Measurement: Converting Distances
|
|
|
- Darren Bailey
- 9 years ago
- Views:
Transcription
1 Measurement: Converting Distances Measuring Distances Measuring distances is done by measuring length. You may use a different system to measure length differently than other places in the world. This is because there is more than one system you can use. The United States uses something called the English system. Other countries use something called the Metric system instead. The U.S. uses the Metric system sometimes. Yet in the U.S., English is the system that is used most often. Runners and cyclists travel yards, miles, or meters. These are all distances. Yards and miles are English system measurements. A meter is the standard unit (for length) of the Metric system. Each system is unique. The reason the United States has not converted over to the Metric system is simple. So many people know the English system and it is still taught in schools. Scientists hope one day there will be one universal system that is used across the world. The English System You should already recognize units in the English system. If you have ever measured anything with a ruler or traveled in a car then you have used the English system. The English system measures length by inches, feet, yards, and miles. -Inches - 1 foot = 12 inches 1 yard = 36 inches 1 mile = 63,360 inches -Foot- 12 inches = 1 foot 1 yard = 3 feet 1 mile = 5,280 feet 1
2 -Yard- 36 inches = 1 yard 3 feet = 1 yard 1 mile = 1,760 yards -Mile- 63,360 inches = 1 mile 5,280 feet = 1 mile 1,760 yards = 1 mile Converting using the English system It is easy to convert between inches, miles, feet, and yards if you know basic math skills. It is important to know how the values compare so you can convert one distance value to another. For example: 48 inches equals feet. We know that 12 inches = 1 foot. We must make the value of a letter until we know what that letter stands for. In this problem we will call x. 48 in. = x feet To get the value of x we divide each side by the values we know. 48 in = x ft. 12 in. = 1 ft 2
3 Then we cross multiply. 48 x 1 = x x = 12x 12x = 48 We need to isolate x to one side so we divide both sides by the number in front of x. 12x = x = 4 Our answer is = 48 in. is equal to 4 ft. This method works when converting smaller distances into larger distances: Note: You would use this when converting inches to feet, inches to yards, inches to miles, feet to yards, feet to miles, and yards to miles. If you want to convert a larger distance into a smaller distance this is what you need to do. 7 yards = feet (once again lets use x to represent ) We know that 1 yard = 3 feet. Let s cross multiply. 7 yd. = x ft. 1 yd. = 3 ft. 7 x 3 = 21 1 x x = 1 x 3 21 = 1x
4 21 = x The answer is 7 yards = 21 feet. Try these English system conversions on your own to see if you get the right answers, 1. 3 miles = x feet yards = x inches ,800 inches = x miles You can check your answers at the end of this lesson. The Metric System The Metric system is usually viewed as easier than the English system. In countries like Canada, the Metric system is the standard system of measurement. Cars do not travel by miles. Instead, they travel by kilometers. The standard measurement is a meter. To determine what is being measured the suffix is placed in front of the word meter. Here is a box listing Metric values that are the most commonly used. Metric Value Numerical Value Kilo meter (kilometer) 1000 Hecto-meter (hectometer) 100 Deka-meter (decameter) 10 Meter 1 Deci-meter (decimeter) 0.1 Centi-meter (centimeter) 0.01 Milli-meter (millimeter) The way to convert values is easier using the Metric system Kilometers = x meters 4
