Barbie Bungee Jump Lab

Size: px
Start display at page:

Download "Barbie Bungee Jump Lab"

Transcription

1 Cyriax, Pereira, Ritota 1 Georgia Cyriax, Sophia Pereira, and Michelle Ritota Mrs. Rakowski Honors Physics: Period 3 11 March 2014 Purpose: Barbie Bungee Jump Lab The purpose is to design a bungee jump ride for a Barbie doll. To do this we must find the correct number of rubber bands used to reach the distance from the top of the balcony in the science wing to 10 cm off the ground. Hypothesis: 1. If we create a scaled down version of the bungee jump from the balcony, we should be able to calculate how many rubber bands are needed to successfully achieve the right distance for Barbie s bungee jump. 2. If we use conservation of energy principles, then we will be able to calculate the number of bands that are needed to successfully achieve the right distance for Barbie s bungee jump. Procedure for Hypothesis 1: Independent variable number of rubber bands Dependent variable the distance the rubber bands stretch Controls Barbie s height, Barbie s mass, type of rubber bands

2 Cyriax, Pereira, Ritota 2 1. Gather materials needed for lab including Barbie, rubber bands, meter sticks, camera, and tape. 2. Attach two meter sticks to a wall or door with tape in a continuous line and two rubber bands to Barbie s ankles. See the picture of the apparatus to set up correctly. 3. Hold Barbie at the highest point of the meter sticks and drop her. Use a camera or phone to record the fall. 4. Once dropped, measure lowest point Barbie s head reaches on meter sticks using the recording and record data in the data table. 5. Perform two other trials and record the data. Then find average centimeters Barbie fell to. 6. Repeat steps 3 to 5 with three rubber bands and then four rubber bands. 7. Create an Average Distance vs. Number of Rubber Bands chart out of the recorded data. 8. Use a trendline to create an equation to calculate the number of rubber bands required for the bungee jump.

3 Cyriax, Pereira, Ritota 3 Procedure for Hypothesis 2: Independent variable Force applied on rubber bands (dependent on the mass of the weights) Dependent variable the distance the rubber bands stretch Controls Type of rubber bands 1. Measure Barbie's mass and height and record the data. 2. Determine the spring constant of the rubber bands by a. Setting up the apparatus shown below. b. Hang a weight of 0.05 grams on the rubber band and record the distance the rubber band stretched in meters. c. Repeat step b over with weights of 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35 grams. d. Create a Force vs. Distance of Rubber Band chart with a linear trendline and

4 Cyriax, Pereira, Ritota 4 measure the slope. 3. Calculate the gravitational potential and elastic potential energy of Barbie before she jumps using the equation GPE= mgh. 4. Calculate how much the rubber bands will stretch using the equation EPE= ½kx^2. 5. Determine the number of rubber bands needed for Barbies bungee jump by using adding the distance of stretch or compression, Barbie s height, and 10 centimeters. Then subtract the numbers from the height of the balcony. Finally divide that number with the length of one rubber band to get the answer. Data/Observations: First Hypothesis: # of rubber bands Trial 1 (cm) Trial 2 (cm) Trial 3 (cm) Average (cm) Events Observed: We found it hard to measure the distance the rubber band stretched to because it happened in an instant. Even when recording the fall of Barbie and slowing down the video, exact measurement were almost impossible to achieve. We had trouble finding a suitable place to conduct the experiment. At first we tried to conduct it without a wall but finding the exact measurement to drop it from was too challenging. The solution to this problem was using the wall as the location, but even the wall had its flaws because it didn t allow the Barbie to drop like it would drop from a balcony.

5 Cyriax, Pereira, Ritota 5 Counting the number of rubber bands was a little off as well. There was part of the rubber band used to like together the next object and therefore creating some error within the experiment. Analysis of data: The range of the independent variable was 2 to 4 rubber bands. This was sufficient enough for the lab because the amount of data collected from the independent variables was used to increase the accuracy of the result. The values found for each trial were not consistent; instead they changed in small intervals either increasing or decreasing. Reproducing the data will be very difficult because replicating inconsistent data is impossible and the rubber bands always end up stretching out after being tested on. Second Hypothesis: Force (N) Distance Rubber Bands Stretched (m) Events Observed: As usual, getting exact measurement was tricky because the weights got in the way of the ruler.

