Programming Tools based on Big Data and Conditional Random Fields

Size: px
Start display at page:

Download "Programming Tools based on Big Data and Conditional Random Fields"

Transcription

1 Programming Tools based on Big Data and Conditional Random Fields Veselin Raychev Martin Vechev Andreas Krause Department of Computer Science ETH Zurich Zurich Machine Learning and Data Science Meet-up, December 2014

2 Motivation Unprecedented access to massive codebases

3 Motivation ~16M repos ~ 7M users # of repositories year

4 Vision Statistical Programming Tools Probabilistically likely solutions to problems difficult or impossible to solve with traditional rule-based techniques

5 General Approach Find the right program representation for the task Find the right probabilistic model for the task Build a probabilistic model over the representation and existing code Use the probabilistic model to answer queries on new programs Programming languages + Machine learning

6 1,000+ Tweets (sample below):

7 JSNice: Popularity one of the top ranked tools for JavaScript in ,000 users in 1 st week of release used in 180 countries

8 JSNice Intuition: Image Denoising Original image Noisy Image Denoised Image

9 Image Denoising Noisy Image? Denoised Image

10 JSNice function chunkdata(e, t) var n = []; var r = e.length; for (; i < r; i += t) if (i + t < r) n.push(e.substring(i, i + t)); n.push(e.substring(i, r)); return n;? function chunkdata(str, step) var colnames = []; var len = str.length; for (; i < len; i += step) if (i + step < len) colnames.push(str.substring(i, i + step)); colnames.push(str.substring(i, len)); return colnames;

11 Structured Prediction for Programs (V. Raychev, M. Vechev, A. Krause, ACM POPL 15, to appear) Bridges Program Analysis and Conditional Random Fields First connection between programs and CRFs JSNice is a special instance CRFs a key model in Computer Vision

12 Markov Random Fields Undirected graphical model Graph + factors define a joint probability distribution t i 1 r P i, r, t = 1 i, t 2 i, r Z(i, r, t) 2 Captures dependence between facts to be predicted Undirected models better suited for our than directed models (direction is hard to capture) More on graphical models in: Probabilistic Graphical Models for Image Analysis, ETH graduate course, McWilliams and Lucchi

13 Conditional Random Fields (McCallum et.al, 2001) Some facts are already known, denoted as x We would like to predict new facts, y, conditioned on the known facts x t i 1 K r P i, r t = 1 i, t 2 i, r Z(t) 2 Key advantage of CRFs over MRFs: no priors required.

14 MAP inference: joint prediction y best = argmax P y x y x Key: MAP inference over marginals! This is key for programs i 1 t K P i, r t = r 2 1 i, t 2 i, r Z(t) i, r best = argmax 1 i, t 2 i, r (i, r) x We use an iterative greedy algorithm

15 Learning CRFs from Data (via max-margin training, Ratliff et.al., 2007) A convenient representation for learning from data is a log-linear CRF P y x = 1 Z(x) exp (wt f(y, x)) learned from data As we require only CRFs and MAP inference, we use the max-margin training due to Ratliff et.al. (2007). Computes subgradient via MAP inference. Avoids computation of Z(x)!

16 Learning CRFs from Data (via max-margin training, Ratliff et.al., 2007) A convenient representation for learning from data is a log-linear CRF P y x = 1 Z(x) exp (wt f(y, x)) learned from data y best = argmax w T f(y, x) y x As we require only CRFs and MAP inference, we use the max-margin training due to Ratliff et.al. (2007). Computes subgradient via MAP inference. Avoids computation of Z(x)!

17 Recipe: From a Program to a CRF

18 Recipe: From a Program to a CRF Step 1: Define the elements and their properties of interest Elements become nodes in a network, node content ranges over properties Example: elements are variables, properties are their type

19 Recipe: From a Program to a CRF Step 1: Define the elements and their properties of interest Elements become nodes in a network, node content ranges over properties Example: elements are variables, properties are their type Step 2: Define feature functions between elements Feature functions become undirected edges in the network Example: aliasing between variables, shared function caller, etc.

