EN Eurocode 1 Accidental Actions. Ton Vrouwenvelder TNO Bouw / TU Delft. EUROCODES Background and Applications

Size: px
Start display at page:

Download "EN 1991-1-7. Eurocode 1 Accidental Actions. Ton Vrouwenvelder TNO Bouw / TU Delft. EUROCODES Background and Applications"

Transcription

1 Brussels, February 2008 Dissemination of information workshop 1 EN Eurocode 1 Accidental Actions Ton Vrouwenvelder TNO Bouw / TU Delft

2 Brussels, February 2008 Dissemination of information workshop 2 EN 1990 Section 2.1 Basic Requirements (4)P A structure shall be designed and executed in such a way that it will not be damaged by events like -explosion - impact and - consequences of human errors to an extent disproportionate to the original cause Note: Further information is given in EN

3 Brussels, February 2008 Dissemination of information workshop 3 EN 1990 guidance: reducing hazards low sensitive structural form survival of local damage sufficient warning at collapse tying members

4 Brussels, February 2008 Dissemination of information workshop 4

5 Brussels, February 2008 Dissemination of information workshop 5 World Trade Center USA, 2001

6 Brussels, February 2008 Dissemination of information workshop 6 Eurocode EN General 2. Classification 3. Design situations 4. Impact 5. Explosions Annexes A. Design for localised failure B. Risk analysis C. Dynamics D. Explosions

7 Brussels, February 2008 Dissemination of information workshop 7 3 Design strategies

8 4. Impact Brussels, February 2008 Dissemination of information workshop 8 Type of road Vehicle type F d,x [kn] Motorway Country roads Urban area Parking place Parking place Truck Truck Truck Truck Passenger car

9 Brussels, February 2008 Dissemination of information workshop 9 Annex B: scenario model

10 Annex C: force model Brussels, February 2008 Dissemination of information workshop F[kN] upper lower theorie E [knm] F=v (km) model en experiment

11 Brussels, February 2008 Dissemination of information workshop 11 Table 4.2.1: Data for probabilistic collision force calculation variable designation type mean stand dev n number of lorries/day deterministic T reference time deterministic 100 years - λ accident rate deterministic m -1 - b width of a vehicle deterministic 2.50 m - α angle of collision course rayleigh 10 o 10 o v vehicle velocity lognormal 80 km/hr 10 km/hr a deceleration lognormal 4 m 2 /s 1.3 m/s 2 m vehicle mass normal 20 ton 12 ton k vehicle stiffness deterministic 300 kn/m -

12 Brussels, February 2008 Dissemination of information workshop force [kn] 2500 eq distance [m] Life time exceedence probability: 10-3

13 Design example: bridge column in motorway Brussels, February 2008 Dissemination of information workshop 13 x F dy H h y a b b width 0.50 m h thickness 1.00 m H column height 5 m f y yield stress steel 300 MPa f c concrete strength 50 MPa ρ reinforcement ratio 0.01

14 Brussels, February 2008 Dissemination of information workshop 14 Bending moment: M dx = a( H a ) H F dx = 1.25 ( ) = 940 knm Resistance: M Rdx = 0.8 ω h 2 b f y = = 1200 knm > 940 knm

15 Brussels, February 2008 Dissemination of information workshop Annex D: gas explosions in buildings gas explosions in tunnels dust explosions

16 Brussels, February 2008 Dissemination of information workshop 16 INTERNAL NATURAL GAS EXPLOSIONS The design pressure is the maximum of: p d = 3 + p v p d = p v +0,04/(A v /V) 2 p d = nominal equivalent static pressure [kn/m 2 ] A v = area of venting components [m 2 ] V = volume of room [m 3 ] Validity: V < 1000 m 3 ; 0,05 m -1 < A v / V < 0,15 m -1 Annex B: load duration = 0.2 s

17 Design Example: Compartment in a multi story building Brussels, February 2008 Dissemination of information workshop 17 H = 3m p d B = 8 m Compartment: 3 x 8 x 14 m Two glass walls (p v =3 kn/m 2 ) and two concrete walls

18 Brussels, February 2008 Dissemination of information workshop 18 explosion pressure: p Ed =3+ p v /2 + 0,04/(A v /V) 2 = / = 6.5 kn/m 2 self weight = 3.0 kn/m 2 live load = 2.0 kn/m 2 Design load combination (bottom floor): p da = p SW + p E + ψ 1LL p LL = *2.00 = kn/m 2

19 Dynamic increase in load carrying capacity Brussels, February 2008 Dissemination of information workshop 19 ϕ d = 1 + p p SW Rd 2 u g ( Δ t Δt = 0.2 s = load duration g = 10 m/s 2 u max = 0.20 m = midspan deflection at collapse p sw = 3,0 kn/m 2 and p Rd =7.7 kn/m 2 max ) 2 ϕ d = [ * 0.20 (0.2 ) 2 ] = 1.6 p REd = ϕ d p Rd = 1.6 * 7.7 = 12.5 kn/m 2 > 10.5 kn/m2 Conclusion: bottom floor system okay

20 Brussels, February 2008 Dissemination of information workshop 20 Be careful for upper floors and columns P sw p E edge centre column column B

21 Brussels, February 2008 Dissemination of information workshop 21 BLEVE in een overkluizing

22 Brussels, February 2008 Dissemination of information workshop 22 Y X Y Z X

23 Brussels, February 2008 Dissemination of information workshop 23 Z Y X.1E-1.9E-2.8E-2.7E-2.6E-2.5E-2.4E-2.3E-2.2E-2.1E-2 0

24 Brussels, February 2008 Dissemination of information workshop 24 Annex A: Classification of buildings Consequences class class 1 class 2, lower group class 2, upper group class 3 Example structures low rise buildings where only few people are present most buildings up to 4 stories most buildings up to 15 stories high rise building, grand stands etc.