6 Cyriax, Pereira, Ritota 6 We noticed that when adding the weights, the rubber band was slowly stretching out and, before we knew it, the length of the rubber band after was different from when we started. Analysis of Data: The range of the independent variables was 0.49 to 3.43 Newtons. This was sufficient enough for the lab because the amount of data collected from the independent variables was more than enough to increase the accuracy of the result. The values found for each trial were not consistent; instead they changed in similar but not accurate intervals either increasing or decreasing. Reproducing the data will be difficult because replicating inconsistent data is near to impossible and the rubber bands always end up stretching out after being tested on. Analysis of Data: First Hypothesis:

7 Cyriax, Pereira, Ritota 7 Average Distance (m) = 0.25(Number of Rubber Bands) The graph represents the relationship between the number of rubber bands used and average distance it stretched. The rubber band stretches about 0.25 meters per rubber band with the additional height of Barbie added. The correlation between the number of rubber bands used and average distance it stretched is that every time the number of rubber bands used is multiplied by 0.25 and is added to , it equals the average distance the Barbie will reach. Second Hypothesis:

8 Cyriax, Pereira, Ritota 8 Distance (m) = [Force (N)] The graph represents the relationship between the amount of force applied to the rubber bands used and distance it stretched. The rubber band stretches about meters per Newton applied. The correlation between the amount of force applied to the rubber bands used and distance it stretched is that every time the amount of force applied to the rubber bands is multiplied by and is added to , it equals the distance the rubber band will stretch. This data was used to find the spring constant of the rubber bands which is 10000/691. This was found by using the reciprocal of the slope from the graph. Calculations Using Data Collected: (see attached papers) Results: Hypothesis 1: 18-rubber bands - too short

9 Cyriax, Pereira, Ritota 9 Hypothesis 2: 25 rubber bands- too long Additional trials: 24 rubber bands - too long 23 rubber bands - just right Percent Errors: (see separate piece of paper) Conclusion: The purpose of this experiment was to design a bungee jump ride for a Barbie doll by calculating the number of rubber bands needed to reach the distance from the top of the balcony in the science wing to ten centimeters off the ground. We had two methods of conducting our experiment. One method was determining the relationship between the average drop height versus the number of rubber bands required. The second method was to use conservation of energy principles. In our first model, we hypothesized that we could create a scaled down version of the bungee jump from the balcony, we should be able to calculate how many rubber bands are needed to successfully achieve the right distance for Barbie s bungee jump. After creating the apparatus, we used different amounts of rubber bands to measure the distance the Barbie doll fell. We then created a graph and, using the equation of the graph, we calculated how many rubber bands were needed for Barbie s bungee jump. The independent variable of this experiment were the number of rubber bands we used. The dependent variable was the distance the rubber bands stretched. The controls of the experiment were Barbie s height, Barbie s mass, type of rubber bands. To ensure that our constants remain the same, we made sure that we had ample rubber bands of the same type stashed away and we chose the same barbie when

10 Cyriax, Pereira, Ritota 10 conducting the experiment. During this part of the experiment, we found it hard to measure the distance the rubber band stretched to because it happened in an instant. Even when recording the fall of Barbie and slowing down the video, exact measurement were almost impossible to achieve. We also had trouble finding a suitable place to conduct the experiment. At first we tried to conduct it without a wall but finding the exact measurement to drop it from was too challenging. The solution to this problem was using the wall as the location, but even the wall had its flaws because it didn t allow the Barbie to drop like it would drop from a balcony. Not only that but, counting the number of rubber bands was a little off as well. There was part of the rubber band used to like together the next object and therefore creating some error within the experiment. The range of the independent variable was 2 to 4 rubber bands. This was sufficient enough for the lab because the amount of data collected from the independent variables was used to increase the accuracy of the result. Moreover, the values found for each trial were not consistent; instead they changed in small intervals either increasing or decreasing. Reproducing the data will be very difficult because replicating inconsistent data is impossible and the rubber bands always end up stretching out after being tested on. The graph of this data represents the relationship between the number of rubber bands used and average distance it stretched. The rubber band stretches about 0.25 meters per rubber band with the additional height of Barbie added. The numerical version of this is Average Distance (m) = 0.25(Number of Rubber Bands) The correlation between the number of rubber bands used and average distance it stretched is that every time the number of rubber bands used is multiplied by 0.25 and is added to , it equals the average distance the Barbie will reach. Once calculated, we found out that the number of rubber bands needed was 18 rubber