20 Recipe: From a Program to a CRF Step 1: Define the elements and their properties of interest Elements become nodes in a network, node content ranges over properties Example: elements are variables, properties are their type Step 2: Define feature functions between elements Feature functions become undirected edges in the network Example: aliasing between variables, shared function caller, etc. Step 3: Build network via static program Automatically extract nodes and feature functions from the program Example: alias, call graph Key point: general problem undecidable, need good approximations! More on Program Analysis: Program Analysis, ETH graduate course, M. Vechev, Spring 2015

21 function chunkdata(e, t) var n = []; var r = e.length; for (; i < r; i += t) if (i + t < r) n.push(e.substring(i, i + t)); n.push(e.substring(i, r)); return n; MAP inference

22 MAP inference function chunkdata(e, t) var n = []; var r = e.length; for (; i < r; i += t) if (i + t < r) n.push(e.substring(i, i + t)); n.push(e.substring(i, r)); return n; Unknown properties: Known properties: t r i length

23 MAP inference function chunkdata(e, t) var n = []; var r = e.length; for (; i < r; i += t) if (i + t < r) n.push(e.substring(i, i + t)); n.push(e.substring(i, r)); return n; Unknown properties: Known properties: t r i length i t r length

24 MAP inference function chunkdata(e, t) var n = []; var r = e.length; for (; i < r; i += t) if (i + t < r) n.push(e.substring(i, i + t)); n.push(e.substring(i, r)); return n; Unknown properties: Known properties: t r i length i t w i step 0.5 j step 0.4 i t r length i t r length i r w i len 0.6 j length 0.3 r length w length length 0.5 len length

25 MAP inference function chunkdata(e, t) var n = []; var r = e.length; for (; i < r; i += t) if (i + t < r) n.push(e.substring(i, i + t)); n.push(e.substring(i, r)); return n; Unknown properties: Known properties: t r i length i t w i step 0.5 j step 0.4 i t r length i t r length i r w i len 0.6 j length 0.3 r length w length length 0.5 len length

26 MAP inference function chunkdata(e, t) var n = []; var r = e.length; for (; i < r; i += t) if (i + t < r) n.push(e.substring(i, i + t)); n.push(e.substring(i, r)); return n; Unknown properties: Known properties: i t r t r i length length i t w i step 0.5 j step 0.4 i i i r w i len 0.6 j length 0.3 t step r len length r length w length length 0.5 len length

27 MAP inference function chunkdata(e, t) var n = []; var r = e.length; for (; i < r; i += t) if (i + t < r) n.push(e.substring(i, i + t)); n.push(e.substring(i, r)); return n; function chunkdata(str, step) var colnames = []; var len = str.length; for (; i < len; i += step) if (i + step < len) colnames.push(str.substring(i, i + step)); colnames.push(str.substring(i, len)); return colnames; Unknown properties: Known properties: i t r t r i length length i t w i step 0.5 j step 0.4 i i i r w i len 0.6 j length 0.3 t step r len length r length w length length 0.5 len length

28 Structured Prediction for Programs var n = []; var r = e.length; for (; i < r; i += t) if (i + t < r) n.push(e.subsi, i + t)); n.push(e.subsi, r)); return n; program Prediction Phase inference transform var colnames = []; var len = str.length; for (; i < len; i += step) if (i + step < len) colnames.push(str.subs(i, i + step)); colnames.push(str.substi, len)); return colnames; Learning Phase Learned Weights and Feature Functions program learn weighs

29 Structured Prediction for Programs var n = []; var r = e.length; for (; i < r; i += t) if (i + t < r) n.push(e.subsi, i + t)); n.push(e.subsi, r)); return n; program Prediction Phase inference transform var colnames = []; var len = str.length; for (; i < len; i += step) if (i + step < len) colnames.push(str.subs(i, i + step)); colnames.push(str.substi, len)); return colnames; Learning Phase Learned Weights and Feature Functions program learn weighs alias,call