5 To figure this out we move a decimal place to the right if we are going from the top of the Metric scale to the bottom (i.e. kilometers to a lesser value such as meters or centimeters). Since meters are three levels below kilometers in our chart, we move the decimal point over 3 spaces to the right. One space to the right is 30,000. Two places to the right is 300,000. Three spaces to the right is 3,000,000. 3,000.kilometers is equal to 3,000,000 meters. The Metric system seems simple, but what if you want to convert a lesser distance into a larger distance? 2 centimeters = x hectometers To figure this out we move a decimal place to the left if we are going from the bottom of the Metric scale to the top (i.e. centimeters to a larger value such as dekameters or kilometers). Since hectometers are four levels above centimeters in our chart, we move the decimal point over 4 spaces to the left. One space to the left is 0.2 Two places to the left is 0.02 Three spaces to the left is Four spaces to the left is centimeters is equal to hectometers. Try doing the following problems on your own and see if you can get the right answers millimeters = x kilometers dekameters = x decimeters 5
6 Answers to sample problems The answers to our first set of sample problems (the English system) are: 1. 15,840 ft in miles How did you do? Here are the answers for the second set of sample problems (the Metric system): km 2. 50,000 dm Abbreviations Both the Metric and English systems use abbreviations to make labeling units easier. Here is a chart showing the basic abbreviations for both Metric and English system values. Metric Abbreviation English Abbreviation Kilometer km Miles mi Hectometer hm Yards yd Dekameter dam Feet ft Meter m Inches in Decimeter dm Centimeter cm Millimeter mm 6
7 Measurement: Converting Distances Worksheet Directions: Convert each value using the English System to find the value of x mi. = x ft in. = x ft yd. = x in. x = x = x = 4. 88,000 yd. = x mi mi. = x in in. = x yd. x = x = x = ,320 in. = x mi ft.. = x in in. = x ft. x = x = x = Directions: Convert each value using the Metric System to find the value of f hm = f mm ,019 cm = f dam km = f m f = f = f = 13. 8,000 mm = f km ,500 hm = f dm m = f dm f = f = f = mm = f cm dm = f dam m = f hm f = f = f = 7
8 Answer Key ,320 ft ft in mi ,800 in yd mi in ft ,000,000 mm dam ,000 m km ,500,000 dm dm cm dam hm 8
Converting Units of Measure Measurement
Converting Units of Measure Measurement Outcome (lesson objective) Given a unit of measurement, students will be able to convert it to other units of measurement and will be able to use it to solve contextual
History of U.S. Measurement
SECTION 11.1 LINEAR MEASUREMENT History of U.S. Measurement The English system of measurement grew out of the creative way that people measured for themselves. Familiar objects and parts of the body were
Metric Units of Length
7.2 Metric Units of Length 7.2 OBJECTIVES. Know the meaning of metric prefixes 2. Estimate metric units of length 3. Convert metric units of length NOTE Even in the United States, the metric system is
HFCC Math Lab General Math Topics -1. Metric System: Shortcut Conversions of Units within the Metric System
HFCC Math Lab General Math Topics - Metric System: Shortcut Conversions of Units within the Metric System In this handout, we will work with three basic units of measure in the metric system: meter: gram:
Converting within the Metric System
Converting within the Metric System Team members: Donna Massey and Julie Schlabaugh I. Lesson Plan (designed for teacher) Lesson Title: Convert with Metric! Lesson Summary: This lesson will allow students
4.5.1 The Metric System
4.5.1 The Metric System Learning Objective(s) 1 Describe the general relationship between the U.S. customary units and metric units of length, weight/mass, and volume. 2 Define the metric prefixes and
Measurement. Customary Units of Measure
Chapter 7 Measurement There are two main systems for measuring distance, weight, and liquid capacity. The United States and parts of the former British Empire use customary, or standard, units of measure.
Tallahassee Community College PERIMETER
Tallahassee Community College 47 PERIMETER The perimeter of a plane figure is the distance around it. Perimeter is measured in linear units because we are finding the total of the lengths of the sides
1. Metric system- developed in Europe (France) in 1700's, offered as an alternative to the British or English system of measurement.