25 Brussels, February 2008 Dissemination of information workshop 25 Annex A: What to do Class 1 Class 2, Lower Group Frames Class 2, Lower group Wall structures Class 2, Upper Group Class 3 No special considerations Horizontal ties in floors Full cellular shapes Floor to wall anchoring. Horizontal ties and effective vertical ties OR limited damage on notional removal OR special design of key elements Risk analysis and/or advanced mechanical analysis recommended

26 Brussels, February 2008 Dissemination of information workshop 26 Class 2a (lower group) s = 4 m s = 4 m interne trekbandt i L = 5 m alle liggers kunnen worden ontworpen om als trekband te dienen omtrek trekband T p interne trekband T i randkolom

27 Class 2a (lower group) Brussels, February 2008 Dissemination of information workshop 27 s = 4 m s = 4 m interne trekband 2Ø12 L = 5 m omtrek trekband 2Ø12 interne trekband 2Ø12 randkolom T i = 0.8 (g k +Ψ q k )sl = 0.8{3+0.5*3}x4x5=88 kn>75 kn FeB 500: A = 202 mm 2 or 2 Ø12mm

28 Background horizontal typings Brussels, February 2008 Dissemination of information workshop 28 total load on center column R = (g k + ψ q k ) L s = p L s s s L L T i = 0,8 s L p T i T i T i middenkolom

29 Background typing forces Brussels, February 2008 Dissemination of information workshop 29 T i = 0.75 p s L Equilibirum for δ = (s+l)/6 drukkrachten R trekkrachten verplaatsing δ δ X R X T i

30 Brussels, February 2008 Dissemination of information workshop 30 Suggestion: design corner column as a key element.

31 Brussels, February 2008 Dissemination of information workshop 31 Example structure, Class 2, Upper Group, Framed L =7.2 m, s =6 m, q k =g k =4 kn/m 2, Ψ=1.0 internal ties L perimeter tie s

32 Brussels, February 2008 Dissemination of information workshop 32 Example structure Internal horizontal tie force T i = 0.8 (g k + Ψ q k ) s L = 0.8 {4+4} (6 x 7.2) = 276 kn FeB 500: A = 550 mm 2 or 2 ø18 mm. Vertical tying force: T i = (g k + Ψ q k ) s L = {4+4} (6 x 7.2) = 350 kn FeB 500: A = 700 mm 2 or 3 ø18 mm.

33 Brussels, February 2008 Dissemination of information workshop 33 Class 2 higher class walls 1,2 m z interne trekband T i omtrek trekband T p interne trekband T i dragende wand

34 Class 2 higher class walls Brussels, February 2008 Dissemination of information workshop 34 Tyings Horizontal: T i = F t (g k + ψq k ) /7,5 z/5 kn/m > F t Periphery: T p = F t Vertical: T = 34 A / 8000 (H/t)² in N > 100 kn/m F t n s z A H t = n s kn/m < 60 kn/m = number of storeys = span = horizontal cross section of wall [mm²] = free storey height = wall thickness

35 Class 2 higher class walls Brussels, February 2008 Dissemination of information workshop 35 Design Example: L = 7,2 m, H = 2,8 m en t = 250 mm T = /8000 (2800/250)² = = ³ N = 960 kn > 720 kn maximal distance 5 m maximal distance from edge: 2.5 m Result: 2 tyings of 480 kn

36 Brussels, February 2008 Dissemination of information workshop 36 Effect of tyings in walls

37 Brussels, February 2008 Dissemination of information workshop 37 Effect of vertical tyings gaping

38 class 3: Risk analysis Brussels, February 2008 Dissemination of information workshop 38 Guidance can be found in Annex B: Definition of scope and limitations Qualitative Risk analysis hazard identification hazard scenarios description of consequences Reconsideration definition of measures of scope and assumptions Quantitative Risk Analyisis inventory of uncertainties modelling of uncertatinties probabilistic calculations quantification of consequences calculation of risks Risk management risk acceptance criteria decision on measures Presentation

39 Brussels, February 2008 Dissemination of information workshop 39 Risk Analysis Eastern Scheldt Storm Surge Barrier (1980)

40 Brussels, February 2008 Dissemination of information workshop 40 Office building Zwolle (The Netherlands) London Eye

41 Brussels, February 2008 Dissemination of information workshop 41 Points of attention in risk analysis list of hazards irregular structural shapes new construction types or materials number of potential casualties strategic role (lifelines)

42 hazards Brussels, February 2008 Dissemination of information workshop 42 Earthquake Landslide Tornado Avalanche Rock fall High groundwater Flood Volcano eruption Internal explosion External explosion Internal fire External fire Impact by vehicle etc Mining subsidence Environmental attack Vandalism Demonstrations Terrorist attack Design error Material error Construction error User error Lack of maintenance

43 Brussels, February 2008 Dissemination of information workshop 43 Step 1 Step 2 Step 3 Identifical and modelling of relevant accidental hazards Assessment of damage states to structure from different hazards Assessment of the performance of the damaged structure Assessment of the probability of occurence of different hazards with different intensities Assessment of the probability of different states of damage and corresponding consequences for given hazards Assessment of the probability of inadequate performance(s) of the damaged structure together with the corresponding consequence(s)

44 Brussels, February 2008 Dissemination of information workshop 44 Risk calculation: Step 1: identification of hazard H i Step 2: damage D j at given hazard Step 3: structural behavour S k and cpmsequences C(S k ) Risk = p( H i ) p( D j H i ) p( S k D j )C( S k ) Take sum over all hazards and damage types

45 Conclusions Brussels, February 2008 Dissemination of information workshop 45 EN : valuable document, but not a masterpiece of European harmonisation Reasons: large prior differences member state autonomy in safety matters legal status different in every country It will be interesting to see the National Annexes and NDP s.

