Simplified Benders cuts for Facility Location
|
|
|
- Edith Parrish
- 9 years ago
- Views:
Transcription
1 Simplified Benders cuts for Facility Location Matteo Fischetti, University of Padova based on joint work with Ivana Ljubic (ESSEC, Paris) and Markus Sinnl (ISOR, Vienna) Barcelona, November
2 Apology of Benders Everybody talks about Benders decomposition but not so many MIPeople actually use it because of its slow-convergence reputation Barcelona, November
3 Benders: why and how Benders decomposition is aimed at solving an optimization problem living in the (x,y) space by working on the y subspace only (master problem) As such, it is just a projection tool whose application requires some assumptions (essentially, convexity on the x-space) Projection is achieved by means of cuts in the y-space the (in)famous Benders feasibility and optimality cuts obtained by solving a certain slave subproblem Mixed results reported in practice: it can work very well or very bad Barcelona, November
4 Benders after Padberg & Rinaldi Typical application in MILP: y integer (master var.s), x continuous. The original ( 60s) recipe was to solve the master to optimality by enumeration (integer y*), to generate B-cuts for y*, and to repeat This is what we call old Benders within our group still the best option for some problems! Folklore (Miliotios for TSP?): generate B-cuts for any integer y* that is going to update the incumbent within a single branching tree McDaniel & Devine (1977) use of B-cuts to cut (root node) fractional y* s Fits well within modern Branch-and-Cut #JustAnotherFamilyOfCuts Lazy constraint callback for integer y* (needed for correctness) User cut callback for any y* (useful but not mandatory) Barcelona, November
5 A successful application: UFL Uncapacitated Facility Location (a.k.a. Simple Plant Location) One of the basic OR problems, deeply studied in the by pioneers like Balas, Geoffrion, Magnanti, Cornuejols, Nemhauser, Wolsey, Barcelona, November
6 UFL (linear costs) MIP model Can be viewed as a 2-stage Stochastic Program: pay to open facilities in the first stage, get a second-stage cost correction by each client (scenario) x s are just recourse var.s Benders decomposition: very natural, potentially very useful, addressed in the early days but apparently forgotten nowadays Best exact solver from literature: Lagrangian optimization (Posta, Ferland, Michelon, 2014) Barcelona, November
7 Quadratic UFL (quadratic costs) Just change objective to Applications in energy systems with power losses (dispersion electrical currents square) and finance applications (variance) Embarrassingly tight perspective reform. (Gunluk, Linderoth, 2012) Barcelona, November
8 An effective branch-and-cut code Benders cuts embedded within Cplex s B&C through callbacks Specialized slave solver (LP/QCP) for Benders cut generation: faster numerically more accurate Specialized UFL heuristics A basic version of this code is just a homework assignment for my students in Padua (computer science engineers) Barcelona, November
9 Computational results (linear case) Many hard instances from UFLLIB solved in just sec.s Some instances solved to proven optimality for the first time Many best-known solution values strictly improved (22 out of 50) or matched (22 more). Barcelona, November
10 Computational results (quadratic case) Up to 10,000 speedup for medium-size instances (150x150) Much larger instances (250x250) solved in less than 1 sec. Barcelona, November
11 Computational results (quadratic case) Huge instances (2,000x10,000) solved in 5 minutes ` MIQCP s with 20M SOC constraints and 40M var.s Barcelona, November
12 Capacitated Facility Location Each facility can support only a limited set of customers (capacity constraint) Barcelona, November
13 Computational tapas Barcelona, November
14 Benders in a nutshell Barcelona, November
15 Consider the original convex MINLP Modern Benders and assume for the sake of simplicity Barcelona, November
16 Working on the y-space (projection) Original MINLP in the (x,y) space Master problem in the y space Warning: projection changes the objective function shape! Barcelona, November
17 Life of P(H)I Solving Benders master problem calls for the minimization of a nonlinear function (even if you start from a linear problem!) Branch-and-cut MINLP solvers generate a sequence of linear cuts to approximate this function from below (outer-approximation) Barcelona, November