GS104 Basics Review of Math I. MATHEMATICS REVIEW A. Decimal Fractions, basics and definitions 1. Decimal Fractions - a fraction whose deonominator is 10 or some multiple of 10 such as 100, 1000, 10000,
Metric Prefixes. 10 12 Tera- T 10 2 centi- c 10 9 Giga- G 10 3 milli- m 10 6 Mega- M 10 6 micro- µ 10 3 kilo- k 10 9 nano- n
Metric Prefixes Meaning Name Abbreviation Meaning Name Abbreviation 10 12 Tera- T 10 2 centi- c 10 9 Giga- G 10 3 milli- m 10 6 Mega- M 10 6 micro- µ 10 3 kilo- k 10 9 nano- n These are the most commonly
Units of Measurement: A. The Imperial System
Units of Measurement: A. The Imperial System Canada uses the metric system most of the time! However, there are still places and occasions where the imperial system of measurement is used. People often
UNIT 1 MASS AND LENGTH
UNIT 1 MASS AND LENGTH Typical Units Typical units for measuring length and mass are listed below. Length Typical units for length in the Imperial system and SI are: Imperial SI inches ( ) centimetres
.001.01.1 1 10 100 1000. milli centi deci deci hecto kilo. Explain that the same procedure is used for all metric units (meters, grams, and liters).
Week & ay Week 15 ay 1 oncept/skill ompare metric measurements. Standard 7 MG: 1.1ompare weights, capacities, geometric measures, times, and temperatures within and between measurement systems (e.g., miles
Name: Seventh Grade Science Teacher: Page 1
Name: Seventh Grade Science Teacher: Page 1 Why should you do this Packet? Dear future 8 th grade student, You are most likely asking yourself, what the heck is this and why do I have to do it? Let me
A Mathematical Toolkit. Introduction: Chapter 2. Objectives
A Mathematical Toolkit 1 About Science Mathematics The Language of Science When the ideas of science are epressed in mathematical terms, they are unambiguous. The equations of science provide compact epressions
Imperial Length Measurements
Unit I Measuring Length 1 Section 2.1 Imperial Length Measurements Goals Reading Fractions Reading Halves on a Measuring Tape Reading Quarters on a Measuring Tape Reading Eights on a Measuring Tape Reading
Measurement/Volume and Surface Area Long-Term Memory Review Grade 7, Standard 3.0 Review 1
Review 1 1. Explain how to convert from a larger unit of measurement to a smaller unit of measurement. Include what operation(s) would be used to make the conversion. 2. What basic metric unit would be
DIMENSIONAL ANALYSIS #2
DIMENSIONAL ANALYSIS #2 Area is measured in square units, such as square feet or square centimeters. These units can be abbreviated as ft 2 (square feet) and cm 2 (square centimeters). For example, we
MEASUREMENT CONVERSION CHARTS
MEASUREMENT CONVERSION CHARTS Metric - Imperial Conversions 2 Lumber Conversion Table 3 Drywalling Estimator 4 Shingle Estimator 5 Roof Pitch Sighter Card 5 Fencing Conversion Table 6 The Country Junction
Metric Mania Conversion Practice. Basic Unit. Overhead Copy. Kilo - 1000 units. Hecto - 100 units. Deka - 10 units. Deci - 0.
Metric Mania Conversion Practice Overhead Copy Kilo - 1000 Hecto - 100 Deka - 10 To convert to a larger unit, move decimal point to the left or divide. Basic Unit Deci - 0.1 To convert to a smaller unit,
MEASUREMENTS. U.S. CUSTOMARY SYSTEM OF MEASUREMENT LENGTH The standard U.S. Customary System units of length are inch, foot, yard, and mile.
MEASUREMENTS A measurement includes a number and a unit. 3 feet 7 minutes 12 gallons Standard units of measurement have been established to simplify trade and commerce. TIME Equivalences between units
Grade 4 Mathematics Measurement: Lesson 1
Grade 4 Mathematics Measurement: Lesson 1 Read aloud to the students the material that is printed in boldface type inside the boxes. Information in regular type inside the boxes and all information outside
Conversions. 12 in. 1 ft = 1.