46 Brussels, February 2008 Dissemination of information workshop 46 Relevant Background Documents ISO-documents COST actions C28 and TU0601 Background document for the ENV-version of EC1 Part 2-7 (TNO, The Netherlands, 1999) Leonardo da Vinci Project CZ/02/B/F/PP Handbooks Implementtion of Eurocodes (2005)

EUROCODE 1 Actions on Building Structures

EUROCODE 1 Actions on Building Structures EU-Russia cooperation on standardisation for construction Moscow, 9-10 October 2008 1 EUROCODE 1 Actions on Building Structures Paolo Formichi CEN/TC250/SC1 University of Pisa (Italy) EU-Russia cooperation

More information

Aluminium systems profile selection

Aluminium systems profile selection Aluminium systems profile selection The purpose of this document is to summarise the way that aluminium profile selection should be made, based on the strength requirements for each application. Curtain

More information

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab, DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared

More information

Page 1 of 18 28.4.2008 Sven Alexander Last revised 1.3.2010. SB-Produksjon STATICAL CALCULATIONS FOR BCC 250

Page 1 of 18 28.4.2008 Sven Alexander Last revised 1.3.2010. SB-Produksjon STATICAL CALCULATIONS FOR BCC 250 Page 1 of 18 CONTENT PART 1 BASIC ASSUMPTIONS PAGE 1.1 General 1. Standards 1.3 Loads 1. Qualities PART ANCHORAGE OF THE UNITS.1 Beam unit equilibrium 3. Beam unit anchorage in front..1 Check of capacity..

More information

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems: Reading Assignment SLAB DESIGN Chapter 9 of Text and, Chapter 13 of ACI318-02 Introduction ACI318 Code provides two design procedures for slab systems: 13.6.1 Direct Design Method (DDM) For slab systems

More information

Design MEMO 60 Reinforcement design for TSS 102

Design MEMO 60 Reinforcement design for TSS 102 Date: 04.0.0 sss Page of 5 CONTENTS PART BASIC ASSUMTIONS... GENERAL... STANDARDS... QUALITIES... 3 DIMENSIONS... 3 LOADS... 3 PART REINFORCEMENT... 4 EQUILIBRIUM... 4 Date: 04.0.0 sss Page of 5 PART BASIC

More information

Design MEMO 54a Reinforcement design for RVK 41

Design MEMO 54a Reinforcement design for RVK 41 Page of 5 CONTENTS PART BASIC ASSUMTIONS... 2 GENERAL... 2 STANDARDS... 2 QUALITIES... 3 DIMENSIONS... 3 LOADS... 3 PART 2 REINFORCEMENT... 4 EQUILIBRIUM... 4 Page 2 of 5 PART BASIC ASSUMTIONS GENERAL

More information

Technical handbook Panel Anchoring System

Technical handbook Panel Anchoring System 1 Basic principles of sandwich panels 3 Design conditions 4 Basic placement of anchors and pins 9 Large elements (muliple rows) 10 Small elements (two rows) 10 Turned elements 10 Slender elements 10 Cantilevering

More information

Structural Analysis. EUROCODE 2 Background and Applications

Structural Analysis. EUROCODE 2 Background and Applications Dissemination of information for training Brussels, 20-21 October 2011 1 Prof. Dr.-Ing. Manfred Curbach TU Dresden, Institute for Concrete Structures M.Sc. Martin Just TU Dresden, Institute for Concrete

More information

Structural fire design Eurocode 5-1.2 Timber structures

Structural fire design Eurocode 5-1.2 Timber structures Background and Applications Brussels, 18-20 February 2008 Dissemination of information workshop 1 Structural fire design Eurocode 5-1.2 Timber structures Jochen Fornather Austrian Standards Institute jochen.fornather@on-norm.at

More information

INTRODUCTION TO LIMIT STATES

INTRODUCTION TO LIMIT STATES 4 INTRODUCTION TO LIMIT STATES 1.0 INTRODUCTION A Civil Engineering Designer has to ensure that the structures and facilities he designs are (i) fit for their purpose (ii) safe and (iii) economical and

More information

Design rules for bridges in Eurocode 3

Design rules for bridges in Eurocode 3 Design rules for bridges in Eurocode 3 Gerhard Sedlacek Christian üller Survey of the Eurocodes EN 1991 EN 1990 Eurocode: Basis of Design EN 1992 to EN 1996 Eurocode 1: Actions on Structures Eurocode 2:

More information

EN 1991-1-6 DK NA:2007

EN 1991-1-6 DK NA:2007 EN 1991-1-6 DK NA:2007 National Annex to Eurocode 1: Actions on structures - Part 1-6: General actions Actions during execution Foreword In connection with the incorporation of Eurocodes into Danish building