30 Structured Prediction for Programs var n = []; var r = e.length; for (; i < r; i += t) if (i + t < r) n.push(e.subsi, i + t)); n.push(e.subsi, r)); return n; program Prediction Phase inference transform var colnames = []; var len = str.length; for (; i < len; i += step) if (i + step < len) colnames.push(str.subs(i, i + step)); colnames.push(str.substi, len)); return colnames; Learning Phase Learned Weights and Feature Functions program learn weighs alias,call ~ 7M functions for names ~70K functions for type

31 Structured Prediction for Programs var n = []; var r = e.length; for (; i < r; i += t) if (i + t < r) n.push(e.subsi, i + t)); n.push(e.subsi, r)); return n; program Prediction Phase inference transform var colnames = []; var len = str.length; for (; i < len; i += step) if (i + step < len) colnames.push(str.subs(i, i + step)); colnames.push(str.substi, len)); return colnames; Learning Phase Learned Weights and Feature Functions program learn weighs max-margin training alias,call ~ 7M functions for names ~70K functions for type

32 Structured Prediction for Programs var n = []; var r = e.length; for (; i < r; i += t) if (i + t < r) n.push(e.subsi, i + t)); n.push(e.subsi, r)); return n; program Prediction Phase inference transform ~ 150MB var colnames = []; var len = str.length; for (; i < len; i += step) if (i + step < len) colnames.push(str.subs(i, i + step)); colnames.push(str.substi, len)); return colnames; Learning Phase Learned Weights and Feature Functions program learn weighs max-margin training alias,call ~ 7M functions for names ~70K functions for type

33 Structured Prediction for Programs ~ 30 nodes, ~400 edges var n = []; var r = e.length; for (; i < r; i += t) if (i + t < r) n.push(e.subsi, i + t)); n.push(e.subsi, r)); return n; program Prediction Phase inference transform ~ 150MB var colnames = []; var len = str.length; for (; i < len; i += step) if (i + step < len) colnames.push(str.subs(i, i + step)); colnames.push(str.substi, len)); return colnames; Learning Phase Learned Weights and Feature Functions program learn weighs max-margin training alias,call ~ 7M functions for names ~70K functions for type

34 Structured Prediction for Programs ~ 30 nodes, ~400 edges Time: milliseconds var n = []; var r = e.length; for (; i < r; i += t) if (i + t < r) n.push(e.subsi, i + t)); n.push(e.subsi, r)); return n; program Prediction Phase inference transform ~ 150MB var colnames = []; var len = str.length; for (; i < len; i += step) if (i + step < len) colnames.push(str.subs(i, i + step)); colnames.push(str.substi, len)); return colnames; Learning Phase Learned Weights and Feature Functions program learn weighs max-margin training alias,call ~ 7M functions for names ~70K functions for type

35 Structured Prediction for Programs ~ 30 nodes, ~400 edges var n = []; var r = e.length; for (; i < r; i += t) if (i + t < r) n.push(e.subsi, i + t)); n.push(e.subsi, r)); return n; program Prediction Phase Learning Phase program Time: milliseconds inference learn weighs transform ~ 150MB Learned Weights and Feature Functions max-margin training var colnames = []; var len = str.length; for (; i < len; i += step) if (i + step < len) colnames.push(str.subs(i, i + step)); colnames.push(str.substi, len)); return colnames; Names: 63% Types: 81% (helps typechecking) alias,call ~ 7M functions for names ~70K functions for type

36 Structured Prediction for Programs function chunkdata(e, t) var n = []; var r = e.length; for (; i < r; i += t) if (i + t < r) n.push(e.substring(i, i + t)); n.push(e.substring(i, r)); return n; Unknown properties: Known properties: i t r t r i length length function chunkdata(str, step) var colnames = []; var len = str.length; for (; i < len; i += step) if (i + step < len) colnames.push(str.substring(i, i + step)); Bridges Program Analysis and CRFs First application of CRFs to programs CRFs learned from data Fast and Precise colnames.push(str.substring(i, len)); return colnames; i t w i step 0.5 j step 0.4 i r w i len 0.6 j length 0.3 i i t step step r len length r length w length length 0.5 len length