Conversions There are so many units that you can use to express results that you need to become proficient at converting from one to another. Fortunately, there is an easy way to do this and it works every
Prealgebra Textbook. Chapter 6 Odd Solutions
Prealgebra Textbook Second Edition Chapter 6 Odd Solutions Department of Mathematics College of the Redwoods 2012-2013 Copyright All parts of this prealgebra textbook are copyrighted c 2009 in the name
Title: Basic Metric Measurements Conversion (police)
X X Stackable Certificate Documentation Technology Study / Life skills EL-Civics Career Pathways Police Paramedic Fire Rescue Medical Asst. EKG / Cardio Phlebotomy Practical Nursing Healthcare Admin Pharmacy
MEASUREMENT. Historical records indicate that the first units of length were based on people s hands, feet and arms. The measurements were:
MEASUREMENT Introduction: People created systems of measurement to address practical problems such as finding the distance between two places, finding the length, width or height of a building, finding
How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.
The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics
One basic concept in math is that if we multiply a number by 1, the result is equal to the original number. For example,
MA 35 Lecture - Introduction to Unit Conversions Tuesday, March 24, 205. Objectives: Introduce the concept of doing algebra on units. One basic concept in math is that if we multiply a number by, the result
Unit Conversions. Ben Logan <[email protected]> Feb 10, 2005
Unit Conversions Ben Logan Feb 0, 2005 Abstract Conversion between different units of measurement is one of the first concepts covered at the start of a course in chemistry or physics.
EXERCISE # 1.Metric Measurement & Scientific Notation
EXERCISE # 1.Metric Measurement & Scientific Notation Student Learning Outcomes At the completion of this exercise, students will be able to learn: 1. How to use scientific notation 2. Discuss the importance
VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region.
Math 6 NOTES 7.5 Name VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region. **The formula for the volume of a rectangular prism is:** l = length w = width h = height Study Tip:
Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION.
Chapter 3 Metric System You shall do no unrighteousness in judgment, in measure of length, in weight, or in quantity. Just balances, just weights, shall ye have. Leviticus. Chapter 19, verse 35 36. Exhibit
Title: Basic Metric Measurements Conversion
Stackable Certificate Documentation Technology Study / Life skills EL-Civics Career Pathways Police Paramedic Fire Rescue Medical Asst. EKG / Cardio Phlebotomy Practical Nursing Healthcare Admin Pharmacy
REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52
REVIEW SHEETS INTRODUCTORY PHYSICAL SCIENCE MATH 52 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts which are taught in the specified math course.
Calculating Area, Perimeter and Volume
Calculating Area, Perimeter and Volume You will be given a formula table to complete your math assessment; however, we strongly recommend that you memorize the following formulae which will be used regularly
To Multiply Decimals
4.3 Multiplying Decimals 4.3 OBJECTIVES 1. Multiply two or more decimals 2. Use multiplication of decimals to solve application problems 3. Multiply a decimal by a power of ten 4. Use multiplication by
Chapter 2 Measurement and Problem Solving
Introductory Chemistry, 3 rd Edition Nivaldo Tro Measurement and Problem Solving Graph of global Temperature rise in 20 th Century. Cover page Opposite page 11. Roy Kennedy Massachusetts Bay Community
Student Exploration: Unit Conversions
Name: Date: Student Exploration: Unit Conversions Vocabulary: base unit, cancel, conversion factor, dimensional analysis, metric system, prefix, scientific notation Prior Knowledge Questions (Do these
Quick Reference ebook
This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference ebook Click on Contents or Index in the left panel to locate a topic. The math facts listed
Objective To introduce a formula to calculate the area. Family Letters. Assessment Management
Area of a Circle Objective To introduce a formula to calculate the area of a circle. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family Letters Assessment
