Traditional Smoothing Techniques
|
|
|
- Nigel Hart
- 9 years ago
- Views:
Transcription
1 Tradoal Smoohg Techques Smple Movg Average: or Ceered Movg Average, assume s odd: 2 ( 2 ( Weghed Movg Average: W W (or, of course, you could se up he W so ha hey smply add o oe. Noe Lear Movg Averages (MAs of MAs: Cosder a sysem of weghs for a 7-po weghed movg average {,,,,,,}. Aoher 4-po movg average wh weghs {,,,}. The he 7 4 movg average would have weghs {,2,3,4,4,4,4,3,2,} ad s esseally he covoluo of he wo ses of weghs.
2 (Sgle Epoeal Smoohg: ( ( ( or Adapve Respose Rae Sgle Epoeal Smoohg (ARRSES. The advaage here s ha s dyamc.: ( where: varable 0.2,.., (, ( choce a M E smoohed error of val abs M e M smoohed error E e E e β β β β β Chow s Adapve Corol Mehod: Ca be used for osaoary daa. s adaped by small cremes so as o mmze he MSE. b S ad b S S b S S ( ( ( 2
3 Wers Lear ad Seasoal Epoeal Smoohg: S b m where ( S b m I L m ( ( S b I L γ( S S ( γ b I β ( β I L S L: legh of he seasoaly I: seasoal adjusme facor S : smoohed value for he seres m: forecas perod β : a wegh o suppress radomess (ofe 0.05 : epoeal facor for smoohg (ofe 0.2 γ : parameer (ofe 0. DECOMPOSITION METHODS f ( I, T, C, E : acual a me I : seasoal compoe (or de a T : s red compoe a C : cyclcal compoe a E : error or radom compoe a Ths fuco f( ca be addve or mulplcave, yeldg a addve decomposo or a mulplcave decomposo. 3
4 Eample, Addve Mehod:. Compue a movg average of legh N, where N s he legh of he seasoaly. Ths elmaes he seasoaly by averagg seasoally hgh perods wh seasoally low perods, ad reduces radomess as well. 2. Subrac he movg average from he seres. The MA s he red plus cycle. The error s he seasoal compoe. 3. Isolae he seasoal compoe by averagg hem for each of he perods makg up he complee legh of he seasoaly. 4. Idefy he approprae form of he red lear, epoeal, S-curve, ec., ad calculae s value a each perod. 5. Subrac he esmaed red from he deseasoalzed seres o oba he cyclcal facor. 6. Subrac he seasoal, red, ad cycle compoes from he orgal seres o yeld he radom compoe. 4
5 CENSUS II X- Decomposo/Seasoal Adjusme Mehod The Cesus Mehod I bega 954, followed by welve epermeal programs, amed X-0, X-, ec., of Mehod II. Ths culmaed X-. U. S. Deparme of Commerce, Bureau of he Cesus. Julus Shsk (955, based upo he rao-o-movg average classcal decomposo. Shsk, J., A. H. Youg, ad J. C. Musgrave. The X- vara of he Cesus mehod II seasoal adjusme program. Techcal Paper 5, Bureau of he Cesus, U.S. Deparme of Commerce, 967. Shsk, Julus. Seasoal Adjusme of Sesve Idcaors, 978. I A. Zeller, edor, Seasoal Aalyss of Ecoomc Tmes Seres, pages U. S. Deparme of Commerce, Bureau of he Cesus. X- was popular because: I was relavely easy o use. I dd o requre resag pas values whe ew daa was released. I hadled ereme values well. I used well-kow movg averages mehods for esmag red ad seasoal compoes. The asymmerc movg averages used ear he eds of he me seres were hough o be red ad rue. I had a clear-cu way of esmag radg day effecs. Sascs Caada eeded he mehod as X--ARIMA. Ths mehod cluded he full X- mehod, bu used ARIMA backcass ad forecass o provde opmal esmaes of daa ousde he daa wdow o mprove esmaes a he eds of movg averages. 5
6 X--ARIMA resuls seasoal adjusmes whose revsos are smaller, o average, whe hey are recalculaed afer fuure daa becomes avalable. I he addve decomposo case, eeso wh opmal forecass ad backcass for he half-legh of he symmerc seasoal fler mmzes revsos he mea square sese. Bobb, L, ad M. C. Oo. Effecs of forecass o he revsos of seasoally adjused values usg he X- seasoal adjusme procedure. I Proceedgs of he Busess ad Ecoomcs Sascs Seco, pages , Aleadra, Vrga, 990. Amerca Sascal Assocao. X--ARIMA also added dagoscs for comparg drec ad drec seasoal adjusmes of seres ha are aggregaes of mulple compoe seres. WE START WITH THE ORIGINAL X- METHOD: Sep. Tradg Day Adjusme. Deerme he umber of acve days each moh for he years of eres. 2. Compue he average umber of radg days for each moh. 3. Dvde he umber of days each moh by hs average o ge a adjusme facor. 4. Use he adjusme facor o adjus he mohly fgures. 5. Ths creaes a value called orgal daa adjused for radg days. 6