More information

Concrete Design to Eurocode 2

Concrete Design to Eurocode 2 Concrete Design to Eurocode 2 Jenny Burridge MA CEng MICE MIStructE Head of Structural Engineering Introduction to the Eurocodes Eurocode Eurocode 1 Eurocode 2 Materials Cover Flexure Shear Deflection

More information

Eurocode 1: Actions on structures Part 1-1: General actions - Densities, self-weight, imposed loads for buildings

Eurocode 1: Actions on structures Part 1-1: General actions - Densities, self-weight, imposed loads for buildings Eurocode 1: Actions on structures Part 1-1: General actions - Densities, self-weight, imposed loads for buildings Dr-Ing. Nikolaos E. Malakatas Head of Department - Ministry of Environment, Planning and

More information

Optimising plate girder design

Optimising plate girder design Optimising plate girder design NSCC29 R. Abspoel 1 1 Division of structural engineering, Delft University of Technology, Delft, The Netherlands ABSTRACT: In the design of steel plate girders a high degree

More information

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples

FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to

More information

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading: SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the

More information

OPTIMAL DIAGRID ANGLE TO MINIMIZE DRIFT IN HIGH-RISE STEEL BUILDINGS SUBJECTED TO WIND LOADS

OPTIMAL DIAGRID ANGLE TO MINIMIZE DRIFT IN HIGH-RISE STEEL BUILDINGS SUBJECTED TO WIND LOADS International Journal of Civil Engineering and Technology (IJCIET) Volume 6, Issue 11, Nov 215, pp. 1-1, Article ID: IJCIET_6_11_1 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=6&itype=11

More information

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia DESIGN OF SLABS Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction Types of Slab Slabs are plate elements

More information

Eurocode 2: Design of concrete structures

Eurocode 2: Design of concrete structures Eurocode 2: Design of concrete structures Owen Brooker, The Concrete Centre Introduction The transition to using the Eurocodes is a daunting prospect for engineers, but this needn t be the case. Industry

More information

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST

EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST EVALUATION OF SEISMIC RESPONSE - FACULTY OF LAND RECLAMATION AND ENVIRONMENTAL ENGINEERING -BUCHAREST Abstract Camelia SLAVE University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti

More information

SEISMIC APPROACH DESIGN COMPARISON BETWEEN

SEISMIC APPROACH DESIGN COMPARISON BETWEEN IABSE ANNUAL MEETING, LONDON, 19 TH SEPTEMBER 2011 SEISMIC APPROACH DESIGN COMPARISON BETWEEN IBC AND ITALIAN DM2008 Ing. Luca Zanaica Senior Structural Engineer Ing. Francesco Caobianco Senior Structural

More information

Seismic Risk Prioritization of RC Public Buildings

Seismic Risk Prioritization of RC Public Buildings Seismic Risk Prioritization of RC Public Buildings In Turkey H. Sucuoğlu & A. Yakut Middle East Technical University, Ankara, Turkey J. Kubin & A. Özmen Prota Inc, Ankara, Turkey SUMMARY Over the past

More information

DS/EN 1993-1-1 DK NA:2014

DS/EN 1993-1-1 DK NA:2014 National Annex to Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings Foreword This national annex (NA) is a revision of DS/EN 1993-1-1 DK NA:2013 and replaces the

More information

Technical Notes 3B - Brick Masonry Section Properties May 1993

Technical Notes 3B - Brick Masonry Section Properties May 1993 Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications

More information

Optimum proportions for the design of suspension bridge

Optimum proportions for the design of suspension bridge Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering

More information

SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED

SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED NOTE: MOMENT DIAGRAM CONVENTION In PT design, it is preferable to draw moment diagrams

More information

Eurocode 3 for Dummies The Opportunities and Traps

Eurocode 3 for Dummies The Opportunities and Traps Eurocode 3 for Dummies The Opportunities and Traps a brief guide on element design to EC3 Tim McCarthy Email tim.mccarthy@umist.ac.uk Slides available on the web http://www2.umist.ac.uk/construction/staff/

More information

Design Of Reinforced Concrete Structures ii Two-Way Slabs

Design Of Reinforced Concrete Structures ii Two-Way Slabs 1. Inroduction When the ratio (L/S) is less than 2.0, slab is called two-way slab, as shown in the fig. below. Bending will take place in the two directions in a dish-like form. Accordingly, main reinforcement

More information

Analysis of Steel Moment Frames subjected to Vehicle Impact

Analysis of Steel Moment Frames subjected to Vehicle Impact APCOM & ISCM 11-14 th December, 2013, Singapore Analysis of Steel Moment Frames subjected to Vehicle Impact Hyungoo Kang¹, Jeongil Shin 1, Jinkoo Kim 2 * 1 Graduate Student, Department of Civil-Architectural

More information

What is Seismic Retrofitting?

What is Seismic Retrofitting? What is Seismic Retrofitting? SEISMIC RETROFITTING A Seismic Retrofit provides existing structures with more resistance to seismic activity due to earthquakes. In buildings, this process typically includes

More information

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following.