Chapter 19. Mensuration of Sphere
8 Chapter 19 19.1 Sphere: A sphere is a solid bounded by a closed surface every point of which is equidistant from a fixed point called the centre. Most familiar examples of a sphere are baseball, tennis
Overview for Families
unit: Ratios and Rates Mathematical strand: Number The following pages will help you to understand the mathematics that your child is currently studying as well as the type of problems (s)he will solve
Metric Conversion: Stair-Step Method
ntroduction to Conceptual Physics Metric Conversion: Stair-Step Method Kilo- 1000 Hecto- 100 Deka- 10 Base Unit grams liters meters The Metric System of measurement is based on multiples of 10. Prefixes
www.parklandsd.org/web/physics/
Course: AP Physics 1 2016 2017 Physics Teachers: Mrs. Dogmanits & Mr. Wetherhold Summer Assignment DO NOT TAKE A TEXTBOOK FROM THE LIBRARY! USE THE ONLINE TEXT. 1. The AP Physics 1 textbook is available
Lesson 3 Understanding Distance in Space (optional)
Lesson 3 Understanding Distance in Space (optional) Background The distance between objects in space is vast and very difficult for most children to grasp. The values for these distances are cumbersome
Measuring with a Ruler
Measuring with a Ruler Objective To guide children as they measure line segments to the nearest inch, _ inch, _ inch, centimeter, _ centimeter, and millimeter. www.everydaymathonline.com epresentations
Measurement. Introduction... 3
Introduction... 3 Unit 1: Length Customary System Lesson 1: Length... 3 Lesson 2: Perimeter... 3 Lesson 3: Length Estimation... 4 Lesson 4: Selection of Units... 4 Lesson 5: Changing Units... 5 Unit 2:
CHAPTER 4 DIMENSIONAL ANALYSIS
CHAPTER 4 DIMENSIONAL ANALYSIS 1. DIMENSIONAL ANALYSIS Dimensional analysis, which is also known as the factor label method or unit conversion method, is an extremely important tool in the field of chemistry.
Handout Unit Conversions (Dimensional Analysis)
Handout Unit Conversions (Dimensional Analysis) The Metric System had its beginnings back in 670 by a mathematician called Gabriel Mouton. The modern version, (since 960) is correctly called "International
Measurements 1. BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com. In this section we will look at. Helping you practice. Online Quizzes and Videos
BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com Measurements 1 In this section we will look at - Examples of everyday measurement - Some units we use to take measurements - Symbols for units and converting
Sample worksheet from www.mathmammoth.com
Contents Foreword... 6 Chapter 1: Addition, Subtraction, Patterns and Graphs Introduction... 7 Addition Review... 10 Adding in Columns... 13 Subtraction Review... 14 Subtract in Columns... 17 Patterns
All I Ever Wanted to Know About Circles
Parts of the Circle: All I Ever Wanted to Know About Circles 1. 2. 3. Important Circle Vocabulary: CIRCLE- the set off all points that are the distance from a given point called the CENTER- the given from
GEOMETRY - MEASUREMENT Middle School, Science and Math Monica Edwins, Twin Peaks Charter Academy, Longmont Colorado
GEOMETRY - MEASUREMENT Grade Level: Written by: Length of Unit: Middle School, Science and Math Monica Edwins, Twin Peaks Charter Academy, Longmont Colorado Six class periods I. ABSTRACT This unit could
Healthcare Math: Using the Metric System
Healthcare Math: Using the Metric System Industry: Healthcare Content Area: Mathematics Core Topics: Using the metric system, converting measurements within and between the metric and US customary systems,
Ratios (pages 288 291)
A Ratios (pages 2 29) A ratio is a comparison of two numbers by division. Ratio Arithmetic: to : Algebra: a to b a:b a b When you write a ratio as a fraction, write it in simplest form. Two ratios that
Imperial and metric quiz
Level A 1. Inches are a metric measure of length. 2. Pints are smaller than gallons. 3. 1 foot is the same as: A) 12 inches B) 14 inches C) 16 inches D) 3 yards 4. foot is usually shortened to: A) 1 f
MD5-26 Stacking Blocks Pages 115 116
MD5-26 Stacking Blocks Pages 115 116 STANDARDS 5.MD.C.4 Goals Students will find the number of cubes in a rectangular stack and develop the formula length width height for the number of cubes in a stack.