7 Sep 2. Prelmary Seasoal Adjusme. Seasoaly Adjusme. Apply a 2-moh MA o elmae seasoaly. 2. Average he MAs of 2 successve mohs o form he 7 h moh value. Ths addresses he ceerg problem. 3. Form he rao of he orgal seres o he MA seres. Ereme Values 4. Calculae he 33 moh movg average (3-moh average of a 3-moh average. a. Ths s roughly equvale o a 5-moh movg average. b. Srcly speakg, hs should resul he loss of 2 mohs a he begg ad ed of he seres, bu Cesus esmaes replacemes for hese. 5. Calculae he sadard devao of he ceered raos from he 33 MA. a. Ths s used o cosruc corol lms o defy ereme values. b. If he ceered MA > 33 MA ± 2s 2, he replace wh he average of prevous ad followg perod. Prelmary Seasoal Facor Esmao & Applcao 6. Replace he 6 moh a he begg ad ed of he raos by he eares values a eghborg year. 7. Normalze years so ha he raos each year add o 2. (Average rao s. 8. Dvde he prelmary seasoal facors o he orgal daa o oba he prelmary adjused seres. 7
8 Sep 3. Refe Seasoal Adjusmes.. Apply Specer s 5 moh weghed movg average o he seasoally adjused daa. Ths s a 5544 movg average (quadruple MA a. Isolaes he red-cycle compoe. 2. Dvde he orgal daa by he red-cycle compoe a. Seasoal ad radom facors rema. These are called he fal seasoal rregular raos. b. Normally Specer s Mehod would cause he loss of 7 pos a he begg ad he ed of he seres, so Cesus replaces he los daa pos wh esmaes. 3. Replace he ereme values as above. 4. Esmae mssg values. 5. Adjus (ormalze raos. 6. Take 5-year averages of hese fal seasoalrregular raos 7. These are he sable facors (seasoal dces. Sep 4.. Apply a 33 movg average (or 55 f sll looks oo radom o he fal seasoal rregular raos. 2. Esmae values for he 2 perods a he begg ad ed of he seres ha would be los. 3. Take he las 2 values for each moh, ad form a epeced value. For eample, for 992, 3 / [( ] Dvde hese fal seasoal facors o he orgal daa o form he seasoally adjused seres. 8
9 Sep 5. Fal adjusme.. Calculae a 5 moh MA o creae he fal seasoally adjused daa. a. Ths s a esmae of he red cycle compoe. Sep 6. Creae a moua of summary sascs. The Cesus X-2-ARIMA cludes X-, bu eeds he modelg ad dagosc capables. X- ARIMA RegARIMA Models (Forecass, Backcass, ad Preadjusmes Modelg ad Model Comparso Dagoscs SEASONAL ADJUSTMENT (Ehaced X- DIAGNOSTICS 9
10 The major mehodologcal mprovemes of X-2-ARIMA are: New X- adjusme opos New dagoscs New modelg capables emphaszg regarima modelg. (RegARIMA s a lear regresso model wh ARIMA me seres errors. NEW X- ADJUSTMENT OPTIONS New fler opos, cludg: o loger seasoal movg average, o user specfcao of Hederso flers o modfcaos o asymmerc movg averages Opo for pseudo-addve decomposo, somemes useful for seres wh perodcally small or zero values. Improvemes radg day adjusmes ad opos for user-defed effecs based upo prelmary esmaes of he rregular compoe. NEW DIAGNOSTIC CAPABILITIES Specral esmaes for deeco of seasoal ad radg day effecs Revsos hsory dagoscs for assessg he sably of seasoal adjusmes. Beer dagoscs for decdg wheher o use drec or drec adjusmes for aggregae seres. New RegARIMA CAPABILITIES Capably o add regresso effecs o he models for forecas eeso. Use of RegARIMA models ca poeally mprove forecass ad backcass, ad provde earler ouler deeco capables. 0
11 TYPES OF DECOMPOSITIONS THAT MAY BE SELECTED WHEN USING X- Mulplcave Decomposo o Usually approprae for seres of posve values whch he sze of he seasoal oscllaos creases wh he level of he seres. o The seasoally adjused seres s obaed by dvdg he orgal seres by he esmaed seasoal compoe. Addve Decomposo o More approprae o saoary seres. o The seasoally adjused seres s obaed by subracg he esmaed seasoal compoe. Log-addve Decomposo o The addve decomposo of he logarhms of he seres beg adjused s epoeaed. o Maly used for research purposes. Requres a bas correco. Pseudo-addve decomposo I he updaed X- ( X-2, he Specer MA s replaced by he Hederso fler. Ths s eher 9, 3, or 23 pos ad s symmerc. I s desged o appromae a cubc f o saoary daa. Specral aalyss of he Hederso fler reveals ha has subsaal power afer he frs seasoal frequecy (leakage?. As a resul, Schps ad Ser (995 argue ha he Hederso fler eaggeraes shor-erm cyclcal behavor. The 7-erm Hederso fler s he shores
12 oe ha does o resul a sgfca peak beyod he frs seasoal frequecy. 2
Chapter 4 Multiple-Degree-of-Freedom (MDOF) Systems. Packing of an instrument
Chaper 4 Mulple-Degree-of-Freedom (MDOF Sysems Eamples: Pacg of a srume Number of degrees of freedom Number of masses he sysem X Number of possble ypes of moo of each mass Mehods: Newo s Law ad Lagrage
12/7/2011. Procedures to be Covered. Time Series Analysis Using Statgraphics Centurion. Time Series Analysis. Example #1 U.S.