18 Benders cut computation Benders (for linear) and Geoffrion (general convex) told us how to compute a (sub)gradient to be used in the cut derivation, by using the optimal primal-dual solution (x*,u*) available after computing This formula is problem-specific and perhaps #scaring By rewriting we obtain a much simpler recipe to derive the same Benders cut: Barcelona, November
19 #TheCurseOfKelley Master problem is typically solved by a cutting plane method where primal (fractional) solutions y* and Benders cuts are generated on the fly A main reason for Benders slow convergence is the use of Kelley s cutting plane recipe Always cut the optimal solution of the previous master In the first iterations, the master can contain too few constraints (sometimes, only variable bounds) zig-zagging in the y space (lower bound stalling) Stabilization required as in Column Generation and Lagrangian Relaxation e.g. through bundle methods Barcelona, November
20 Escaping the #CurseOfKelley Root node LP bound very critical many ships sank here! Kelley s cutting plane can be desperately slow, bundle/interior points methods required Stabilization using interior points For facility location problems, we implemented a very simple chase the carrot heuristic to determine an internal path towards the optimal y Our very first implementation worked so well that we did not have an incentive to try and improve it Barcelona, November
21 Our #ChaseTheCarrot heuristic We (the donkey) start with y = (1,1,,1) and optimize the master LP as in Kelley, to get optimal y* (the carrot on the stick). We move y half-way towards y*. We then separate a point y in the segment y-y* close to y. The generated Benders cut is added to the master LP, which is reoptimizied to get the new optimal y* (carrot moves). Repeat until bound improves, then switch to Kelley for final bound refinement (kind of cross-over) Warning: adaptations needed if feasibility Benders cuts can be generated Barcelona, November
22 Effect of the improved cut-loop Comparing Kelley cut loop at the root node with Kelley+ (add epsilon to y*) and with our chase-the-carrot method (inout) Koerkel-Ghosh qufl instance gs250a-1 (250x250, quadratic costs) *nc = n. of Benders cuts generated at the end of the root node times in logarithmic scale Barcelona, November
23 Thanks for your attention Full papers M. Fischetti, I. Ljubic, M. Sinnl, "Thinning out facilities: a Benders decomposition approach for the uncapacitated facility location problem with separable convex costs", Tech. Rep. UniPD, M. Fischetti, I. Ljubic, M. Sinnl, "Benders decomposition without separability: a computational study for capacitated facility location problems", Tech. Rep. UniPD, and slides available at Barcelona, November
Introduction: Models, Model Building and Mathematical Optimization The Importance of Modeling Langauges for Solving Real World Problems
Introduction: Models, Model Building and Mathematical Optimization The Importance of Modeling Langauges for Solving Real World Problems Josef Kallrath Structure of the Lecture: the Modeling Process survey
Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach
MASTER S THESIS Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach PAULINE ALDENVIK MIRJAM SCHIERSCHER Department of Mathematical
Chapter 13: Binary and Mixed-Integer Programming
Chapter 3: Binary and Mixed-Integer Programming The general branch and bound approach described in the previous chapter can be customized for special situations. This chapter addresses two special situations:
Solving convex MINLP problems with AIMMS
Solving convex MINLP problems with AIMMS By Marcel Hunting Paragon Decision Technology BV An AIMMS White Paper August, 2012 Abstract This document describes the Quesada and Grossman algorithm that is implemented
Cloud Branching. Timo Berthold. joint work with Domenico Salvagnin (Università degli Studi di Padova)
Cloud Branching Timo Berthold Zuse Institute Berlin joint work with Domenico Salvagnin (Università degli Studi di Padova) DFG Research Center MATHEON Mathematics for key technologies 21/May/13, CPAIOR
INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models
Integer Programming INTEGER PROGRAMMING In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is
CHAPTER 9. Integer Programming