MECHANICS OF SOLIDS - BEAMS TUTORIAL 1 STRESSES IN BEAMS DUE TO BENDING. On completion of this tutorial you should be able to do the following. MECHANICS OF SOLIDS - BEAMS TUTOIAL 1 STESSES IN BEAMS DUE TO BENDING This is the first tutorial on bending of beams designed for anyone wishing to study it at a fairly advanced level. You should judge

More information

Local buckling of plates made of high strength steel

Local buckling of plates made of high strength steel Local buckling of plates made of high strength steel Tapani Halmea, Lauri Huusko b,a, Gary Marquis a, Timo Björk a a Lappeenranta University of Technology, Faculty of Technology Engineering, Lappeenranta,

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar Problem 1 Design a hand operated overhead crane, which is provided in a shed, whose details are: Capacity of crane = 50 kn Longitudinal spacing of column = 6m Center to center distance of gantry girder

More information

16. Beam-and-Slab Design

16. Beam-and-Slab Design ENDP311 Structural Concrete Design 16. Beam-and-Slab Design Beam-and-Slab System How does the slab work? L- beams and T- beams Holding beam and slab together University of Western Australia School of Civil

More information

INTERACTION BETWEEN MOVING VEHICLES AND RAILWAY TRACK AT HIGH SPEED

INTERACTION BETWEEN MOVING VEHICLES AND RAILWAY TRACK AT HIGH SPEED INTERACTION BETWEEN MOVING VEHICLES AND RAILWAY TRACK AT HIGH SPEED Prof.Dr.Ir. C. Esveld Professor of Railway Engineering TU Delft, The Netherlands Dr.Ir. A.W.M. Kok Associate Professor of Railway Engineering

More information

Detailing of Reinforcment in Concrete Structures

Detailing of Reinforcment in Concrete Structures Chapter 8 Detailing of Reinforcment in Concrete Structures 8.1 Scope Provisions of Sec. 8.1 and 8.2 of Chapter 8 shall apply for detailing of reinforcement in reinforced concrete members, in general. For

More information

IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT

IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT International Journal of Civil Engineering and Technology (IJCIET) Volume 7, Issue 2, March-April 2016, pp. 117 127, Article ID: IJCIET_07_02_009 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=7&itype=2

More information

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column

Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend

More information

Problem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions

Problem 1: Computation of Reactions. Problem 2: Computation of Reactions. Problem 3: Computation of Reactions Problem 1: Computation of Reactions Problem 2: Computation of Reactions Problem 3: Computation of Reactions Problem 4: Computation of forces and moments Problem 5: Bending Moment and Shear force Problem

More information

Chapter 8. Flexural Analysis of T-Beams

Chapter 8. Flexural Analysis of T-Beams Chapter 8. Flexural Analysis of T-s 8.1. Reading Assignments Text Chapter 3.7; ACI 318, Section 8.10. 8.2. Occurrence and Configuration of T-s Common construction type.- used in conjunction with either

More information

DESIGN OF PRESTRESSED BARRIER CABLE SYSTEMS

DESIGN OF PRESTRESSED BARRIER CABLE SYSTEMS 8601 North Black Canyon Highway Suite 103 Phoenix, AZ 8501 For Professionals Engaged in Post-Tensioning Design Issue 14 December 004 DESIGN OF PRESTRESSED BARRIER CABLE SYSTEMS by James D. Rogers 1 1.0

More information

Fire safety in timber buildings

Fire safety in timber buildings Fire safety in timber buildings Introduction Fire spread in buildings is a risk to life safety for which the Building Regulations (for England and Wales 1,2, Scotland 3 and Northern Ireland 4 ) aims to

More information

Eurocodes Background and Applications

Eurocodes Background and Applications Eurocodes Background and Applications Eurocode example: Actions on a six storey building 18-2 February 28 Prepared by: Kirstine Bak-Kristensen vend Ole Hansen 2 TABLE OF CONTENT 1. ntroduction... 3 2.

More information

New approaches in Eurocode 3 efficient global structural design

New approaches in Eurocode 3 efficient global structural design New approaches in Eurocode 3 efficient global structural design Part 1: 3D model based analysis using general beam-column FEM Ferenc Papp* and József Szalai ** * Associate Professor, Department of Structural

More information

Rigid and Braced Frames

Rigid and Braced Frames Rigid Frames Rigid and raced Frames Rigid frames are identified b the lack of pinned joints within the frame. The joints are rigid and resist rotation. The ma be supported b pins or fied supports. The

More information

Field Damage Inspection and Static Load Test Analysis of Jiamusi Highway Prestressed Concrete Bridge in China

Field Damage Inspection and Static Load Test Analysis of Jiamusi Highway Prestressed Concrete Bridge in China Advanced Materials Research Vols. 163-167 (2011) pp 1147-1156 Online available since 2010/Dec/06 at www.scientific.net (2011) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amr.163-167.1147

More information

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.

When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs

More information

MacroFlo Opening Types User Guide <Virtual Environment> 6.0

MacroFlo Opening Types User Guide <Virtual Environment> 6.0 MacroFlo Opening Types User Guide 6.0 Page 1 of 18 Contents 1. Introduction...4 2. What Are Opening Types?...5 3. MacroFlo Opening Types Manager Interface...5 3.1. Add... 5 3.2. Reference

More information

Design Manual to BS8110

Design Manual to BS8110 Design Manual to BS8110 February 2010 195 195 195 280 280 195 195 195 195 195 195 280 280 195 195 195 The specialist team at LinkStudPSR Limited have created this comprehensive Design Manual, to assist

More information

Green Thread Product Data

Green Thread Product Data Green Thread Product Data Applications Dilute Acids Caustics Produced Water Industrial Waste Hot Water Condensate Return Materials and Construction All pipe manufactured by filament winding process using

More information

HUS-A 6 / HUS-H 6 / HUS-I 6 / HUS-P 6 Screw anchor in precast prestressed hollow core slabs

HUS-A 6 / HUS-H 6 / HUS-I 6 / HUS-P 6 Screw anchor in precast prestressed hollow core slabs HUS-A 6 / HUS-H 6 / HUS-I 6 / HUS-P 6 Screw anchor in precast Anchor version HUS-A 6 Screw with hex head HUS-H 6 Screw with hex head HUS-I 6 Screw with hex head Benefits - Quick and easy setting - Low

More information

Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods

Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods G. Kaklauskas, Vilnius Gediminas Technical University, 1223 Vilnius, Lithuania (gintaris.kaklauskas@st.vtu.lt) V.

