESEARCH INITIATIVE Experimental and CFD Analysis of Advanced Convective Cooling Systems PI: Victor M. Ugaz and Yassin A. Hassan, Texas Engineering Experiment Station Collaborators: None

More information

du u U 0 U dy y b 0 b

du u U 0 U dy y b 0 b BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

More information

Computational Modeling of Wind Turbines in OpenFOAM

Computational Modeling of Wind Turbines in OpenFOAM Computational Modeling of Wind Turbines in OpenFOAM Hamid Rahimi hamid.rahimi@uni-oldenburg.de ForWind - Center for Wind Energy Research Institute of Physics, University of Oldenburg, Germany Outline Computational

More information

Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any

Chapter 10. Flow Rate. Flow Rate. Flow Measurements. The velocity of the flow is described at any Chapter 10 Flow Measurements Material from Theory and Design for Mechanical Measurements; Figliola, Third Edition Flow Rate Flow rate can be expressed in terms of volume flow rate (volume/time) or mass

More information

Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved.

Customer Training Material. Lecture 2. Introduction to. Methodology ANSYS FLUENT. ANSYS, Inc. Proprietary 2010 ANSYS, Inc. All rights reserved. Lecture 2 Introduction to CFD Methodology Introduction to ANSYS FLUENT L2-1 What is CFD? Computational Fluid Dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions,

More information

Using CFD to improve the design of a circulating water channel

Using CFD to improve the design of a circulating water channel 2-7 December 27 Using CFD to improve the design of a circulating water channel M.G. Pullinger and J.E. Sargison School of Engineering University of Tasmania, Hobart, TAS, 71 AUSTRALIA Abstract Computational

More information

How To Model A Horseshoe Vortex

How To Model A Horseshoe Vortex Comparison of CFD models for multiphase flow evolution in bridge scour processes A. Bayón-Barrachina, D. Valero, F.J. Vallès Morán, P. A. López-Jiménez Dept. of Hydraulic and Environmental Engineering

More information

OpenFOAM simulations of the Turbulent Flow in a Rod Bundle with Mixing Vanes

OpenFOAM simulations of the Turbulent Flow in a Rod Bundle with Mixing Vanes OpenFOAM simulations of the Turbulent Flow in a Rod Bundle with Mixing Vanes ABSTRACT Blaž Mikuž Reactor Engineering Division, Jozef Stefan Institute, Jamova cesta 39 SI-1000 Ljubljana, Slovenia blaz.mikuz@ijs.si

More information

Research Article Numerical Investigation on Fluid Flow in a 90-Degree Curved Pipe with Large Curvature Ratio

Research Article Numerical Investigation on Fluid Flow in a 90-Degree Curved Pipe with Large Curvature Ratio Mathematical Problems in Engineering Volume 15, Article ID 5486, 1 pages http://dx.doi.org/1.1155/15/5486 Research Article Numerical Investigation on Fluid Flow in a 9-Degree Curved Pipe with Large Curvature

More information

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

More information

Numerical Approach Aspects for the Investigation of the Longitudinal Static Stability of a Transport Aircraft with Circulation Control

Numerical Approach Aspects for the Investigation of the Longitudinal Static Stability of a Transport Aircraft with Circulation Control Numerical Approach Aspects for the Investigation of the Longitudinal Static Stability of a Transport Aircraft with Circulation Control Dennis Keller Abstract The aim of the investigation is to gain more

More information

Direct and large-eddy simulation of rotating turbulence

Direct and large-eddy simulation of rotating turbulence Direct and large-eddy simulation of rotating turbulence Bernard J. Geurts, Darryl Holm, Arek Kuczaj Multiscale Modeling and Simulation (Twente) Anisotropic Turbulence (Eindhoven) Mathematics Department,

More information

THE EVOLUTION OF TURBOMACHINERY DESIGN (METHODS) Parsons 1895

THE EVOLUTION OF TURBOMACHINERY DESIGN (METHODS) Parsons 1895 THE EVOLUTION OF TURBOMACHINERY DESIGN (METHODS) Parsons 1895 Rolls-Royce 2008 Parsons 1895 100KW Steam turbine Pitch/chord a bit too low. Tip thinning on suction side. Trailing edge FAR too thick. Surface

More information

Keywords: CFD, heat turbomachinery, Compound Lean Nozzle, Controlled Flow Nozzle, efficiency.