CHAPTER 9 Integer Programming An integer linear program (ILP) is, by definition, a linear program with the additional constraint that all variables take integer values: (9.1) max c T x s t Ax b and x integral
GAMS, Condor and the Grid: Solving Hard Optimization Models in Parallel. Michael C. Ferris University of Wisconsin
GAMS, Condor and the Grid: Solving Hard Optimization Models in Parallel Michael C. Ferris University of Wisconsin Parallel Optimization Aid search for global solutions (typically in non-convex or discrete)
Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams
Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery
Tutorial: Operations Research in Constraint Programming
Tutorial: Operations Research in Constraint Programming John Hooker Carnegie Mellon University May 2009 Revised June 2009 May 2009 Slide 1 Motivation Benders decomposition allows us to apply CP and OR
Optimization applications in finance, securities, banking and insurance
IBM Software IBM ILOG Optimization and Analytical Decision Support Solutions White Paper Optimization applications in finance, securities, banking and insurance 2 Optimization applications in finance,
Using diversification, communication and parallelism to solve mixed-integer linear programs
Using diversification, communication and parallelism to solve mixed-integer linear programs R. Carvajal a,, S. Ahmed a, G. Nemhauser a, K. Furman b, V. Goel c, Y. Shao c a Industrial and Systems Engineering,
Big Data Optimization at SAS
Big Data Optimization at SAS Imre Pólik et al. SAS Institute Cary, NC, USA Edinburgh, 2013 Outline 1 Optimization at SAS 2 Big Data Optimization at SAS The SAS HPA architecture Support vector machines
The Gurobi Optimizer
The Gurobi Optimizer Gurobi History Gurobi Optimization, founded July 2008 Zonghao Gu, Ed Rothberg, Bob Bixby Started code development March 2008 Gurobi Version 1.0 released May 2009 History of rapid,
Optimization Theory for Large Systems
Optimization Theory for Large Systems LEON S. LASDON CASE WESTERN RESERVE UNIVERSITY THE MACMILLAN COMPANY COLLIER-MACMILLAN LIMITED, LONDON Contents 1. Linear and Nonlinear Programming 1 1.1 Unconstrained
Integrating Benders decomposition within Constraint Programming
Integrating Benders decomposition within Constraint Programming Hadrien Cambazard, Narendra Jussien email: {hcambaza,jussien}@emn.fr École des Mines de Nantes, LINA CNRS FRE 2729 4 rue Alfred Kastler BP
A Service Design Problem for a Railway Network
A Service Design Problem for a Railway Network Alberto Caprara Enrico Malaguti Paolo Toth Dipartimento di Elettronica, Informatica e Sistemistica, University of Bologna Viale Risorgimento, 2-40136 - Bologna
Nonlinear Optimization: Algorithms 3: Interior-point methods
Nonlinear Optimization: Algorithms 3: Interior-point methods INSEAD, Spring 2006 Jean-Philippe Vert Ecole des Mines de Paris [email protected] Nonlinear optimization c 2006 Jean-Philippe Vert,
Dantzig-Wolfe bound and Dantzig-Wolfe cookbook
Dantzig-Wolfe bound and Dantzig-Wolfe cookbook [email protected] DTU-Management Technical University of Denmark 1 Outline LP strength of the Dantzig-Wolfe The exercise from last week... The Dantzig-Wolfe
A Constraint Programming based Column Generation Approach to Nurse Rostering Problems
Abstract A Constraint Programming based Column Generation Approach to Nurse Rostering Problems Fang He and Rong Qu The Automated Scheduling, Optimisation and Planning (ASAP) Group School of Computer Science,
How to speed-up hard problem resolution using GLPK?
How to speed-up hard problem resolution using GLPK? Onfroy B. & Cohen N. September 27, 2010 Contents 1 Introduction 2 1.1 What is GLPK?.......................................... 2 1.2 GLPK, the best one?.......................................
Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows
TECHNISCHE UNIVERSITEIT EINDHOVEN Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows Lloyd A. Fasting May 2014 Supervisors: dr. M. Firat dr.ir. M.A.A. Boon J. van Twist MSc. Contents
Branch and Cut for TSP
Branch and Cut for TSP jla,[email protected] Informatics and Mathematical Modelling Technical University of Denmark 1 Branch-and-Cut for TSP Branch-and-Cut is a general technique applicable e.g. to solve symmetric
An Overview Of Software For Convex Optimization. Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM 87801 borchers@nmt.