Predicting Program Properties from Big Code

Predicting Program Properties from Big Code Predicting Program Properties from Big Code * POPL * Artifact Consistent * Complete * Well Documented * Easy to Reuse * Evaluated * AEC * Veselin Raychev Department of Computer Science ETH Zürich [email protected]

More information

Distributed Structured Prediction for Big Data

Distributed Structured Prediction for Big Data Distributed Structured Prediction for Big Data A. G. Schwing ETH Zurich [email protected] T. Hazan TTI Chicago M. Pollefeys ETH Zurich R. Urtasun TTI Chicago Abstract The biggest limitations of learning

More information

The Basics of Graphical Models

The Basics of Graphical Models The Basics of Graphical Models David M. Blei Columbia University October 3, 2015 Introduction These notes follow Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. Many figures

More information

Course: Model, Learning, and Inference: Lecture 5

Course: Model, Learning, and Inference: Lecture 5 Course: Model, Learning, and Inference: Lecture 5 Alan Yuille Department of Statistics, UCLA Los Angeles, CA 90095 [email protected] Abstract Probability distributions on structured representation.

More information

Conditional Random Fields: An Introduction

Conditional Random Fields: An Introduction Conditional Random Fields: An Introduction Hanna M. Wallach February 24, 2004 1 Labeling Sequential Data The task of assigning label sequences to a set of observation sequences arises in many fields, including

More information

An Introduction to the Use of Bayesian Network to Analyze Gene Expression Data

An Introduction to the Use of Bayesian Network to Analyze Gene Expression Data n Introduction to the Use of ayesian Network to nalyze Gene Expression Data Cristina Manfredotti Dipartimento di Informatica, Sistemistica e Comunicazione (D.I.S.Co. Università degli Studi Milano-icocca

More information

Introduction to Deep Learning Variational Inference, Mean Field Theory

Introduction to Deep Learning Variational Inference, Mean Field Theory Introduction to Deep Learning Variational Inference, Mean Field Theory 1 Iasonas Kokkinos [email protected] Center for Visual Computing Ecole Centrale Paris Galen Group INRIA-Saclay Lecture 3: recap

More information

Travis Goodwin & Sanda Harabagiu

Travis Goodwin & Sanda Harabagiu Automatic Generation of a Qualified Medical Knowledge Graph and its Usage for Retrieving Patient Cohorts from Electronic Medical Records Travis Goodwin & Sanda Harabagiu Human Language Technology Research

More information

Structured Learning and Prediction in Computer Vision. Contents

Structured Learning and Prediction in Computer Vision. Contents Foundations and Trends R in Computer Graphics and Vision Vol. 6, Nos. 3 4 (2010) 185 365 c 2011 S. Nowozin and C. H. Lampert DOI: 10.1561/0600000033 Structured Learning and Prediction in Computer Vision

More information

HIGH PERFORMANCE BIG DATA ANALYTICS

HIGH PERFORMANCE BIG DATA ANALYTICS HIGH PERFORMANCE BIG DATA ANALYTICS Kunle Olukotun Electrical Engineering and Computer Science Stanford University June 2, 2014 Explosion of Data Sources Sensors DoD is swimming in sensors and drowning

More information

Big Data Science. Prof. Lise Getoor University of Maryland, College Park. http://www.cs.umd.edu/~getoor. October 17, 2013

Big Data Science. Prof. Lise Getoor University of Maryland, College Park. http://www.cs.umd.edu/~getoor. October 17, 2013 Big Data Science Prof Lise Getoor University of Maryland, College Park October 17, 2013 http://wwwcsumdedu/~getoor BIG Data is not flat 2004-2013 lonnitaylor Data is multi-modal, multi-relational, spatio-temporal,

More information

Sanjeev Kumar. contribute

Sanjeev Kumar. contribute RESEARCH ISSUES IN DATAA MINING Sanjeev Kumar I.A.S.R.I., Library Avenue, Pusa, New Delhi-110012 [email protected] 1. Introduction The field of data mining and knowledgee discovery is emerging as a