11 Cyriax, Pereira, Ritota 11 bands. In our second method, we hypothesized that if we use conservation of energy principles, then we will be able to calculate the number of bands that are needed to successfully achieve the right distance for Barbie s bungee jump. We used various calculations to get the exact number of rubber bands needed for the Barbie jump. One part of the calculations was to calculate the spring constant of the rubber bands. To do this, we tested one rubber bands to see how far it will stretch when more weight was added. For that data, we created an force versus distance of rubber band chart and used the equation of the graph to find the spring constant. During this part of the experiment, we had getting exact measurements because the weights got in the way of the ruler. We also noticed that when adding the weights, the rubber band was slowly stretching out and, before we knew it, the length of the rubber band after was different from when we started. The range of the independent variable in our data table was 0.49 to 3.43 Newtons. This was sufficient enough for the lab because the amount of data collected from the independent variables was more than enough to increase the accuracy of the result. The values found for each trial were not consistent; instead they changed in similar but not accurate intervals either increasing or decreasing. Reproducing the data will be difficult because replicating inconsistent data is near to impossible and the rubber bands always end up stretching out after being tested on. The graph of the data recorded represents the relationship between the amount of force applied to the rubber bands used and distance it stretched. The rubber band stretches about meters per Newton applied. The numerical equation is Distance (m) = [Force (N)] The correlation between the amount of force applied to the rubber bands used and

12 Cyriax, Pereira, Ritota 12 distance it stretched is that every time the amount of force applied to the rubber bands is multiplied by and is added to , it equals the distance the rubber band will stretch. This data was then used to find the spring constant of the rubber bands which is 10000/691. This was found by using the reciprocal of the slope from the graph. After finishing the rest of the calculations, we found out the number of rubber bands needed was 25 rubber bands. Next, we tested our results from our two methods. On our first trial and method of dropping the Barbie from the balcony was with eighteen rubber bands. After dropping her, we found that we did not have a sufficient number of rubber bands, as Barbie had still been elevated too high off the ground. In our second trial and method we attached twenty-five rubber bands to Barbie, but we had found that it was too long as she had hit the ground. Then we tested to see what would be the perfect amount of rubber bands to use for the bungee jump. In a third trial using twenty-four rubber bands, we found that there were still too many rubber bands as it had been slightly too long. In our final trial we attached twenty-three rubber bands to Barbie and had found that it was the sufficient amount which enabled her to be dropped from the top of the balcony and still remain about ten centimeters off the ground. Our first hypothesis didn t work out very well because the number of rubber bands was way less than actually needed. Because of this, the percent of error was about 21.74%. In our second hypothesis, it was shown that it more accurate. We were only off by two rubber bands, which made the percent of error about 8.7%. Overall, the second method of using conservation of energy principles was the best method of all. Reflection: From this experiment we had a taste of the hard work and diligence that must be put in by engineers to find accurate measurements for making safe and effective amusement park bungee

13 Cyriax, Pereira, Ritota 13 jumps. We also applied what we learned about conservation of energy principles to almost-reallife situations. In the future we may be able to more accurately measure the distance she reached by making sections on the meter sticks with tape that can more precisely direct us to the region in which Barbie s head reaches with each set of rubber bands, as well as using a camera to record her drop. If we had more precise ways of gathering that data, we might have been able to prevent much of the inaccuracy in our data. Inputting more research about how amusement park bungee jumps are created could have helped as well.

14

15

Barbie Bungee Jump. High School Physics

Barbie Bungee Jump. High School Physics Barbie Bungee Jump High School Physics Kris Bertelsen Augusta Middle/High School Concept: The change in energy storage systems during a bungee jump activity demonstrates how energy can be transferred from

More information

Title ID Number Sequence and Duration Age Level Essential Question Learning Objectives. Lead In

Title ID Number Sequence and Duration Age Level Essential Question Learning Objectives. Lead In Title ID Number Sequence and Duration Age Level Essential Question Learning Objectives Lesson Activity Barbie Bungee (75-80 minutes) MS-M-A1 Lead In (15-20 minutes) Activity (45-50 minutes) Closure (10

More information

TITLE: Barbie Bungee

TITLE: Barbie Bungee TITLE: Barbie Bungee Cube Fellow: Rachelle R. Bouchat Teacher Mentor: Pam Callahan Goal: The goal of this lesson is to have students use linear regression to determine a function relating the number of

More information

(Equation 1) to determine the cord s characteristics. Hooke s Law represents the

(Equation 1) to determine the cord s characteristics. Hooke s Law represents the Using Hooke s Law to Solve for Length of Bungee Cord Needed for Egg Drop Introduction This experiment is the second part of a three- part experiment. The first two lead up to the final in which we aim

More information

Acceleration of Gravity Lab Basic Version

Acceleration of Gravity Lab Basic Version Acceleration of Gravity Lab Basic Version In this lab you will explore the motion of falling objects. As an object begins to fall, it moves faster and faster (its velocity increases) due to the acceleration

More information

Bungee Constant per Unit Length & Bungees in Parallel. Skipping school to bungee jump will get you suspended.