An Overview Of Software For Convex Optimization Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM 87801 [email protected] In fact, the great watershed in optimization isn t between linearity
TOMLAB - For fast and robust largescale optimization in MATLAB
The TOMLAB Optimization Environment is a powerful optimization and modeling package for solving applied optimization problems in MATLAB. TOMLAB provides a wide range of features, tools and services for
Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method
Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming
COORDINATION PRODUCTION AND TRANSPORTATION SCHEDULING IN THE SUPPLY CHAIN ABSTRACT
Technical Report #98T-010, Department of Industrial & Mfg. Systems Egnieering, Lehigh Univerisity (1998) COORDINATION PRODUCTION AND TRANSPORTATION SCHEDULING IN THE SUPPLY CHAIN Kadir Ertogral, S. David
Discrete Optimization
Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.1-4.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 2015-03-31 Todays presentation Chapter 3 Transforms using
Noncommercial Software for Mixed-Integer Linear Programming
Noncommercial Software for Mixed-Integer Linear Programming J. T. Linderoth T. K. Ralphs December, 2004. Revised: January, 2005. Abstract We present an overview of noncommercial software tools for the
5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1
5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition
Introduction to Stochastic Optimization in Supply Chain and Logistic Optimization
Introduction to Stochastic Optimization in Supply Chain and Logistic Optimization John R. Birge Northwestern University IMA Tutorial, Stochastic Optimization, September 00 1 Outline Overview Part I - Models
SBB: A New Solver for Mixed Integer Nonlinear Programming
SBB: A New Solver for Mixed Integer Nonlinear Programming Michael R. Bussieck GAMS Development Corp. Arne S. Drud ARKI Consulting & Development A/S OR2001, Duisburg Overview! SBB = Simple Branch & Bound!
Discrete Optimization Introduction & applications
Discrete Optimization 2013 1/21 Discrete Optimization Introduction & applications Bertrand Cornélusse ULg - Institut Montefiore 2013 Discrete Optimization 2013 2/21 Outline Introduction Some applications
Research Article Design of a Distribution Network Using Primal-Dual Decomposition
Mathematical Problems in Engineering Volume 2016, Article ID 7851625, 9 pages http://dx.doi.org/10.1155/2016/7851625 Research Article Design of a Distribution Network Using Primal-Dual Decomposition J.
Blending petroleum products at NZ Refining Company
Blending petroleum products at NZ Refining Company Geoffrey B. W. Gill Commercial Department NZ Refining Company New Zealand [email protected] Abstract There are many petroleum products which New Zealand
Modeling and Solving the Capacitated Vehicle Routing Problem on Trees
in The Vehicle Routing Problem: Latest Advances and New Challenges Modeling and Solving the Capacitated Vehicle Routing Problem on Trees Bala Chandran 1 and S. Raghavan 2 1 Department of Industrial Engineering
Efficient Curve Fitting Techniques
15/11/11 Life Conference and Exhibition 11 Stuart Carroll, Christopher Hursey Efficient Curve Fitting Techniques - November 1 The Actuarial Profession www.actuaries.org.uk Agenda Background Outline of
Approximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen
(für Informatiker) M. Grepl J. Berger & J.T. Frings Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2010/11 Problem Statement Unconstrained Optimality Conditions Constrained
Column Generation in GAMS Extending the GAMS Branch-and-Cut-and-Heuristic (BCH) Facility
Column Generation in GAMS Extending the GAMS Branch-and-Cut-and-Heuristic (BCH) Facility Michael R. Bussieck [email protected] GAMS Software GmbH GAMS Development Corp 83rd Working Group Meeting Real
Master Thesis. Petroleum Production Planning Optimization - Applied to the StatoilHydro Offshore Oil and Gas Field Troll West
Master Thesis Petroleum Production Planning Optimization - Applied to the StatoilHydro Offshore Oil and Gas Field Troll West Eirik Hagem and Erlend Torgnes Trondheim, June 10th, 2009 Norwegian University
Chapter 11 Monte Carlo Simulation
Chapter 11 Monte Carlo Simulation 11.1 Introduction The basic idea of simulation is to build an experimental device, or simulator, that will act like (simulate) the system of interest in certain important
Airport Planning and Design. Excel Solver
Airport Planning and Design Excel Solver Dr. Antonio A. Trani Professor of Civil and Environmental Engineering Virginia Polytechnic Institute and State University Blacksburg, Virginia Spring 2012 1 of
Using the analytic center in the feasibility pump
Using the analytic center in the feasibility pump Daniel Baena Jordi Castro Dept. of Stat. and Operations Research Universitat Politècnica de Catalunya [email protected] [email protected] Research
Enumerating possible Sudoku grids
Enumerating possible Sudoku grids Bertram Felgenhauer Department of Computer Science TU Dresden 00 Dresden Germany [email protected] Frazer Jarvis Department of Pure Mathematics University of Sheffield,
Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.