Keywords: CFD, heat turbomachinery, Compound Lean Nozzle, Controlled Flow Nozzle, efficiency. CALCULATION OF FLOW CHARACTERISTICS IN HEAT TURBOMACHINERY TURBINE STAGE WITH DIFFERENT THREE DIMENSIONAL SHAPE OF THE STATOR BLADE WITH ANSYS CFX SOFTWARE A. Yangyozov *, R. Willinger ** * Department

More information

Computational Fluid Dynamics and Heat Transfer Analysis for a Novel Heat Exchanger

Computational Fluid Dynamics and Heat Transfer Analysis for a Novel Heat Exchanger Lehigh University Lehigh Preserve Theses and Dissertations 2012 Computational Fluid Dynamics and Heat Transfer Analysis for a Novel Heat Exchanger Haolin Ma Lehigh University Follow this and additional

More information

Module 6 Case Studies

Module 6 Case Studies Module 6 Case Studies 1 Lecture 6.1 A CFD Code for Turbomachinery Flows 2 Development of a CFD Code The lecture material in the previous Modules help the student to understand the domain knowledge required

More information

TECHNICAL BRIEF: Selected Benchmarks from Commercial CFD Codes

TECHNICAL BRIEF: Selected Benchmarks from Commercial CFD Codes TECHNICAL BRIEF: Selected Benchmarks from Commercial CFD Codes For a large portion of the engineering community, the primary source of CFD capabilities is through the purchase of a commercial CFD code.

More information

Ravi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra***

Ravi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra*** Ravi Kumar Singh, K. B. Sahu, Thakur Debasis Mishra / International Journal of Engineering Research and Applications (IJERA) ISSN: 48-96 www.ijera.com Vol. 3, Issue 3, May-Jun 3, pp.766-77 Analysis of

More information

OpenFOAM Opensource and CFD

OpenFOAM Opensource and CFD OpenFOAM Opensource and CFD Andrew King Department of Mechanical Engineering Curtin University Outline What is Opensource Software OpenFOAM Overview Utilities, Libraries and Solvers Data Formats The CFD

More information

Industrial Application of CFD in Airbus

Industrial Application of CFD in Airbus STAR Konferenz Deutschland 9.-10. November 2009 November 2009 Dr.-Ing. Andreas Wick Environmental Control Systems CFD Focal Point Airbus Operations GmbH Industrial Application of CFD in Airbus An Air Systems

More information

Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial

Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial Problem Statement In order to satisfy production and storage requirements, small and medium-scale industrial facilities commonly occupy spaces with ceilings ranging between twenty and thirty feet in height.

More information

Scalar Transport. Introduction. T. J. Craft George Begg Building, C41. Eddy-Diffusivity Modelling. TPFE MSc Advanced Turbulence Modelling

Scalar Transport. Introduction. T. J. Craft George Begg Building, C41. Eddy-Diffusivity Modelling. TPFE MSc Advanced Turbulence Modelling School of Mechanical Aerospace and Civil Engineering TPFE MSc Advanced Turbulence Modelling Scalar Transport T. J. Craft George Begg Building, C41 Reading: S. Pope, Turbulent Flows D. Wilco, Turbulence

More information

Assessment of FLUENT CFD Code as an Analysis Tool for SCW Applications

Assessment of FLUENT CFD Code as an Analysis Tool for SCW Applications Assessment of FLUENT CFD Code as an Analysis Tool for SCW Applications by Amjad Farah A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science In Nuclear

More information

NUMERICAL STUDY OF FLOW AND TURBULENCE THROUGH SUBMERGED VEGETATION

NUMERICAL STUDY OF FLOW AND TURBULENCE THROUGH SUBMERGED VEGETATION NUMERICAL STUDY OF FLOW AND TURBULENCE THROUGH SUBMERGED VEGETATION HYUNG SUK KIM (1), MOONHYEONG PARK (2), MOHAMED NABI (3) & ICHIRO KIMURA (4) (1) Korea Institute of Civil Engineering and Building Technology,

More information

CFD Calculations of S809 Aerodynamic Characteristics 1

CFD Calculations of S809 Aerodynamic Characteristics 1 Walter P. Wolfe Engineering Sciences Center Sandia National Laboratories Albuquerque, NM 87185-0836 Stuart S. Ochs Aerospace Engineering Department Iowa State University Ames, IA 50011 CFD Calculations

More information