More information

Distance Degree Sequences for Network Analysis

Distance Degree Sequences for Network Analysis Universität Konstanz Computer & Information Science Algorithmics Group 15 Mar 2005 based on Palmer, Gibbons, and Faloutsos: ANF A Fast and Scalable Tool for Data Mining in Massive Graphs, SIGKDD 02. Motivation

More information

Chapter 28. Bayesian Networks

Chapter 28. Bayesian Networks Chapter 28. Bayesian Networks The Quest for Artificial Intelligence, Nilsson, N. J., 2009. Lecture Notes on Artificial Intelligence, Spring 2012 Summarized by Kim, Byoung-Hee and Lim, Byoung-Kwon Biointelligence

More information

Various applications of restricted Boltzmann machines for bad quality training data

Various applications of restricted Boltzmann machines for bad quality training data Wrocław University of Technology Various applications of restricted Boltzmann machines for bad quality training data Maciej Zięba Wroclaw University of Technology 20.06.2014 Motivation Big data - 7 dimensions1

More information

Bayesian networks - Time-series models - Apache Spark & Scala

Bayesian networks - Time-series models - Apache Spark & Scala Bayesian networks - Time-series models - Apache Spark & Scala Dr John Sandiford, CTO Bayes Server Data Science London Meetup - November 2014 1 Contents Introduction Bayesian networks Latent variables Anomaly

More information

A Platform for Supporting Data Analytics on Twitter: Challenges and Objectives 1

A Platform for Supporting Data Analytics on Twitter: Challenges and Objectives 1 A Platform for Supporting Data Analytics on Twitter: Challenges and Objectives 1 Yannis Stavrakas Vassilis Plachouras IMIS / RC ATHENA Athens, Greece {yannis, vplachouras}@imis.athena-innovation.gr Abstract.

More information

Life of A Knowledge Base (KB)

Life of A Knowledge Base (KB) Life of A Knowledge Base (KB) A knowledge base system is a special kind of database management system to for knowledge base management. KB extraction: knowledge extraction using statistical models in NLP/ML

More information

Enhanced Information Access to Social Streams. Enhanced Word Clouds with Entity Grouping

Enhanced Information Access to Social Streams. Enhanced Word Clouds with Entity Grouping Enhanced Information Access to Social Streams through Word Clouds with Entity Grouping Martin Leginus 1, Leon Derczynski 2 and Peter Dolog 1 1 Department of Computer Science, Aalborg University Selma Lagerlofs

More information

KEYWORD SEARCH OVER PROBABILISTIC RDF GRAPHS

KEYWORD SEARCH OVER PROBABILISTIC RDF GRAPHS ABSTRACT KEYWORD SEARCH OVER PROBABILISTIC RDF GRAPHS In many real applications, RDF (Resource Description Framework) has been widely used as a W3C standard to describe data in the Semantic Web. In practice,

More information

How Conditional Random Fields Learn Dynamics: An Example-Based Study

How Conditional Random Fields Learn Dynamics: An Example-Based Study Computer Communication & Collaboration (2013) Submitted on 27/May/2013 How Conditional Random Fields Learn Dynamics: An Example-Based Study Mohammad Javad Shafiee School of Electrical & Computer Engineering,

More information

Dynamic Load Balancing in Charm++ Abhinav S Bhatele Parallel Programming Lab, UIUC

Dynamic Load Balancing in Charm++ Abhinav S Bhatele Parallel Programming Lab, UIUC Dynamic Load Balancing in Charm++ Abhinav S Bhatele Parallel Programming Lab, UIUC Outline Dynamic Load Balancing framework in Charm++ Measurement Based Load Balancing Examples: Hybrid Load Balancers Topology-aware

More information

How To Find An Alias On Email From A Computer (For A Free Download)

How To Find An Alias On Email From A Computer (For A Free Download) Email Alias Detection Using Social Network Analysis Ralf Hölzer Information Networking Institute Carnegie Mellon University Pittsburgh, PA 1513 [email protected] Bradley Malin School of Computer Science

More information

Social Media Mining. Data Mining Essentials

Social Media Mining. Data Mining Essentials Introduction Data production rate has been increased dramatically (Big Data) and we are able store much more data than before E.g., purchase data, social media data, mobile phone data Businesses and customers