Tme Seres Analyss Usng Sagraphcs Cenuron Nel W. Polhemus, CTO, SaPon Technologes, Inc. Procedures o be Covered Descrpve Mehods (me sequence plos, auocorrelaon funcons, perodograms) Smoohng Seasonal Decomposon
The Design of a Forecasting Support Models on Demand of Durian for Domestic Markets and Export Markets by Time Series and ANNs.
The 2 d RMUTP Ieraoal Coferece 2010 Page 108 The Desg of a Forecasg Suppor Models o Demad of Dura for Domesc Markes ad Expor Markes by Tme Seres ad ANNs. Udomsr Nohacho, 1* kegpol Ahakor, 2 Kazuyosh Ish,
7.2 Analysis of Three Dimensional Stress and Strain
eco 7. 7. Aalyss of Three Dmesoal ress ad ra The cocep of raco ad sress was roduced ad dscussed Par I.-.5. For he mos par he dscusso was cofed o wo-dmesoal saes of sress. Here he fully hree dmesoal sress
Vladimir PAPI], Jovan POPOVI] 1. INTRODUCTION
Yugoslav Joural of Operaos Research 200 umber 77-9 VEHICLE FLEET MAAGEMET: A BAYESIA APPROACH Vladmr PAPI] Jova POPOVI] Faculy of Traspor ad Traffc Egeerg Uversy of Belgrade Belgrade Yugoslava Absrac:
10.5 Future Value and Present Value of a General Annuity Due
Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the
A new proposal for computing portfolio valueat-risk for semi-nonparametric distributions
A ew proposal for compug porfolo valuea-rsk for sem-oparamerc dsrbuos Tro-Mauel Ñíguez ad Javer Peroe Absrac Ths paper proposes a sem-oparamerc (SNP) mehodology for compug porfolo value-a-rsk (VaR) ha
Claims Reserving When There Are Negative Values in the Runoff Triangle
Clams Reservg Whe There Are Negave Values he Ruo Tragle Erque de Alba ITAM Meco ad Uversy o Waerloo Caada 7 h. Acuaral Research Coerece The Uversy o Waerloo Augus 7-0 00 . INTRODUCTION The may uceraes
Capacity Planning. Operations Planning
Operaons Plannng Capacy Plannng Sales and Operaons Plannng Forecasng Capacy plannng Invenory opmzaon How much capacy assgned o each producon un? Realsc capacy esmaes Sraegc level Moderaely long me horzon
1. The Time Value of Money
Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg
FORECASTING MODEL FOR AUTOMOBILE SALES IN THAILAND
FORECASTING MODEL FOR AUTOMOBILE SALES IN THAILAND by Wachareepor Chaimogkol Naioal Isiue of Developme Admiisraio, Bagkok, Thailad Email: [email protected] ad Chuaip Tasahi Kig Mogku's Isiue of Techology
American Journal of Business Education September 2009 Volume 2, Number 6
Amerca Joural of Bue Educao Sepember 9 Volume, umber 6 Tme Value Of Moe Ad I Applcao I Corporae Face: A Techcal oe O L Relaohp Bewee Formula Je-Ho Che, Alba Sae Uver, USA ABSTRACT Tme Value of Moe (TVM
Determinants of Foreign Direct Investment in Malaysia: What Matters Most?
Deermas of Foreg Drec Ivesme Maaysa: Wha Maers Mos? Nursuha Shahrud, Zarah Yusof ad NuruHuda Mohd. Saar Ths paper exames he deermas of foreg drec vesme Maaysa from 970-008. The causay ad dyamc reaoshp
Financial Time Series Forecasting with Grouped Predictors using Hierarchical Clustering and Support Vector Regression
Ieraoal Joural of Grd Dsrbuo Compug, pp.53-64 hp://dx.do.org/10.1457/jgdc.014.7.5.05 Facal Tme Seres Forecasg wh Grouped Predcors usg Herarchcal Cluserg ad Suppor Vecor Regresso ZheGao a,b,* ad JajuYag
MORE ON TVM, "SIX FUNCTIONS OF A DOLLAR", FINANCIAL MECHANICS. Copyright 2004, S. Malpezzi
MORE ON VM, "SIX FUNCIONS OF A DOLLAR", FINANCIAL MECHANICS Copyrgh 2004, S. Malpezz I wan everyone o be very clear on boh he "rees" (our basc fnancal funcons) and he "fores" (he dea of he cash flow model).