1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that
Strategic planning in LTL logistics increasing the capacity utilization of trucks
Strategic planning in LTL logistics increasing the capacity utilization of trucks J. Fabian Meier 1,2 Institute of Transport Logistics TU Dortmund, Germany Uwe Clausen 3 Fraunhofer Institute for Material
How the European day-ahead electricity market works
How the European day-ahead electricity market works ELEC0018-1 - Marché de l'énergie - Pr. D. Ernst! Bertrand Cornélusse, Ph.D.! [email protected]! October 2014! 1 Starting question How is
Abstract. 1. Introduction. Caparica, Portugal b CEG, IST-UTL, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
Ian David Lockhart Bogle and Michael Fairweather (Editors), Proceedings of the 22nd European Symposium on Computer Aided Process Engineering, 17-20 June 2012, London. 2012 Elsevier B.V. All rights reserved.
Guessing Game: NP-Complete?
Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES 2. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple
A Decision Support System for Crew Planning in Passenger Transportation using a Flexible Branch-and-Price Algorithm
A Decision Support System for Crew Planning in Passenger Transportation using a Flexible Branch-and-Price Algorithm RICHARD FRELING 1, 2*, RAMON M. LENTINK 1, 2 AND ALBERT P.M. WAGELMANS 1 1 Erasmus Center
Network Optimization using AIMMS in the Analytics & Visualization Era
Network Optimization using AIMMS in the Analytics & Visualization Era Dr. Ovidiu Listes Senior Consultant AIMMS Analytics and Optimization Outline Analytics, Optimization, Networks AIMMS: The Modeling
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.
Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three
In this paper we present a branch-and-cut algorithm for
SOLVING A TRUCK DISPATCHING SCHEDULING PROBLEM USING BRANCH-AND-CUT ROBERT E. BIXBY Rice University, Houston, Texas EVA K. LEE Georgia Institute of Technology, Atlanta, Georgia (Received September 1994;
A Column-Generation and Branch-and-Cut Approach to the Bandwidth-Packing Problem
[J. Res. Natl. Inst. Stand. Technol. 111, 161-185 (2006)] A Column-Generation and Branch-and-Cut Approach to the Bandwidth-Packing Problem Volume 111 Number 2 March-April 2006 Christine Villa and Karla
New Exact Solution Approaches for the Split Delivery Vehicle Routing Problem
New Exact Solution Approaches for the Split Delivery Vehicle Routing Problem Gizem Ozbaygin, Oya Karasan and Hande Yaman Department of Industrial Engineering, Bilkent University, Ankara, Turkey ozbaygin,
Stochastic Ship Fleet Routing with Inventory Limits YU YU
Stochastic Ship Fleet Routing with Inventory Limits YU YU Doctor of Philosophy University of Edinburgh 2009 Declaration I declare that this thesis was composed by myself and that the work contained therein
Outline. NP-completeness. When is a problem easy? When is a problem hard? Today. Euler Circuits
Outline NP-completeness Examples of Easy vs. Hard problems Euler circuit vs. Hamiltonian circuit Shortest Path vs. Longest Path 2-pairs sum vs. general Subset Sum Reducing one problem to another Clique
Financial Optimization ISE 347/447. Preliminaries. Dr. Ted Ralphs
Financial Optimization ISE 347/447 Preliminaries Dr. Ted Ralphs ISE 347/447 Preliminaries 1 Introductory Stuff Welcome! Class Meeting Time Office Hours TBD Surveys ISE 347/447 Preliminaries 2 What will
A Branch-Cut-and-Price Approach to the Bus Evacuation Problem with Integrated Collection Point and Shelter Decisions