Bungee Constant per Unit Length & Bungees in Parallel. Skipping school to bungee jump will get you suspended. Name: Johanna Goergen Section: 05 Date: 10/28/14 Partner: Lydia Barit Introduction: Bungee Constant per Unit Length & Bungees in Parallel Skipping school to bungee jump will get you suspended. The purpose

More information

Energy transformations

Energy transformations Energy transformations Objectives Describe examples of energy transformations. Demonstrate and apply the law of conservation of energy to a system involving a vertical spring and mass. Design and implement

More information

Spring Force Constant Determination as a Learning Tool for Graphing and Modeling

Spring Force Constant Determination as a Learning Tool for Graphing and Modeling NCSU PHYSICS 205 SECTION 11 LAB II 9 FEBRUARY 2002 Spring Force Constant Determination as a Learning Tool for Graphing and Modeling Newton, I. 1*, Galilei, G. 1, & Einstein, A. 1 (1. PY205_011 Group 4C;

More information

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives to verify how the distance of a freely-falling body varies with time to investigate whether the velocity

More information

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 5 THE SPRING CONSTANT

GENERAL SCIENCE LABORATORY 1110L Lab Experiment 5 THE SPRING CONSTANT GENERAL SCIENCE LABORATORY 1110L Lab Experiment 5 THE SPRING CONSTANT Objective: To determine the spring constant of a spiral spring Apparatus: Pendulum clamp, aluminum pole, large clamp, assorted masses,

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

Prelab Exercises: Hooke's Law and the Behavior of Springs

Prelab Exercises: Hooke's Law and the Behavior of Springs 59 Prelab Exercises: Hooke's Law and the Behavior of Springs Study the description of the experiment that follows and answer the following questions.. (3 marks) Explain why a mass suspended vertically

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

Physics 3 Summer 1989 Lab 7 - Elasticity

Physics 3 Summer 1989 Lab 7 - Elasticity Physics 3 Summer 1989 Lab 7 - Elasticity Theory All materials deform to some extent when subjected to a stress (a force per unit area). Elastic materials have internal forces which restore the size and

More information

Experiment 2: Conservation of Momentum

Experiment 2: Conservation of Momentum Experiment 2: Conservation of Momentum Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Use the equations

More information

AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

Bounce! Name. Be very careful with the balls. Do not throw them DROP the balls as instructed in the procedure.

Bounce! Name. Be very careful with the balls. Do not throw them DROP the balls as instructed in the procedure. Bounce 1 Name Bounce! Be very careful with the balls. Do not throw them DROP the balls as instructed in the procedure. Background information: Energy causes things to happen. During the day, the sun gives

More information

General Physics Lab: Atwood s Machine

General Physics Lab: Atwood s Machine General Physics Lab: Atwood s Machine Introduction One may study Newton s second law using a device known as Atwood s machine, shown below. It consists of a pulley and two hanging masses. The difference

More information

Work, Energy and Power

Work, Energy and Power Name: KEY Work, Energy and Power Objectives: 1. To understand work and its relation to energy. 2. To understand how energy can be transformed from one form into another. 3. To compute the power from the

More information

Lesson 3 - Understanding Energy (with a Pendulum)

Lesson 3 - Understanding Energy (with a Pendulum) Lesson 3 - Understanding Energy (with a Pendulum) Introduction This lesson is meant to introduce energy and conservation of energy and is a continuation of the fundamentals of roller coaster engineering.

More information

Kinetic and Potential Energy

Kinetic and Potential Energy Kinetic and Potential Energy Vocabulary: kinetic energy energy of movement potential energy stored energy potential chemical energy stored energy released by chemical changes Comprehension Questions 1.

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

More information

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5 Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

More information

ENERGYand WORK (PART I and II) 9-MAC

ENERGYand WORK (PART I and II) 9-MAC ENERGYand WORK (PART I and II) 9-MAC Purpose: To understand work, potential energy, & kinetic energy. To understand conservation of energy and how energy is converted from one form to the other. Apparatus:

More information

Conservation of Energy Physics Lab VI

Conservation of Energy Physics Lab VI Conservation of Energy Physics Lab VI Objective This lab experiment explores the principle of energy conservation. You will analyze the final speed of an air track glider pulled along an air track by a

More information

ACCELERATION DUE TO GRAVITY

ACCELERATION DUE TO GRAVITY EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities

More information

Speed, Velocity and Acceleration Lab

Speed, Velocity and Acceleration Lab Speed, Velocity and Acceleration Lab Name In this lab, you will compare and learn the differences between speed, velocity, and acceleration. You will have two days to complete the lab. There will be some