Solving Fuzzy Linear Programming Problems with Piecewise Linear Membership Function
Avalable a hp://pvamu.edu/aam Appl. Appl. Mah. ISSN: 9-966 Vol., Issue December ), pp. Prevously, Vol., Issue, pp. 6 6) Applcaos ad Appled Mahemacs: A Ieraoal Joural AAM) Solvg Fuzzy Lear Programmg Problems
Professional Liability Insurance Contracts: Claims Made Versus Occurrence Policies
ARICLES ACADÉMIQUES ACADEMIC ARICLES Assuraces e geso des rsques, vol. 79(3-4), ocobre 2011- javer 2012, 251-277 Isurace ad Rsk Maageme, vol. 79(3-4), Ocober 2011- Jauary 2012, 251-277 Professoal Lably
Object Tracking Based on Online Classification Boosted by Discriminative Features
Ieraoal Joural of Eergy, Iformao ad Commucaos, pp.9-20 hp://dx.do.org/10.14257/jec.2013.4.6.02 Objec Trackg Based o Ole Classfcao Boosed by Dscrmave Feaures Yehog Che 1 ad Pl Seog Park 2 1 Qlu Uversy of
ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data
ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are
PORTFOLIO CHOICE WITH HEAVY TAILED DISTRIBUTIONS 1. Svetlozar Rachev 2 Isabella Huber 3 Sergio Ortobelli 4
PORTFOLIO CHOIC WITH HAVY TAILD DISTRIBUTIONS Sveloar Rachev Isabella Huber 3 Sergo Orobell 4 We are graeful o Boryaa Racheva-Joova Soya Soyaov ad Almra Bglova for he comuaoal aalyss ad helful commes.
Chapter 8 Student Lecture Notes 8-1
Chaper Suden Lecure Noes - Chaper Goals QM: Business Saisics Chaper Analyzing and Forecasing -Series Daa Afer compleing his chaper, you should be able o: Idenify he componens presen in a ime series Develop
IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki
IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],
Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization
Chapter 3 Mathematcs of Face Secto 4 Preset Value of a Auty; Amortzato Preset Value of a Auty I ths secto, we wll address the problem of determg the amout that should be deposted to a accout ow at a gve
Price Volatility, Trading Activity and Market Depth: Evidence from Taiwan and Singapore Taiwan Stock Index Futures Markets
We-Hsu Kuo Asa e Pacfc al./asa Maageme Pacfc Maageme evew (005) evew 0(), (005) 3-3 0(), 3-3 Prce Volaly, Tradg Acvy ad Marke Deph: Evdece from Tawa ad Sgapore Tawa Sock Idex Fuures Markes We-Hsu Kuo a,*,
Evaluation and Modeling of the Digestion and Absorption of Novel Manufacturing Technology in Food Enterprises
Advace Joural of Food Scece ad Techology 9(6): 482-486, 205 ISSN: 2042-4868; e-issn: 2042-4876 Mawell Scefc Orgazao, 205 Submed: Aprl 9, 205 Acceped: Aprl 28, 205 Publshed: Augus 25, 205 Evaluao ad Modelg
METHODOLOGY ELECTRICITY, GAS AND WATER DISTRIBUTION INDEX (IDEGA, by its Spanish acronym) (Preliminary version)
MEHODOLOGY ELEY, GAS AND WAE DSBUON NDEX (DEGA, by s Sash acroym) (Prelmary verso) EHNAL SUBDEOAE OPEAONS SUBDEOAE Saago, December 26h, 2007 HDA/GGM/GMA/VM ABLE OF ONENS Pages. roduco 3 2. oceual frameork
The naive method discussed in Lecture 1 uses the most recent observations to forecast future values. That is, Y ˆ t + 1
Business Condiions & Forecasing Exponenial Smoohing LECTURE 2 MOVING AVERAGES AND EXPONENTIAL SMOOTHING OVERVIEW This lecure inroduces ime-series smoohing forecasing mehods. Various models are discussed,
GARCH Modelling. Theoretical Survey, Model Implementation and
Maser Thess GARCH Modellg Theorecal Survey, Model Imlemeao ad Robusess Aalyss Lars Karlsso Absrac I hs hess we survey GARCH modellg wh secal focus o he fg of GARCH models o facal reur seres The robusess
Lecture 13 Time Series: Stationarity, AR(p) & MA(q)
RS C - ecure 3 ecure 3 Tme Seres: Saoar AR & MAq Tme Seres: Iroduco I he earl 97 s was dscovered ha smle me seres models erformed beer ha he comlcaed mulvarae he oular 96s macro models FRB-MIT-Pe. See
Longitudinal and Panel Data: Analysis and Applications for the Social Sciences. Edward W. Frees
Logudal ad Pael Daa: Aalss ad Applcaos for he Socal Sceces b Edward W. Frees Logudal ad Pael Daa: Aalss ad Applcaos for he Socal Sceces Bref Table of Coes Chaper. Iroduco PART I - LINEAR MODELS Chaper.