More information

Supervised Learning (Big Data Analytics)

Supervised Learning (Big Data Analytics) Supervised Learning (Big Data Analytics) Vibhav Gogate Department of Computer Science The University of Texas at Dallas Practical advice Goal of Big Data Analytics Uncover patterns in Data. Can be used

More information

Data Mining Practical Machine Learning Tools and Techniques

Data Mining Practical Machine Learning Tools and Techniques Ensemble learning Data Mining Practical Machine Learning Tools and Techniques Slides for Chapter 8 of Data Mining by I. H. Witten, E. Frank and M. A. Hall Combining multiple models Bagging The basic idea

More information

1 An Introduction to Conditional Random Fields for Relational Learning

1 An Introduction to Conditional Random Fields for Relational Learning 1 An Introduction to Conditional Random Fields for Relational Learning Charles Sutton Department of Computer Science University of Massachusetts, USA [email protected] http://www.cs.umass.edu/ casutton

More information

A Serial Partitioning Approach to Scaling Graph-Based Knowledge Discovery

A Serial Partitioning Approach to Scaling Graph-Based Knowledge Discovery A Serial Partitioning Approach to Scaling Graph-Based Knowledge Discovery Runu Rathi, Diane J. Cook, Lawrence B. Holder Department of Computer Science and Engineering The University of Texas at Arlington

More information

Asking Hard Graph Questions. Paul Burkhardt. February 3, 2014

Asking Hard Graph Questions. Paul Burkhardt. February 3, 2014 Beyond Watson: Predictive Analytics and Big Data U.S. National Security Agency Research Directorate - R6 Technical Report February 3, 2014 300 years before Watson there was Euler! The first (Jeopardy!)

More information

A Learning Based Method for Super-Resolution of Low Resolution Images

A Learning Based Method for Super-Resolution of Low Resolution Images A Learning Based Method for Super-Resolution of Low Resolution Images Emre Ugur June 1, 2004 [email protected] Abstract The main objective of this project is the study of a learning based method

More information

An Interactive Visualization Tool for Nipype Medical Image Computing Pipelines

An Interactive Visualization Tool for Nipype Medical Image Computing Pipelines An Interactive Visualization Tool for Nipype Medical Image Computing Pipelines Ramesh Sridharan, Adrian V. Dalca, and Polina Golland Computer Science and Artificial Intelligence Lab, MIT Abstract. We present

More information

Automated Model Based Testing for an Web Applications

Automated Model Based Testing for an Web Applications Automated Model Based Testing for an Web Applications Agasarpa Mounica, Lokanadham Naidu Vadlamudi Abstract- As the development of web applications plays a major role in our day-to-day life. Modeling the

More information

Lecture 2: Complexity Theory Review and Interactive Proofs

Lecture 2: Complexity Theory Review and Interactive Proofs 600.641 Special Topics in Theoretical Cryptography January 23, 2007 Lecture 2: Complexity Theory Review and Interactive Proofs Instructor: Susan Hohenberger Scribe: Karyn Benson 1 Introduction to Cryptography

More information

Machine Learning over Big Data

Machine Learning over Big Data Machine Learning over Big Presented by Fuhao Zou [email protected] Jue 16, 2014 Huazhong University of Science and Technology Contents 1 2 3 4 Role of Machine learning Challenge of Big Analysis Distributed

More information

Journal of Machine Learning Research 1 (2013) 1-1 Submitted 8/13; Published 10/13

Journal of Machine Learning Research 1 (2013) 1-1 Submitted 8/13; Published 10/13 Journal of Machine Learning Research 1 (2013) 1-1 Submitted 8/13; Published 10/13 PyStruct - Learning Structured Prediction in Python Andreas C. Müller Sven Behnke Institute of Computer Science, Department

More information

MapReduce and Distributed Data Analysis. Sergei Vassilvitskii Google Research

MapReduce and Distributed Data Analysis. Sergei Vassilvitskii Google Research MapReduce and Distributed Data Analysis Google Research 1 Dealing With Massive Data 2 2 Dealing With Massive Data Polynomial Memory Sublinear RAM Sketches External Memory Property Testing 3 3 Dealing With