More information

Kinetic Friction. Experiment #13

Kinetic Friction. Experiment #13 Kinetic Friction Experiment #13 Joe Solution E00123456 Partner - Jane Answers PHY 221 Lab Instructor Chuck Borener Thursday, 11 AM 1 PM Lecture Instructor Dr. Jacobs Abstract In this experiment, we test

More information

Three Methods for Calculating the Buoyant Force Gleue: Physics

Three Methods for Calculating the Buoyant Force Gleue: Physics Three Methods for Calculating the Buoyant Force Gleue: Physics Name Hr. The Buoyant Force (F b ) is the apparent loss of weight for an object submerged in a fluid. For example if you have an object immersed

More information

Rotational Motion: Moment of Inertia

Rotational Motion: Moment of Inertia Experiment 8 Rotational Motion: Moment of Inertia 8.1 Objectives Familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body

More information

Physics 40 Lab 1: Tests of Newton s Second Law

Physics 40 Lab 1: Tests of Newton s Second Law Physics 40 Lab 1: Tests of Newton s Second Law January 28 th, 2008, Section 2 Lynda Williams Lab Partners: Madonna, Hilary Clinton & Angie Jolie Abstract Our primary objective was to test the validity

More information

To learn the proper method for conducting and analyzing a laboratory experiment. To determine the value of pi.

To learn the proper method for conducting and analyzing a laboratory experiment. To determine the value of pi. Name Date Regents Physics Lab #3R Period Mrs. Nadworny Partners: (1 pt) Circumference vs. Diameter Due Date Purpose To learn the proper method for conducting and analyzing a laboratory experiment. To determine

More information

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential 8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy

More information

E X P E R I M E N T 8

E X P E R I M E N T 8 E X P E R I M E N T 8 Torque, Equilibrium & Center of Gravity Produced by the Physics Staff at Collin College Copyright Collin College Physics Department. All Rights Reserved. University Physics, Exp 8:

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information

Work and Energy. Physics 1425 Lecture 12. Michael Fowler, UVa

Work and Energy. Physics 1425 Lecture 12. Michael Fowler, UVa Work and Energy Physics 1425 Lecture 12 Michael Fowler, UVa What is Work and What Isn t? In physics, work has a very restricted meaning! Doing homework isn t work. Carrying somebody a mile on a level road

More information

Oscillations: Mass on a Spring and Pendulums

Oscillations: Mass on a Spring and Pendulums Chapter 3 Oscillations: Mass on a Spring and Pendulums 3.1 Purpose 3.2 Introduction Galileo is said to have been sitting in church watching the large chandelier swinging to and fro when he decided that

More information

Conservation of Momentum and Energy

Conservation of Momentum and Energy Conservation of Momentum and Energy OBJECTIVES to investigate simple elastic and inelastic collisions in one dimension to study the conservation of momentum and energy phenomena EQUIPMENT horizontal dynamics

More information

AP Physics 1. Calculating the value of Pi Example 2015 2016 1 2

AP Physics 1. Calculating the value of Pi Example 2015 2016 1 2 AP Physics 1 Kevin J. Kukla 201 2016 1 AP Physics 1 Lab Journal Guidelines Calculating the value of Pi Example 201 2016 1 2 Lab Journal Guidelines (I) Purpose of Lab Lab Question: The purpose of this lab

More information

Force and Motion: Ramp It Up

Force and Motion: Ramp It Up Force and Motion: Grade Level: 4-5 Time: 3 class periods By: Carrie D. Perry (Bedford County Public Schools) Overview After watching an engaging video on Olympic alpine skiers, students then participate

More information

Physics Lab Report Guidelines

Physics Lab Report Guidelines Physics Lab Report Guidelines Summary The following is an outline of the requirements for a physics lab report. A. Experimental Description 1. Provide a statement of the physical theory or principle observed

More information

REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52

REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52 REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts which are taught in the specified math course.