Performance Comparisons of Load Balancing Algorithms for I/O- Intensive Workloads on Clusters
Joural of ewor ad Compuer Applcaos, vol. 3, o., pp. 32-46, Jauary 2008. Performace Comparsos of oad Balacg Algorhms for I/O- Iesve Worloads o Clusers Xao Q Deparme of Compuer Scece ad Sofware Egeerg Aubur
Mobile Data Mining for Intelligent Healthcare Support
Moble Daa Mg for Iellge Healhcare uppor Absrac The growh umbers ad capacy of moble devces such as moble phoes coupled wh wdespread avalably of expesve rage of bosesors preses a uprecedeed opporuy for moble
Markit iboxx USD Liquid Leveraged Loan Index
Mark Boxx USD Lqud Leveraged Loa Idex Sepember 20 Mark Boxx USD Leveraged Loa Idex Idex Gude Coe Overvew... 4 Seleco Crera... 5 Idex Icepo/Rebalacg... 5 Elgbly Crera... 5 Loa Type... 5 Mmum facly ze...
CHAPTER 2. Time Value of Money 6-1
CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show
Vector Autoregressions (VARs): Operational Perspectives
Vecor Auoregressions (VARs): Operaional Perspecives Primary Source: Sock, James H., and Mark W. Wason, Vecor Auoregressions, Journal of Economic Perspecives, Vol. 15 No. 4 (Fall 2001), 101-115. Macroeconomericians
Selected Financial Formulae. Basic Time Value Formulae PV A FV A. FV Ad
Basc Tme Value e Fuure Value of a Sngle Sum PV( + Presen Value of a Sngle Sum PV ------------------ ( + Solve for for a Sngle Sum ln ------ PV -------------------- ln( + Solve for for a Sngle Sum ------
Average Price Ratios
Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or
RUSSIAN ROULETTE AND PARTICLE SPLITTING
RUSSAN ROULETTE AND PARTCLE SPLTTNG M. Ragheb 3/7/203 NTRODUCTON To stuatos are ecoutered partcle trasport smulatos:. a multplyg medum, a partcle such as a eutro a cosmc ray partcle or a photo may geerate
Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.
Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E
Banking (Early Repayment of Housing Loans) Order, 5762 2002 1
akg (Early Repaymet of Housg Loas) Order, 5762 2002 y vrtue of the power vested me uder Secto 3 of the akg Ordace 94 (hereafter, the Ordace ), followg cosultato wth the Commttee, ad wth the approval of
DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS. Exponential Smoothing for Inventory Control: Means and Variances of Lead-Time Demand
ISSN 440-77X ISBN 0 736 094 X AUSTRALIA DEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS Exponenal Smoohng for Invenory Conrol: Means and Varances of Lead-Tme Demand Ralph D. Snyder, Anne B. Koehler,
Proving the Computer Science Theory P = NP? With the General Term of the Riemann Zeta Function
Research Joural of Mahemacs ad Sascs 3(2): 72-76, 20 ISSN: 2040-7505 Maxwell Scefc Orgazao, 20 Receved: Jauary 08, 20 Acceped: February 03, 20 Publshed: May 25, 20 Provg he ompuer Scece Theory P NP? Wh
HIGH FREQUENCY MARKET MAKING
HIGH FREQUENCY MARKET MAKING RENÉ CARMONA AND KEVIN WEBSTER Absrac. Sce hey were auhorzed by he U.S. Secury ad Exchage Commsso 1998, elecroc exchages have boomed, ad by 21 hgh frequecy radg accoued for
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ
A Note on Using the Svensson procedure to estimate the risk free rate in corporate valuation
A Noe on Using he Svensson procedure o esimae he risk free rae in corporae valuaion By Sven Arnold, Alexander Lahmann and Bernhard Schwezler Ocober 2011 1. The risk free ineres rae in corporae valuaion
Mobile Data Mining for Intelligent Healthcare Support
Proceedgs of he 42d Hawa Ieraoal Coferece o ysem ceces - 2009 Moble Daa Mg for Iellge Healhcare uppor Par Delr Haghgh, Arkady Zaslavsky, hoal Krshaswamy, Mohamed Medha Gaber Ceer for Dsrbued ysems ad ofware
Harmony search algorithms for inventory management problems
Afrca Joural of Busess Maageme Vol.6 (36), pp. 9864-9873, 2 Sepember, 202 Avalable ole a hp://www.academcourals.org/ajbm DOI: 0.5897/AJBM2.54 ISSN 993-8233 202 Academc Jourals Revew Harmoy search algorhms
s :risk parameter for company size
UNDESTANDING ONLINE TADES: TADING AND EFOMANCE IN COMMON STOCK INVESTMENT Y. C. George L, Y. C. Elea Kag 2 ad Chug-L Chu 3 Deparme of Accoug ad Iformao Techology, Naoal Chug Cheg Uversy, Tawa,.O.C [email protected];
Business School Discipline of Finance. Discussion Paper 2014-005. Modelling the crash risk of the Australian Dollar carry trade
Dscusso Paper: 2014-005 Busess School Dscple of Face Dscusso Paper 2014-005 Modellg he crash rsk of he Ausrala Dollar carry rade Suk-Joog Km Uversy of Sydey Busess School Modellg he crash rsk of he Ausrala
EXAMPLE 1... 1 EXAMPLE 2... 14 EXAMPLE 3... 18 EXAMPLE 4 UNIVERSAL TRADITIONAL APPROACH... 24 EXAMPLE 5 FLEXIBLE PRODUCT... 26
EXAMLE... A. Edowme... B. ure edowme d Term surce... 4 C. Reseres... 8. Bruo premum d reseres... EXAMLE 2... 4 A. Whoe fe... 4 B. Reseres of Whoe fe... 6 C. Bruo Whoe fe... 7 EXAMLE 3... 8 A.ure edowme...