More information

Module 7 (Lecture 24 to 28) RETAINING WALLS

Module 7 (Lecture 24 to 28) RETAINING WALLS Module 7 (Lecture 24 to 28) RETAINING WALLS Topics 24.1 INTRODUCTION 24.2 GRAVITY AND CANTILEVER WALLS 24.3 PROPORTIONING RETAINING WALLS 24.4 APPLICATION OF LATERAL EARTH PRESSURE THEORIES TO DESIGN 24.5

More information

9.3 Two-way Slabs (Part I)

9.3 Two-way Slabs (Part I) 9.3 Two-way Slabs (Part I) This section covers the following topics. Introduction Analysis and Design Features in Modeling and Analysis Distribution of Moments to Strips 9.3.1 Introduction The slabs are

More information

EN 1997-1 Eurocode 7. Section 10 Hydraulic Failure Section 11 Overall Stability Section 12 Embankments. Trevor L.L. Orr Trinity College Dublin Ireland

EN 1997-1 Eurocode 7. Section 10 Hydraulic Failure Section 11 Overall Stability Section 12 Embankments. Trevor L.L. Orr Trinity College Dublin Ireland EN 1997 1: Sections 10, 11 and 12 Your logo Brussels, 18-20 February 2008 Dissemination of information workshop 1 EN 1997-1 Eurocode 7 Section 10 Hydraulic Failure Section 11 Overall Stability Section

More information

Excerpts from the Canadian National Building Code (NBC)

Excerpts from the Canadian National Building Code (NBC) Excerpts from the Canadian National Building Code (NBC) Reproduced here with Permission of the Copyright Owner, the National Research Council of Canada, Institute for Research in Construction. For more

More information

HUS-V Screw anchor. HUS-V Screw anchor. Basic loading data (for a single anchor) Mean ultimate resistance

HUS-V Screw anchor. HUS-V Screw anchor. Basic loading data (for a single anchor) Mean ultimate resistance HUS-V Screw anchor Anchor version HUS-V 8 / 10 Carbon steel concrete screw with hexagonal head Benefits - High productivity less drilling and fewer operations than with conventional anchors - Technical

More information

Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar,

Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar, Volume, Special Issue, ICSTSD Behaviour of Steel Bracing as a Global Retrofitting Technique Miss S. S. Nibhorkar M. E (Structure) Scholar, Civil Engineering Department, G. H. Raisoni College of Engineering

More information

5 G R A TINGS ENGINEERING DESIGN MANUAL. MBG Metal Bar Grating METAL BAR GRATING MANUAL MBG 534-12 METAL BAR GRATING NAAMM

5 G R A TINGS ENGINEERING DESIGN MANUAL. MBG Metal Bar Grating METAL BAR GRATING MANUAL MBG 534-12 METAL BAR GRATING NAAMM METAL BAR NAAMM GRATNG MANUAL MBG 534-12 5 G R A TNG NAAMM MBG 534-12 November 4, 2012 METAL BAR GRATNG ENGNEERNG DEGN MANUAL NAAMM MBG 534-12 November 4, 2012 5 G R A TNG MBG Metal Bar Grating A Division

More information

A Case Study Comparing Two Approaches for Applying Area Loads: Tributary Area Loads vs Shell Pressure Loads

A Case Study Comparing Two Approaches for Applying Area Loads: Tributary Area Loads vs Shell Pressure Loads 1 A Case Study Comparing Two Approaches for Applying Area Loads: Tributary Area Loads vs Shell Pressure Loads By Dr. Siriwut Sasibut (Application Engineer) S-FRAME Software Inc. #1158 13351 Commerce Parkway

More information

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE

SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,

More information

Prepared For San Francisco Community College District 33 Gough Street San Francisco, California 94103. Prepared By

Prepared For San Francisco Community College District 33 Gough Street San Francisco, California 94103. Prepared By Project Structural Conditions Survey and Seismic Vulnerability Assessment For SFCC Civic Center Campus 750 Eddy Street San Francisco, California 94109 Prepared For San Francisco Community College District

More information

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow.

The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow. 9.2 One-way Slabs This section covers the following topics. Introduction Analysis and Design 9.2.1 Introduction Slabs are an important structural component where prestressing is applied. With increase

More information

EN 1991-1-4:2005. Wind actions

EN 1991-1-4:2005. Wind actions EN 1991 Eurocode 1: Actions on structures Your logo Brussels, 18-20 February 2008 Dissemination of information workshop 1 EN 1991-1-4:2005 Wind actions EN 1991-1-4:2005 Contents Brussels, 18-20 February

More information

REVISION OF GUIDELINE FOR POST- EARTHQUAKE DAMAGE EVALUATION OF RC BUILDINGS IN JAPAN

REVISION OF GUIDELINE FOR POST- EARTHQUAKE DAMAGE EVALUATION OF RC BUILDINGS IN JAPAN 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska REVISION OF GUIDELINE FOR POST- EARTHQUAKE DAMAGE EVALUATION OF RC