Lesson 1: Linear Measurement
Lesson 1: Linear Selected Content Standards Benchmarks Addressed: M-1-M Applying the concepts of length, area, surface area, volume, capacity, weight, mass, money, time, temperature, and rate to real-world
Show that when a circle is inscribed inside a square the diameter of the circle is the same length as the side of the square.
Week & Day Week 6 Day 1 Concept/Skill Perimeter of a square when given the radius of an inscribed circle Standard 7.MG:2.1 Use formulas routinely for finding the perimeter and area of basic twodimensional
Lesson 18 Pythagorean Triples & Special Right Triangles
Student Name: Date: Contact Person Name: Phone Number: Teas Assessment of Knowledge and Skills Eit Level Math Review Lesson 18 Pythagorean Triples & Special Right Triangles TAKS Objective 6 Demonstrate
MAIN IDEA The rectangle at the right has an area of 20 square units. The distance around the rectangle is 5 + 4 + 5 + 4, or 18 units.
1-9 Algebra: Area Formulas MAIN IDEA The rectangle at the right has an area of 20 square units. The distance around the rectangle is 5 + 4 + 5 + 4, or 1. Find the areas of rectangles and squares. New Vocabulary
1) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-1) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = 7) (5)(-4) = 8) (-3)(-6) = 9) (-1)(2) =
Extra Practice for Lesson Add or subtract. ) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = Multiply. 7) (5)(-4) = 8) (-3)(-6) = 9) (-)(2) = Division is
Appendix C: Conversions and Calculations
Appendix C: Conversions and Calculations Effective application of pesticides depends on many factors. One of the more important is to correctly calculate the amount of material needed. Unless you have
Chapter 7: Land Descriptions
Chapter 7: Land Descriptions 7. Land Descriptions An * in the left margin indicates a change in the statute, rule or text since the last publication of the manual. I. Introduction While the location of
10 g 5 g? 10 g 5 g. 10 g 5 g. scale
The International System of Units, or the SI Units Vs. Honors Chem 1 LENGTH In the SI, the base unit of length is the Meter. Prefixes identify additional units of length, based on the meter. Smaller than
MATH 110 Automotive Worksheet #4
MATH 110 Automotive Worksheet #4 Ratios The math name for a fraction is ratio. It is just a comparison of one quantity with another quantity that is similar. As an automotive technician, you will use ratios
Solving Geometric Applications
1.8 Solving Geometric Applications 1.8 OBJECTIVES 1. Find a perimeter 2. Solve applications that involve perimeter 3. Find the area of a rectangular figure 4. Apply area formulas 5. Apply volume formulas
Unit 5 Length. Year 4. Five daily lessons. Autumn term Unit Objectives. Link Objectives
Unit 5 Length Five daily lessons Year 4 Autumn term Unit Objectives Year 4 Suggest suitable units and measuring equipment to Page 92 estimate or measure length. Use read and write standard metric units
Area and Circumference
4.4 Area and Circumference 4.4 OBJECTIVES 1. Use p to find the circumference of a circle 2. Use p to find the area of a circle 3. Find the area of a parallelogram 4. Find the area of a triangle 5. Convert
Lesson 21. Circles. Objectives
Student Name: Date: Contact Person Name: Phone Number: Lesson 1 Circles Objectives Understand the concepts of radius and diameter Determine the circumference of a circle, given the diameter or radius Determine
Metric Rules. Activity 7. In this activity you will: Introduction. The Problem. Math Concepts Measurement. Science Concepts Data collection
. Math Concepts Measurement Geometry Activity 7 Science Concepts Data collection Metric Rules Materials TI-73 calculator Yardstick Meter stick In this activity you will: Collect data by measuring different
Activity 3.2 Unit Conversion
Activity 3.2 Unit Conversion Introduction Engineers of all disciplines are constantly required to work with measurements of a variety of quantities length, area, volume, mass, force, time, temperature,
Area of Parallelograms, Triangles, and Trapezoids (pages 314 318)
Area of Parallelograms, Triangles, and Trapezoids (pages 34 38) Any side of a parallelogram or triangle can be used as a base. The altitude of a parallelogram is a line segment perpendicular to the base
10-3 Area of Parallelograms
0-3 Area of Parallelograms MAIN IDEA Find the areas of parallelograms. NYS Core Curriculum 6.A.6 Evaluate formulas for given input values (circumference, area, volume, distance, temperature, interest,