Natural Gas Storage Valuation. A Thesis Presented to The Academic Faculty. Yun Li
Naural Gas Sorage Valuao A Thess Preseed o The Academc Faculy by Yu L I Paral Fulfllme Of he Requremes for he Degree Maser of Scece he School of Idusral ad Sysem Egeerg Georga Isue of Techology December
The simple linear Regression Model
The smple lear Regresso Model Correlato coeffcet s o-parametrc ad just dcates that two varables are assocated wth oe aother, but t does ot gve a deas of the kd of relatoshp. Regresso models help vestgatg
Jorge Ortega Arjona Departamento de Matemáticas, Facultad de Ciencias, UNAM [email protected]
Usg UML Sae Dagrams for Moellg he Performace of Parallel Programs Uso e Dagramas e Esao UML para la Moelacó el Desempeño e Programas Paralelos Jorge Orega Aroa Deparameo e Maemácas, Facula e Cecas, UNAM
Analyzing Energy Use with Decomposition Methods
nalyzng nergy Use wh Decomposon Mehods eve HNN nergy Technology Polcy Dvson [email protected] nergy Tranng Week Pars 1 h prl 213 OCD/ 213 Dscusson nergy consumpon and energy effcency? How can energy consumpon
Simple Linear Regression
Smple Lear Regresso Regresso equato a equato that descrbes the average relatoshp betwee a respose (depedet) ad a eplaator (depedet) varable. 6 8 Slope-tercept equato for a le m b (,6) slope. (,) 6 6 8
Integrating Production Scheduling and Maintenance: Practical Implications
Proceedgs of the 2012 Iteratoal Coferece o Idustral Egeerg ad Operatos Maagemet Istabul, Turkey, uly 3 6, 2012 Itegratg Producto Schedulg ad Mateace: Practcal Implcatos Lath A. Hadd ad Umar M. Al-Turk
CONVERGENCE AND SPATIAL PATTERNS IN LABOR PRODUCTIVITY: NONPARAMETRIC ESTIMATIONS FOR TURKEY 1
CONVERGENCE AND SPAIAL PAERNS IN LABOR PRODUCIVIY: NONPARAMERIC ESIMAIONS FOR URKEY ugrul emel, Ays asel & Peer J. Alberse Workg Paper 993 Forhcomg he Joural of Regoal Aalyss ad Polcy, 999. We would lke
Applying the Theta Model to Short-Term Forecasts in Monthly Time Series
Applyng he Thea Model o Shor-Term Forecass n Monhly Tme Seres Glson Adamczuk Olvera *, Marcelo Gonçalves Trenn +, Anselmo Chaves Neo ** * Deparmen of Mechancal Engneerng, Federal Technologcal Unversy of
of the relationship between time and the value of money.