More information

Formwork for Concrete

Formwork for Concrete UNIVERSITY OF WASHINGTON DEPARTMENT OF CONSTRUCTION MANAGEMENT CM 420 TEMPORARY STRUCTURES Winter Quarter 2007 Professor Kamran M. Nemati Formwork for Concrete Horizontal Formwork Design and Formwork Design

More information

Reinforced Concrete Design Project Five Story Office Building

Reinforced Concrete Design Project Five Story Office Building Reinforced Concrete Design Project Five Story Office Building Andrew Bartolini December 7, 2012 Designer 1 Partner: Shannon Warchol CE 40270: Reinforced Concrete Design Bartolini 2 Table of Contents Abstract...3

More information

June 2007 CHAPTER 7 - CULVERTS 7.0 CHAPTER 7 - CULVERTS 7.1 GENERAL

June 2007 CHAPTER 7 - CULVERTS 7.0 CHAPTER 7 - CULVERTS 7.1 GENERAL 7.0 7.1 GENERAL For the purpose of this manual, culverts are defined as structures that are completely surrounded by soil and located below the surface of the roadway parallel to the general direction

More information

Blast Proof Occupied Buildings

Blast Proof Occupied Buildings Blast Proof Occupied Buildings 1 1 Contents Presentation References Functional Specification Blast Resistant Building Basis for design Blast & impact loading Design modeling & analyses Preliminary design

More information

Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams

Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams Introduction to Beam Theory Area Moments of Inertia, Deflection, and Volumes of Beams Horizontal structural member used to support horizontal loads such as floors, roofs, and decks. Types of beam loads

More information

Tension Development and Lap Splice Lengths of Reinforcing Bars under ACI 318-02

Tension Development and Lap Splice Lengths of Reinforcing Bars under ACI 318-02 ENGINEERING DATA REPORT NUMBER 51 Tension Development and Lap Splice Lengths of Reinforcing Bars under ACI 318-02 A SERVICE OF THE CONCRETE REINFORCING STEEL INSTITUTE Introduction Section 1.2.1 in the

More information

CLASSIFICATION BOUNDARIES FOR STIFFNESS OF BEAM-TO- COLUMN JOINTS AND COLUMN BASES

CLASSIFICATION BOUNDARIES FOR STIFFNESS OF BEAM-TO- COLUMN JOINTS AND COLUMN BASES Nordic Steel Construction Conference 2012 Hotel Bristol, Oslo, Norway 5-7 September 2012 CLASSIFICATION BOUNDARIES FOR STIFFNESS OF BEAM-TO- COLUMN JOINTS AND COLUMN BASES Ina Birkeland a,*, Arne Aalberg

More information

RC Detailing to Eurocode 2

RC Detailing to Eurocode 2 RC Detailing to Eurocode 2 Jenny Burridge MA CEng MICE MIStructE Head of Structural Engineering Structural Eurocodes BS EN 1990 (EC0): BS EN 1991 (EC1): Basis of structural design Actions on Structures

More information

Guidelines for the Design of Post-Tensioned Floors

Guidelines for the Design of Post-Tensioned Floors Guidelines for the Design of Post-Tensioned Floors BY BIJAN O. AALAMI AND JENNIFER D. JURGENS his article presents a set of guidelines intended to T assist designers in routine post-tensioning design,

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Analysis of Statically Indeterminate Structures by the Matrix Force Method esson 11 The Force Method of Analysis: Frames Instructional Objectives After reading this chapter the student will be able

More information

EUROCODE 7 & POLISH PRACTICE

EUROCODE 7 & POLISH PRACTICE EUROCODE 7 & POLISH PRACTICE Implementation of Eurocode 7 in Poland Beata Gajewska Road and Bridge Research Institute In Poland the designing with limit states and partial factors was introduced in 1974.

More information

DSM http://www.dsmmfg.com 1 (800) 886-6376

DSM http://www.dsmmfg.com 1 (800) 886-6376 DESIGN GUIDE FOR BENT SHEET METAL This guide discusses how the bends are made, what thicknesses of sheet metal are commonly used, recommended bend radius to use when modeling the part, some practical limits

More information

Load and Resistance Factor Geotechnical Design Code Development in Canada. by Gordon A. Fenton Dalhousie University, Halifax, Canada

Load and Resistance Factor Geotechnical Design Code Development in Canada. by Gordon A. Fenton Dalhousie University, Halifax, Canada Load and Resistance Factor Geotechnical Design Code Development in Canada by Gordon A. Fenton Dalhousie University, Halifax, Canada 1 Overview 1. Past: Where we ve been allowable stress design partial

More information

Blast Resistant Building BP Refinery Rotterdam

Blast Resistant Building BP Refinery Rotterdam Blast Resistant Building BP Refinery Rotterdam 14 May, 2008 1 1 Contents Presentation Introduction KCI Functional Specification Blast Resistant Building Basis for design Blast & impact loading Design modeling

More information

Seismic performance evaluation of an existing school building in Turkey

Seismic performance evaluation of an existing school building in Turkey CHALLENGE JOURNAL OF STRUCTURAL MECHANICS 1 (4) (2015) 161 167 Seismic performance evaluation of an existing school building in Turkey Hüseyin Bilgin * Department of Civil Engineering, Epoka University,

More information

DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS

DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS 1 th Canadian Masonry Symposium Vancouver, British Columbia, June -5, 013 DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS Vladimir G. Haach 1, Graça Vasconcelos and Paulo