More information

3. The Junction Tree Algorithms

3. The Junction Tree Algorithms A Short Course on Graphical Models 3. The Junction Tree Algorithms Mark Paskin [email protected] 1 Review: conditional independence Two random variables X and Y are independent (written X Y ) iff p X ( )

More information

Finding the M Most Probable Configurations Using Loopy Belief Propagation

Finding the M Most Probable Configurations Using Loopy Belief Propagation Finding the M Most Probable Configurations Using Loopy Belief Propagation Chen Yanover and Yair Weiss School of Computer Science and Engineering The Hebrew University of Jerusalem 91904 Jerusalem, Israel

More information

Search engines: ranking algorithms

Search engines: ranking algorithms Search engines: ranking algorithms Gianna M. Del Corso Dipartimento di Informatica, Università di Pisa, Italy ESP, 25 Marzo 2015 1 Statistics 2 Search Engines Ranking Algorithms HITS Web Analytics Estimated

More information

Complex Network Visualization based on Voronoi Diagram and Smoothed-particle Hydrodynamics

Complex Network Visualization based on Voronoi Diagram and Smoothed-particle Hydrodynamics Complex Network Visualization based on Voronoi Diagram and Smoothed-particle Hydrodynamics Zhao Wenbin 1, Zhao Zhengxu 2 1 School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu

More information

Bayesian Network Development

Bayesian Network Development Bayesian Network Development Kenneth BACLAWSKI College of Computer Science, Northeastern University Boston, Massachusetts 02115 USA [email protected] Abstract Bayesian networks are a popular mechanism

More information

Efficient Identification of Starters and Followers in Social Media

Efficient Identification of Starters and Followers in Social Media Efficient Identification of Starters and Followers in Social Media Michael Mathioudakis Department of Computer Science University of Toronto [email protected] Nick Koudas Department of Computer Science

More information

Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014

Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014 Probabilistic Models for Big Data Alex Davies and Roger Frigola University of Cambridge 13th February 2014 The State of Big Data Why probabilistic models for Big Data? 1. If you don t have to worry about

More information

Graphical Modeling for Genomic Data

Graphical Modeling for Genomic Data Graphical Modeling for Genomic Data Carel F.W. Peeters [email protected] Joint work with: Wessel N. van Wieringen Mark A. van de Wiel Molecular Biostatistics Unit Dept. of Epidemiology & Biostatistics

More information

Bayesian Networks. Mausam (Slides by UW-AI faculty)

Bayesian Networks. Mausam (Slides by UW-AI faculty) Bayesian Networks Mausam (Slides by UW-AI faculty) Bayes Nets In general, joint distribution P over set of variables (X 1 x... x X n ) requires exponential space for representation & inference BNs provide

More information

NEW VERSION OF DECISION SUPPORT SYSTEM FOR EVALUATING TAKEOVER BIDS IN PRIVATIZATION OF THE PUBLIC ENTERPRISES AND SERVICES

NEW VERSION OF DECISION SUPPORT SYSTEM FOR EVALUATING TAKEOVER BIDS IN PRIVATIZATION OF THE PUBLIC ENTERPRISES AND SERVICES NEW VERSION OF DECISION SUPPORT SYSTEM FOR EVALUATING TAKEOVER BIDS IN PRIVATIZATION OF THE PUBLIC ENTERPRISES AND SERVICES Silvija Vlah Kristina Soric Visnja Vojvodic Rosenzweig Department of Mathematics

More information

Multiple Network Marketing coordination Model

Multiple Network Marketing coordination Model REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Learning Gaussian process models from big data. Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu

Learning Gaussian process models from big data. Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu Learning Gaussian process models from big data Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu Machine learning seminar at University of Cambridge, July 4 2012 Data A lot of

More information

Topic models for Sentiment analysis: A Literature Survey

Topic models for Sentiment analysis: A Literature Survey Topic models for Sentiment analysis: A Literature Survey Nikhilkumar Jadhav 123050033 June 26, 2014 In this report, we present the work done so far in the field of sentiment analysis using topic models.