More information

Accelerometers: Theory and Operation

Accelerometers: Theory and Operation 12-3776C Accelerometers: Theory and Operation The Vertical Accelerometer Accelerometers measure accelerations by measuring forces. The vertical accelerometer in this kit consists of a lead sinker hung

More information

Determining the Acceleration Due to Gravity

Determining the Acceleration Due to Gravity Chabot College Physics Lab Scott Hildreth Determining the Acceleration Due to Gravity Introduction In this experiment, you ll determine the acceleration due to earth s gravitational force with three different

More information

Kinetic Friction. Experiment #13

Kinetic Friction. Experiment #13 Kinetic Friction Experiment #13 Joe Solution E01234567 Partner- Jane Answers PHY 221 Lab Instructor- Nathaniel Franklin Wednesday, 11 AM-1 PM Lecture Instructor Dr. Jacobs Abstract The purpose of this

More information

Proof of the conservation of momentum and kinetic energy

Proof of the conservation of momentum and kinetic energy Experiment 04 Proof of the conservation of momentum and kinetic energy By Christian Redeker 27.10.2007 Contents 1.) Hypothesis...3 2.) Diagram...7 3.) Method...7 3.1) Apparatus...7 3.2) Procedure...7 4.)

More information

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

More information

Lab 1: The metric system measurement of length and weight

Lab 1: The metric system measurement of length and weight Lab 1: The metric system measurement of length and weight Introduction The scientific community and the majority of nations throughout the world use the metric system to record quantities such as length,

More information

Potential / Kinetic Energy Remedial Exercise

Potential / Kinetic Energy Remedial Exercise Potential / Kinetic Energy Remedial Exercise This Conceptual Physics exercise will help you in understanding the Law of Conservation of Energy, and its application to mechanical collisions. Exercise Roles:

More information

Unit 3 Work and Energy Suggested Time: 25 Hours

Unit 3 Work and Energy Suggested Time: 25 Hours Unit 3 Work and Energy Suggested Time: 25 Hours PHYSICS 2204 CURRICULUM GUIDE 55 DYNAMICS Work and Energy Introduction When two or more objects are considered at once, a system is involved. To make sense

More information

Explore 3: Crash Test Dummies

Explore 3: Crash Test Dummies Explore : Crash Test Dummies Type of Lesson: Learning Goal & Instructiona l Objectives Content with Process: Focus on constructing knowledge through active learning. Students investigate Newton s first

More information

Rubber Band Race Car

Rubber Band Race Car Rubber Band Race Car Physical Science Unit Using LEGO Mindstorms NXT Copyright 2009 by Technically Learning 1 of 17 Overview: Through a series of hands-on activities, students will design a rubber band

More information

Spring Scale Engineering

Spring Scale Engineering Spring Scale Engineering Provided by TryEngineering - Lesson Focus Lesson focuses on the engineering behind building a spring scale and its use as a measuring device. Students work in teams to design,

More information

Measurement of Length, Mass, Volume and Density

Measurement of Length, Mass, Volume and Density Measurement of Length, Mass, Volume and Density Experimental Objective The objective of this experiment is to acquaint you with basic scientific conventions for measuring physical quantities. You will

More information

Laboratory Report Scoring and Cover Sheet

Laboratory Report Scoring and Cover Sheet Laboratory Report Scoring and Cover Sheet Title of Lab _Newton s Laws Course and Lab Section Number: PHY 1103-100 Date _23 Sept 2014 Principle Investigator _Thomas Edison Co-Investigator _Nikola Tesla

More information

HOOKE S LAW AND OSCILLATIONS

HOOKE S LAW AND OSCILLATIONS 9 HOOKE S LAW AND OSCILLATIONS OBJECTIVE To measure the effect of amplitude, mass, and spring constant on the period of a spring-mass oscillator. INTRODUCTION The force which restores a spring to its equilibrium

More information

1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time

1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time PHY132 Experiment 1 One Dimensional Horizontal Motion Position vs. time Velocity vs. time One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration

More information

Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43

Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

PENDULUM PERIODS. First Last. Partners: student1, student2, and student3

PENDULUM PERIODS. First Last. Partners: student1, student2, and student3 PENDULUM PERIODS First Last Partners: student1, student2, and student3 Governor s School for Science and Technology 520 Butler Farm Road, Hampton, VA 23666 April 13, 2011 ABSTRACT The effect of amplitude,

More information

Buoyant Force and Archimedes' Principle

Buoyant Force and Archimedes' Principle Buoyant Force and Archimedes' Principle Introduction: Buoyant forces keep Supertankers from sinking and party balloons floating. An object that is more dense than a liquid will sink in that liquid. If

More information

Experiment 9. The Pendulum

Experiment 9. The Pendulum Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum

More information

AP Physics 1 Summer Assignment

AP Physics 1 Summer Assignment AP Physics 1 Summer Assignment AP Physics 1 Summer Assignment Welcome to AP Physics 1. This course and the AP exam will be challenging. AP classes are taught as college courses not just college-level courses,

More information

9. Momentum and Collisions in One Dimension*

9. Momentum and Collisions in One Dimension* 9. Momentum and Collisions in One Dimension* The motion of objects in collision is difficult to analyze with force concepts or conservation of energy alone. When two objects collide, Newton s third law