More information

Design of pile foundations following Eurocode 7-Section 7

Design of pile foundations following Eurocode 7-Section 7 Brussels, 18-20 February 2008 Dissemination of information workshop 1 Workshop Eurocodes: background and applications Brussels, 18-20 Februray 2008 Design of pile foundations following Eurocode 7-Section

More information

NATIONAL ANNEX TO STANDARD SFS-EN 1990 EUROCODE BASIS OF STRUCTURAL DESIGN

NATIONAL ANNEX TO STANDARD SFS-EN 1990 EUROCODE BASIS OF STRUCTURAL DESIGN ANNEX 1 NATIONAL ANNEX TO STANDARD SFS-EN 1990 EUROCODE BASIS OF STRUCTURAL DESIGN Preface This national annex is used together with Standard SFS-EN 1990:2002. This national annex sets out: a) the national

More information

INTRODUCTION TO BEAMS

INTRODUCTION TO BEAMS CHAPTER Structural Steel Design LRFD Method INTRODUCTION TO BEAMS Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural Steel Design and Analysis

More information

How to secure your property after a disaster

How to secure your property after a disaster How to secure your property after a disaster The Red Guide to Recovery HOuse secured properly Board-Up of Windows, Doors and Roof Hole. Lot secured with Perimeter Fencing. Fires, floods, tornadoes, hurricanes,

More information

Weather Resistant Louvres

Weather Resistant Louvres L---e Weather Resistant Louvres Type WSL Untreated aluminium Contents Application Realisation Safety instructions Contents Application Realisation Safety instructions Dimensions Sizes Installation Accessories

More information

HUS-HR, CR Screw anchor, stainless steel

HUS-HR, CR Screw anchor, stainless steel HUS-HR, CR Screw anchor, Anchor version HUS-HR 6 / 8 / 10 / 14 Stainless steel concrete Screw with hexagonal head HUS-CR 10 Stainless steel concrete screw with countersunk head Benefits - High productivity

More information

Elevating Your House. Introduction CHAPTER 5

Elevating Your House. Introduction CHAPTER 5 CHAPTER 5 Elevating Your House Introduction One of the most common retrofitting methods is elevating a house to a required or desired Flood Protection Elevation (FPE). When a house is properly elevated,

More information

Numerical modelling of shear connection between concrete slab and sheeting deck

Numerical modelling of shear connection between concrete slab and sheeting deck 7th fib International PhD Symposium in Civil Engineering 2008 September 10-13, Universität Stuttgart, Germany Numerical modelling of shear connection between concrete slab and sheeting deck Noémi Seres

More information

DESIGN OF BLAST RESISTANT BUILDINGS IN AN LNG PROCESSING PLANT

DESIGN OF BLAST RESISTANT BUILDINGS IN AN LNG PROCESSING PLANT DESIGN OF BLAST RESISTANT BUILDINGS IN AN LNG PROCESSING PLANT Troy Oliver 1, Mark Rea 2 ABSTRACT: This paper provides an overview of the work undertaken in the design of multiple buildings for one of

More information

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for:

REINFORCED CONCRETE. Reinforced Concrete Design. A Fundamental Approach - Fifth Edition. Walls are generally used to provide lateral support for: HANDOUT REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition RETAINING WALLS Fifth Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering

More information

One-third of all fatalities in the U.S. construction

One-third of all fatalities in the U.S. construction Guardrail systems: Fall prevention for floor and wall openings and open-sided floors One-third of all fatalities in the U.S. construction industry result from falls from elevations. Falls from elevations

More information

The elements used in commercial codes can be classified in two basic categories:

The elements used in commercial codes can be classified in two basic categories: CHAPTER 3 Truss Element 3.1 Introduction The single most important concept in understanding FEA, is the basic understanding of various finite elements that we employ in an analysis. Elements are used for

More information

Module 5 (Lectures 17 to 19) MAT FOUNDATIONS

Module 5 (Lectures 17 to 19) MAT FOUNDATIONS Module 5 (Lectures 17 to 19) MAT FOUNDATIONS Topics 17.1 INTRODUCTION Rectangular Combined Footing: Trapezoidal Combined Footings: Cantilever Footing: Mat foundation: 17.2 COMMON TYPES OF MAT FOUNDATIONS

More information

ETABS. Integrated Building Design Software. Concrete Shear Wall Design Manual. Computers and Structures, Inc. Berkeley, California, USA

ETABS. Integrated Building Design Software. Concrete Shear Wall Design Manual. Computers and Structures, Inc. Berkeley, California, USA ETABS Integrated Building Design Software Concrete Shear Wall Design Manual Computers and Structures, Inc. Berkeley, California, USA Version 8 January 2002 Copyright The computer program ETABS and all

More information

Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids

Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Lift and Drag on an Airfoil ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction In this lab the characteristics of airfoil lift, drag,

More information

STRUSOFT EXAMPLES PRE-STRESS 6.4

STRUSOFT EXAMPLES PRE-STRESS 6.4 EXAMPLES PRE-STRESS 6.4 STEP BY STEP EXAMPLES 6.o4.oo5-2o14-o7-o18 Page 1 CONTENTS 1 BASIC CONCEPT 2 1.1 CODES 2 1.2 LAYOUT OF THE PROGRAM 3 1.3 LIMITATIONS IN THE CURRENT VERSION 3 2 EXAMPLES 4 2.1 MODELLING

More information