15.6. Metric Units of Length. Investigate. Materials ruler (meter) scissors tape. A. Cut out the meterstick strips.
Name 15.6? Essential Question Metric Units of Length How can you convert metric units of length? Geometry and Measurement 4.8., 4.8. lso 4.8. MTHEMTIL PROESSES 4.1., 4.1., 4.1.F Investigate Materials ruler
7th-math 2/15/2004. Read each question carefully and circle the correct answer.
7th-math 2/15/2004 Student Name: Class: Date: Instructions: Read each question carefully and circle the correct answer. 1. What is the value of z? 26.5 = z + (2.3 + 7.7) A. 2.65 B. 36.5 C. 16.5 D. 26.5
Section 1 Tools and Measurement
Section 1 Tools and Measurement Key Concept Scientists must select the appropriate tools to make measurements and collect data, to perform tests, and to analyze data. What You Will Learn Scientists use
Math-in-CTE Sample Automotive Lesson
Math-in-CTE Sample Automotive Lesson Piston Displacement Lesson Title: Piston Displacement Lesson #: AT07 Occupational Area: Automotive Technology CTE Concept(s): Piston Displacement Math Concept(s): Formula
Subject: Math Grade Level: 5 Topic: The Metric System Time Allotment: 45 minutes Teaching Date: Day 1
Subject: Math Grade Level: 5 Topic: The Metric System Time Allotment: 45 minutes Teaching Date: Day 1 I. (A) Goal(s): For student to gain conceptual understanding of the metric system and how to convert
Chapter 3 Review Math 1030
Section A.1: Three Ways of Using Percentages Using percentages We can use percentages in three different ways: To express a fraction of something. For example, A total of 10, 000 newspaper employees, 2.6%
MOST COMMON METRIC UNITS USED IN THE MEDICAL FIELD *BASE. deci. King Henry Died (from a) Disease Called Mumps. (k) (h) (da) gram (g) (d) (c) (m)
MOST COMMON METRIC UNITS USED IN THE MEDICAL FIELD Micro (mc) microgram 0 6 One millionth 0.00000 Milli (m) milligram milliliter* millimeter 0 3 One thousandth 0.00 Centi (c) centimeter 0 2 One hundredth
Math 1 Chapter 3 notes.notebook. October 22, 2012. Examples
Chapter 3 SOLVING LINEAR EQUATIONS!! Lesson 3 1 Solve one step equations Key Vocab: Inverse operations: are two operations that undo each other. Addition and subtraction Multiplication and division equivalent
Metric Units of Weight and Volume
7.3 Metric Units of Weight and Volume 7.3 OBJECTIVES 1. Use appropriate metric units of weight 2. Convert metric units of weight 3. Estimate metric units of volume 4. Convert metric units of volume The
1. Examine the metric ruler. This ruler is 1 meter long. The distance between two of the lines with numbers on this ruler is 1 centimeter.
Nano Scale How small is small? It depends on your point of reference. A human is very small compared to the earth. A grain of salt is very small compared to a human. However, a grain of salt is very large
Essential Question: Why does what we measure influence how we measure?