More information

HSPA 10 CSI Investigation Height and Foot Length: An Exercise in Graphing

HSPA 10 CSI Investigation Height and Foot Length: An Exercise in Graphing HSPA 10 CSI Investigation Height and Foot Length: An Exercise in Graphing In this activity, you will play the role of crime scene investigator. The remains of two individuals have recently been found trapped

More information

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J 1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

More information

TESTING WHETHER THE TEMPERATURE OF A MAGNET WILL AFFECT HOW FAR ITS MAGNETIC FIELD IS

TESTING WHETHER THE TEMPERATURE OF A MAGNET WILL AFFECT HOW FAR ITS MAGNETIC FIELD IS TESTING WHETHER THE TEMPERATURE OF A MAGNET WILL AFFECT HOW FAR ITS MAGNETIC FIELD IS Kenan Balkas Cary Academy ABSTRACT The purpose of this experiment is about testing to see what the strengths will be

More information

Chapter 1 Lecture Notes: Science and Measurements

Chapter 1 Lecture Notes: Science and Measurements Educational Goals Chapter 1 Lecture Notes: Science and Measurements 1. Explain, compare, and contrast the terms scientific method, hypothesis, and experiment. 2. Compare and contrast scientific theory

More information

Interaction at a Distance

Interaction at a Distance Interaction at a Distance Lesson Overview: Students come in contact with and use magnets every day. They often don t consider that there are different types of magnets and that they are made for different

More information

Hands-On Data Analysis

Hands-On Data Analysis THE 2012 ROSENTHAL PRIZE for Innovation in Math Teaching Hands-On Data Analysis Lesson Plan GRADE 6 Table of Contents Overview... 3 Prerequisite Knowledge... 3 Lesson Goals.....3 Assessment.... 3 Common

More information

Simple Harmonic Motion Experiment. 1 f

Simple Harmonic Motion Experiment. 1 f Simple Harmonic Motion Experiment In this experiment, a motion sensor is used to measure the position of an oscillating mass as a function of time. The frequency of oscillations will be obtained by measuring

More information

Review Assessment: Lec 02 Quiz

Review Assessment: Lec 02 Quiz COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points

More information

OA4-13 Rounding on a Number Line Pages 80 81

OA4-13 Rounding on a Number Line Pages 80 81 OA4-13 Rounding on a Number Line Pages 80 81 STANDARDS 3.NBT.A.1, 4.NBT.A.3 Goals Students will round to the closest ten, except when the number is exactly halfway between a multiple of ten. PRIOR KNOWLEDGE

More information

Temperature Scales. The metric system that we are now using includes a unit that is specific for the representation of measured temperatures.

Temperature Scales. The metric system that we are now using includes a unit that is specific for the representation of measured temperatures. Temperature Scales INTRODUCTION The metric system that we are now using includes a unit that is specific for the representation of measured temperatures. The unit of temperature in the metric system is

More information

FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

More information

Torque and Rotary Motion

Torque and Rotary Motion Torque and Rotary Motion Name Partner Introduction Motion in a circle is a straight-forward extension of linear motion. According to the textbook, all you have to do is replace displacement, velocity,

More information

F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below.

F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below. PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 9 Magnetic Force on a Current Carrying Wire Equipment: Supplies: Unit. Electronic balance, Power supply, Ammeter, Lab stand Current Loop PC Boards, Magnet

More information

ELASTIC FORCES and HOOKE S LAW

ELASTIC FORCES and HOOKE S LAW PHYS-101 LAB-03 ELASTIC FORCES and HOOKE S LAW 1. Objective The objective of this lab is to show that the response of a spring when an external agent changes its equilibrium length by x can be described

More information

Lesson 1: Linear Measurement

Lesson 1: Linear Measurement Lesson 1: Linear Selected Content Standards Benchmarks Addressed: M-1-M Applying the concepts of length, area, surface area, volume, capacity, weight, mass, money, time, temperature, and rate to real-world

More information

THE EFFECTIVE USE OF MANIPULATIVES (as seen in CORE PLUS)

THE EFFECTIVE USE OF MANIPULATIVES (as seen in CORE PLUS) THE EFFECTIVE USE OF MANIPULATIVES (as seen in CORE PLUS) Stephanie R. Schweyer EDC 564 Core Plus Math 1 April 20, 2000 TABLE OF CONTENTS CURRICULUM PHILOSOPHIES EFFECTIVE USES OF MANIPULATIVES EXAMPLES

More information

Roller Coaster Mania!