TIME AND THE VALUE OF MONEY Most agrbusess maagers are famlar wth the terms compoudg, dscoutg, auty, ad captalzato. That s, most agrbusess maagers have a tutve uderstadg that each term mples some relatoshp
Acceleration Lab Teacher s Guide
Acceleraion Lab Teacher s Guide Objecives:. Use graphs of disance vs. ime and velociy vs. ime o find acceleraion of a oy car.. Observe he relaionship beween he angle of an inclined plane and he acceleraion
Three Dimensional Interpolation of Video Signals
Three Dmesoal Iterpolato of Vdeo Sgals Elham Shahfard March 0 th 006 Outle A Bref reve of prevous tals Dgtal Iterpolato Bascs Upsamplg D Flter Desg Issues Ifte Impulse Respose Fte Impulse Respose Desged
Task is a schedulable entity, i.e., a thread
Real-Time Scheduling Sysem Model Task is a schedulable eniy, i.e., a hread Time consrains of periodic ask T: - s: saring poin - e: processing ime of T - d: deadline of T - p: period of T Periodic ask T
15. Basic Index Number Theory
5. Basc Idex Numer Theory A. Iroduco The aswer o he queso wha s he Mea of a gve se of magudes cao geeral e foud, uless here s gve also he ojec for he sake of whch a mea value s requred. There are as may
Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract
Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected
Analysis of Coalition Formation and Cooperation Strategies in Mobile Ad hoc Networks
Aalss of oalo Formao ad ooperao Sraeges Moble Ad hoc ewors Pero Mchard ad Ref Molva Isu Eurecom 9 Roue des rêes 06904 Sopha-Apols, Frace Absrac. Ths paper focuses o he formal assessme of he properes of
6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis
6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces
CLASSICAL TIME SERIES DECOMPOSITION
Time Series Lecure Noes, MSc in Operaional Research Lecure CLASSICAL TIME SERIES DECOMPOSITION Inroducion We menioned in lecure ha afer we calculaed he rend, everyhing else ha remained (according o ha
CHAPTER 13. Simple Linear Regression LEARNING OBJECTIVES. USING STATISTICS @ Sunflowers Apparel
CHAPTER 3 Smple Lear Regresso USING STATISTICS @ Suflowers Apparel 3 TYPES OF REGRESSION MODELS 3 DETERMINING THE SIMPLE LINEAR REGRESSION EQUATION The Least-Squares Method Vsual Exploratos: Explorg Smple
Internal model in life insurance : application of least squares monte carlo in risk assessment
Ieral model lfe surace : applcao of leas squares moe carlo rs assessme - Oberla euam Teugua (HSB) - Jae Re (Uversé yo, HSB) - rédérc Plache (Uversé yo, aboraore SA) 04. aboraore SA 50 Aveue Toy Garer -
Fuzzy Forecasting Applications on Supply Chains
WSEAS TANSACTINS o SYSTEMS Haa Toza Fuzzy Forecag Applcao o Supply Cha HAKAN TZAN ZALP VAYVAY eparme of Idural Egeerg Turh Naval Academy 3494 Tuzla / Iabul TUKIYE hoza@dhoedur Abrac: - emad forecag; whch
Classic Problems at a Glance using the TVM Solver
C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the
- Models: - Classical: : Mastermodel (clay( Curves. - Example: - Independent variable t
Compue Gaphcs Geomec Moelg Iouco - Geomec Moelg (GM) sce e of 96 - Compue asssace fo - Desg: CAD - Maufacug: : CAM - Moels: - Classcal: : Masemoel (cla( cla, poopes,, Mock-up) - GM: mahemacal escpo fo
FEBRUARY 2015 STOXX CALCULATION GUIDE
FEBRUARY 2015 STOXX CALCULATION GUIDE STOXX CALCULATION GUIDE CONTENTS 2/23 6.2. INDICES IN EUR, USD AND OTHER CURRENCIES 10 1. INTRODUCTION TO THE STOXX INDEX GUIDES 3 2. CHANGES TO THE GUIDE BOOK 4 2.1.
55. IWK Internationales Wissenschaftliches Kolloquium International Scientific Colloquium
PROCEEDIGS 55. IWK Ieraoales Wsseschaflches Kolloquu Ieraoal Scefc Colloquu 3-7 Sepeber 00 Crossg Borders wh he BC uoao, Boedcal Egeerg ad Copuer Scece Faculy of Copuer Scece ad uoao www.u-leau.de Hoe
How To Make A Supply Chain System Work
Iteratoal Joural of Iformato Techology ad Kowledge Maagemet July-December 200, Volume 2, No. 2, pp. 3-35 LATERAL TRANSHIPMENT-A TECHNIQUE FOR INVENTORY CONTROL IN MULTI RETAILER SUPPLY CHAIN SYSTEM Dharamvr
FINANCIAL MATHEMATICS 12 MARCH 2014
FINNCIL MTHEMTICS 12 MRCH 2014 I ths lesso we: Lesso Descrpto Make use of logarthms to calculate the value of, the tme perod, the equato P1 or P1. Solve problems volvg preset value ad future value autes.