A Branch-Cut-and-Price Approach to the Bus Evacuation Problem with Integrated Collection Point and Shelter Decisions Marc Goerigk, Bob Grün, and Philipp Heßler Fachbereich Mathematik, Technische Universität
DUAL METHODS IN MIXED INTEGER LINEAR PROGRAMMING
DUAL METHODS IN MIXED INTEGER LINEAR PROGRAMMING by Menal Guzelsoy Presented to the Graduate and Research Committee of Lehigh University in Candidacy for the Degree of Doctor of Philosophy in Industrial
Mixed integer programming methods for supply chain optimization
Mixed integer programming methods for supply chain optimization C h r i s t o s T. M a r a v e l i a s Chemical and Biological Engineering University of Wisconsin, Madison, WI 53706, USA July 9-9, 0, Angra
2014-2015 The Master s Degree with Thesis Course Descriptions in Industrial Engineering
2014-2015 The Master s Degree with Thesis Course Descriptions in Industrial Engineering Compulsory Courses IENG540 Optimization Models and Algorithms In the course important deterministic optimization
A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem
A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem John Karlof and Peter Hocking Mathematics and Statistics Department University of North Carolina Wilmington Wilmington,
Why is SAS/OR important? For whom is SAS/OR designed?
Fact Sheet What does SAS/OR software do? SAS/OR software provides a powerful array of optimization, simulation and project scheduling techniques to identify the actions that will produce the best results,
Reconnect 04 Solving Integer Programs with Branch and Bound (and Branch and Cut)
Sandia is a ultiprogra laboratory operated by Sandia Corporation, a Lockheed Martin Copany, Reconnect 04 Solving Integer Progras with Branch and Bound (and Branch and Cut) Cynthia Phillips (Sandia National
Determine If An Equation Represents a Function
Question : What is a linear function? The term linear function consists of two parts: linear and function. To understand what these terms mean together, we must first understand what a function is. The
William E. Hart Carl Laird Jean-Paul Watson David L. Woodruff. Pyomo Optimization. Modeling in Python. ^ Springer
William E Hart Carl Laird Jean-Paul Watson David L Woodruff Pyomo Optimization Modeling in Python ^ Springer Contents 1 Introduction 1 11 Mathematical Modeling 1 12 Modeling Languages for Optimization
Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing
Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing Pietro Belotti, Antonio Capone, Giuliana Carello, Federico Malucelli Tepper School of Business, Carnegie Mellon University, Pittsburgh
Design, synthesis and scheduling of multipurpose batch plants via an effective continuous-time formulation
Computers and Chemical Engineering 25 (2001) 665 674 www.elsevier.com/locate/compchemeng Design, synthesis and scheduling of multipurpose batch plants via an effective continuous-time formulation X. Lin,
Application of linear programming methods to determine the best location of concrete dispatch plants
Application of linear programming methods to determine the best location of concrete dispatch plants Introduction: Carlos Horacio Gómez Junghye Moon University of Illinois Urbana-Champaign I just remember
An Implementation of a Constraint Branching Algorithm for Optimally Solving Airline Crew Pairing Problems
MASTER S THESIS An Implementation of a Constraint Branching Algorithm for Optimally Solving Airline Crew Pairing Problems Douglas Potter Department of Mathematical Sciences CHALMERS UNIVERSITY OF TECHNOLOGY