Roller Coaster Mania! Overview Roller Coaster Mania! This series of educational programs was designed to simultaneously entertain and challenge gifted youth in their time outside of the school setting; however, the activities

More information

Standing Waves on a String

Standing Waves on a String 1 of 6 Standing Waves on a String Summer 2004 Standing Waves on a String If a string is tied between two fixed supports, pulled tightly and sharply plucked at one end, a pulse will travel from one end

More information

Lab 7: Rotational Motion

Lab 7: Rotational Motion Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

More information

EXPERIMENT: MOMENT OF INERTIA

EXPERIMENT: MOMENT OF INERTIA OBJECTIVES EXPERIMENT: MOMENT OF INERTIA to familiarize yourself with the concept of moment of inertia, I, which plays the same role in the description of the rotation of a rigid body as mass plays in

More information

Questions: Does it always take the same amount of force to lift a load? Where should you press to lift a load with the least amount of force?

Questions: Does it always take the same amount of force to lift a load? Where should you press to lift a load with the least amount of force? Lifting A Load 1 NAME LIFTING A LOAD Questions: Does it always take the same amount of force to lift a load? Where should you press to lift a load with the least amount of force? Background Information:

More information

Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory

Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory Physics 41, Winter 1998 Lab 1 - The Current Balance Theory Consider a point at a perpendicular distance d from a long straight wire carrying a current I as shown in figure 1. If the wire is very long compared

More information

Ch 8 Potential energy and Conservation of Energy. Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63

Ch 8 Potential energy and Conservation of Energy. Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63 Ch 8 Potential energ and Conservation of Energ Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63 Potential energ Kinetic energ energ due to motion Potential energ

More information

Momentum Crash Course

Momentum Crash Course Objective: To study momentum and its role in car crashes. Grade Level: 5-8 Subject(s): Science, Mathematics Prep Time: < 10 minutes Duration: One class period Materials Category: Household National Education

More information

Name Date Class. As you read about the properties of air, fill in the detail boxes that explain the main idea in the graphic organizer below.

Name Date Class. As you read about the properties of air, fill in the detail boxes that explain the main idea in the graphic organizer below. Name Date Class The Atmosphere Guided Reading and Study Air Pressure This section describes several properties of air, including density and air pressure. The section also explains how air pressure is

More information

Proving the Law of Conservation of Energy

Proving the Law of Conservation of Energy Table of Contents List of Tables & Figures: Table 1: Data/6 Figure 1: Example Diagram/4 Figure 2: Setup Diagram/8 1. Abstract/2 2. Introduction & Discussion/3 3. Procedure/5 4. Results/6 5. Summary/6 Proving

More information

Because the slope is, a slope of 5 would mean that for every 1cm increase in diameter, the circumference would increase by 5cm.

Because the slope is, a slope of 5 would mean that for every 1cm increase in diameter, the circumference would increase by 5cm. Measurement Lab You will be graphing circumference (cm) vs. diameter (cm) for several different circular objects, and finding the slope of the line of best fit using the CapStone program. Write out or

More information

Naturally Connected Curriculum Project OUTDOOR MATHS

Naturally Connected Curriculum Project OUTDOOR MATHS OUTDOOR MATHS Who are these resources for? Natural Connections resources are aimed at teachers who are new to outdoor learning and are intended as an initial helping hand to get started. Teachers with

More information

Welcome to Physics 40!

Welcome to Physics 40! Welcome to Physics 40! Physics for Scientists and Engineers Lab 1: Introduction to Measurement SI Quantities & Units In mechanics, three basic quantities are used Length, Mass, Time Will also use derived

More information

Experiment 6: Magnetic Force on a Current Carrying Wire

Experiment 6: Magnetic Force on a Current Carrying Wire Chapter 8 Experiment 6: Magnetic Force on a Current Carrying Wire 8.1 Introduction Maricourt (1269) is credited with some of the original work in magnetism. He identified the magnetic force centers of

More information

Lesson 39: Kinetic Energy & Potential Energy

Lesson 39: Kinetic Energy & Potential Energy Lesson 39: Kinetic Energy & Potential Energy Total Mechanical Energy We sometimes call the total energy of an object (potential and kinetic) the total mechanical energy of an object. Mechanical energy

More information

AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

More information

Unit R075 How scientific data is used Experiment calculations Instructions and answers for teachers

Unit R075 How scientific data is used Experiment calculations Instructions and answers for teachers Unit R075 How scientific data is used Experiment calculations Instructions and answers for teachers The activities below cover LO2: Know and understand how scientists analyse and process information Associated

More information