Core Content: 5.MD.1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world
Conversion Formulas and Tables
Conversion Formulas and Tables Metric to English, Introduction Most of the world, with the exception of the USA, uses the metric system of measurements exclusively. In the USA there are many people that
Revision Notes Adult Numeracy Level 2
Revision Notes Adult Numeracy Level 2 Place Value The use of place value from earlier levels applies but is extended to all sizes of numbers. The values of columns are: Millions Hundred thousands Ten thousands
How Far Away is That? Ratios, Proportions, Maps and Medicine
38 How Far Away is That? Ratios, Proportions, Maps and Medicine Maps A ratio is simply a fraction; it gives us a way of comparing two quantities. A proportion is an equation that has exactly one ratio
Dimensional Analysis
Dimensional Analysis Today you ll learn about Dimensional Analysis You will be able to use unit analysis to help convert units you are not used to using. By the end of the lesson, you will: Use dimensional
Characteristics of the Four Main Geometrical Figures
Math 40 9.7 & 9.8: The Big Four Square, Rectangle, Triangle, Circle Pre Algebra We will be focusing our attention on the formulas for the area and perimeter of a square, rectangle, triangle, and a circle.
INTERIM UNITS OF MEASURE As suggested by Federal Standard 376B January 27, 1993. hectare (ha) Hundred for traffic buttons.
SI - The Metrics International System of Units The International System of Units (SI) is a modernized version of the metric system established by international agreement. The metric system of measurement
Conversions between the common units of length used in the Imperial system are listed below 12 in = 1 ft 3 ft = 1 yard 1760 yards = 1 mile
THE METRIC SYSTEM The metric system or SI (International System) is the most common system of measurements in the world, and the easiest to use. The base units for the metric system are the units of: length,
Solving Equations With Fractional Coefficients
Solving Equations With Fractional Coefficients Some equations include a variable with a fractional coefficient. Solve this kind of equation by multiplying both sides of the equation by the reciprocal of
CHEMISTRY B- FACTOR LABEL PACKET NAME: HR: PAGE 1. Chemistry B. Factor Label Packet
CHEMISTRY B- FACTOR LABEL PACKET NAME: HR: PAGE 1 Chemistry B Factor Label Packet CHEMISTRY B- FACTOR LABEL PACKET NAME: HR: PAGE 2 PERIODIC TABLE OF ELEMENTS WITH OXIDATION NUMBERS +1 0 H +2 +3-3 He Li
Dimensional Analysis and Exponential Models
MAT 42 College Mathematics Module XP Dimensional Analysis and Exponential Models Terri Miller revised December 3, 200. Dimensional Analysis The purpose of this section is to convert between various types
UNIT (1) MEASUREMENTS IN CHEMISTRY
UNIT (1) MEASUREMENTS IN CHEMISTRY Measurements are part of our daily lives. We measure our weights, driving distances, and gallons of gasoline. As a health professional you might measure blood pressure,
General Physics 1. Class Goals
General Physics 1 Class Goals Develop problem solving skills Learn the basic concepts of mechanics and learn how to apply these concepts to solve problems Build on your understanding of how the world works
APPENDIX I SI AND ENGLISH UNITS AND CONVERSION FACTORS
APPENDIX I SI AND ENGLISH UNITS AND CONVERSION FACTORS The International System of Units (Systéme International d Unités, or SI) recognizes seven basic units from which all others are derived. They are:
Dimensional Analysis; Exponential and Logarithmic Growth/Decay
MAT 42 College Mathematics Module #5 Dimensional Analysis; Exponential and Logarithmic Growth/Decay Terri Miller Spring 2009 revised November 7, 2009. Dimensional Analysis The purpose of this section is
ACTIVITY: Finding a Formula Experimentally. Work with a partner. Use a paper cup that is shaped like a cone.
8. Volumes of Cones How can you find the volume of a cone? You already know how the volume of a pyramid relates to the volume of a prism. In this activity, you will discover how the volume of a cone relates