Forecasting Sales: A Model and Some Evidence from the Retail Industry. Russell Lundholm Sarah McVay Taylor Randall
Forecasing Sales: A odel and Some Evidence from he eail Indusry ussell Lundholm Sarah cvay aylor andall Why forecas financial saemens? Seems obvious, bu wo common criicisms: Who cares, can we can look
Introduction to Statistical Analysis of Time Series Richard A. Davis Department of Statistics
Iroduio o Saisial Aalysis of Time Series Rihard A. Davis Deparme of Saisis Oulie Modelig obeives i ime series Geeral feaures of eologial/eviromeal ime series Compoes of a ime series Frequey domai aalysis-he
A quantization tree method for pricing and hedging multi-dimensional American options
A quazao ree mehod for prcg ad hedgg mul-dmesoal Amerca opos Vlad BALLY Glles PAGÈS Jacques PRINTEMS Absrac We prese here he quazao mehod whch s well-adaped for he prcg ad hedgg of Amerca opos o a baske
T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :
Bullets bods Let s descrbe frst a fxed rate bod wthout amortzg a more geeral way : Let s ote : C the aual fxed rate t s a percetage N the otoal freq ( 2 4 ) the umber of coupo per year R the redempto of
Exam FM/2 Interest Theory Formulas
Exm FM/ Iere Theory Formul by (/roprcy Th collboro of formul for he ere heory eco of he SO Exm FM / S Exm. Th uy hee free o-copyrghe ocume for ue g Exm FM/. The uhor of h uy hee ug ome oo h uque o h o
Valuation Methods of a Life Insurance Company
Valuao Mehods of a Lfe Isurace Comay ISORY...3 2 PRODUC ASSESSMEN : PROFI ESING...4 2. E PROFI ESING IN 3 SEPS...5 2.. Equalece Prcle...5 2..2 radoal Marg...6 2..3 Prof esg...6 2.2 COMMON CRIERIA O EVALUAE
Performance Attribution. Methodology Overview
erformace Attrbuto Methodology Overvew Faba SUAREZ March 2004 erformace Attrbuto Methodology 1.1 Itroducto erformace Attrbuto s a set of techques that performace aalysts use to expla why a portfolo's performace
Trust Evaluation and Dynamic Routing Decision Based on Fuzzy Theory for MANETs
JOURNAL OF SOFTWARE, VOL. 4, NO. 10, ECEBER 2009 1091 Trus Evaluao ad yamc Roug ecso Based o Fuzzy Theory for ANETs Hogu a, Zhpg Ja ad Zhwe Q School of Compuer Scece ad Techology, Shadog Uversy, Ja, Cha.P.R.
Present Value Methodology
Presen Value Mehodology Econ 422 Invesmen, Capial & Finance Universiy of Washingon Eric Zivo Las updaed: April 11, 2010 Presen Value Concep Wealh in Fisher Model: W = Y 0 + Y 1 /(1+r) The consumer/producer
Kalman filtering as a performance monitoring technique for a propensity scorecard
Kalman flerng as a performance monorng echnque for a propensy scorecard Kaarzyna Bjak * Unversy of Souhampon, Souhampon, UK, and Buro Informacj Kredyowej S.A., Warsaw, Poland Absrac Propensy scorecards
Optimal Packetization Interval for VoIP Applications Over IEEE 802.16 Networks
Optmal Packetzato Iterval for VoIP Applcatos Over IEEE 802.16 Networks Sheha Perera Harsha Srsea Krzysztof Pawlkowsk Departmet of Electrcal & Computer Egeerg Uversty of Caterbury New Zealad [email protected]
Chapter 8: Regression with Lagged Explanatory Variables
Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One
Speeding up k-means Clustering by Bootstrap Averaging
Speedg up -meas Clusterg by Bootstrap Averagg Ia Davdso ad Ashw Satyaarayaa Computer Scece Dept, SUNY Albay, NY, USA,. {davdso, ashw}@cs.albay.edu Abstract K-meas clusterg s oe of the most popular clusterg
GUIDANCE STATEMENT ON CALCULATION METHODOLOGY
GUIDANCE STATEMENT ON CALCULATION METHODOLOGY Adopon Dae: 9/28/0 Effecve Dae: //20 Reroacve Applcaon: No Requred www.gpssandards.org 204 CFA Insue Gudance Saemen on Calculaon Mehodology GIPS GUIDANCE STATEMENT
Managing Learning and Turnover in Employee Staffing*
Maagig Learig ad Turover i Employee Saffig* Yog-Pi Zhou Uiversiy of Washigo Busiess School Coauhor: Noah Gas, Wharo School, UPe * Suppored by Wharo Fiacial Isiuios Ceer ad he Sloa Foudaio Call Ceer Operaios
Principal components of stock market dynamics. Methodology and applications in brief (to be updated ) Andrei Bouzaev, bouzaev@ya.
Principal componens of sock marke dynamics Mehodology and applicaions in brief o be updaed Andrei Bouzaev, [email protected] Why principal componens are needed Objecives undersand he evidence of more han one
Time Series. A thesis. Submitted to the. Edith Cowan University. Perth, Western Australia. David Sheung Chi Fung. In Fulfillment of the Requirements
Mehods for he Esmaon of Mssng Values n Tme Seres A hess Submed o he Faculy of Communcaons, ealh and Scence Edh Cowan Unversy Perh, Wesern Ausrala By Davd Sheung Ch Fung In Fulfllmen of he Requremens For