More information

A survey on click modeling in web search

A survey on click modeling in web search A survey on click modeling in web search Lianghao Li Hong Kong University of Science and Technology Outline 1 An overview of web search marketing 2 An overview of click modeling 3 A survey on click models

More information

Hidden Markov Models Chapter 15

Hidden Markov Models Chapter 15 Hidden Markov Models Chapter 15 Mausam (Slides based on Dan Klein, Luke Zettlemoyer, Alex Simma, Erik Sudderth, David Fernandez-Baca, Drena Dobbs, Serafim Batzoglou, William Cohen, Andrew McCallum, Dan

More information

How To Classify Objects From 3D Data On A Robot

How To Classify Objects From 3D Data On A Robot Classification of Laser and Visual Sensors Using Associative Markov Networks José Angelo Gurzoni Jr, Fabiano R. Correa, Fabio Gagliardi Cozman 1 Escola Politécnica da Universidade de São Paulo São Paulo,

More information

Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1

Why NoSQL? Your database options in the new non- relational world. 2015 IBM Cloudant 1 Why NoSQL? Your database options in the new non- relational world 2015 IBM Cloudant 1 Table of Contents New types of apps are generating new types of data... 3 A brief history on NoSQL... 3 NoSQL s roots

More information

Berkeley CS191x: Quantum Mechanics and Quantum Computation Optional Class Project

Berkeley CS191x: Quantum Mechanics and Quantum Computation Optional Class Project Berkeley CS191x: Quantum Mechanics and Quantum Computation Optional Class Project This document describes the optional class project for the Fall 2013 offering of CS191x. The project will not be graded.

More information

Sentiment Analysis on Big Data

Sentiment Analysis on Big Data SPAN White Paper!? Sentiment Analysis on Big Data Machine Learning Approach Several sources on the web provide deep insight about people s opinions on the products and services of various companies. Social

More information

Statistical machine learning, high dimension and big data

Statistical machine learning, high dimension and big data Statistical machine learning, high dimension and big data S. Gaïffas 1 14 mars 2014 1 CMAP - Ecole Polytechnique Agenda for today Divide and Conquer principle for collaborative filtering Graphical modelling,

More information

Big Data & Scripting Part II Streaming Algorithms

Big Data & Scripting Part II Streaming Algorithms Big Data & Scripting Part II Streaming Algorithms 1, Counting Distinct Elements 2, 3, counting distinct elements problem formalization input: stream of elements o from some universe U e.g. ids from a set

More information

VisCG: Creating an Eclipse Call Graph Visualization Plug-in. Kenta Hasui, Undergraduate Student at Vassar College Class of 2015

VisCG: Creating an Eclipse Call Graph Visualization Plug-in. Kenta Hasui, Undergraduate Student at Vassar College Class of 2015 VisCG: Creating an Eclipse Call Graph Visualization Plug-in Kenta Hasui, Undergraduate Student at Vassar College Class of 2015 Abstract Call graphs are a useful tool for understanding software; however,

More information

A Review of Data Mining Techniques

A Review of Data Mining Techniques Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 4, April 2014,

More information

Medial Axis Construction and Applications in 3D Wireless Sensor Networks

Medial Axis Construction and Applications in 3D Wireless Sensor Networks Medial Axis Construction and Applications in 3D Wireless Sensor Networks Su Xia, Ning Ding, Miao Jin, Hongyi Wu, and Yang Yang Presenter: Hongyi Wu University of Louisiana at Lafayette Outline Introduction

More information

Practical Graph Mining with R. 5. Link Analysis

Practical Graph Mining with R. 5. Link Analysis Practical Graph Mining with R 5. Link Analysis Outline Link Analysis Concepts Metrics for Analyzing Networks PageRank HITS Link Prediction 2 Link Analysis Concepts Link A relationship between two entities

More information

Cost Model: Work, Span and Parallelism. 1 The RAM model for sequential computation:

Cost Model: Work, Span and Parallelism. 1 The RAM model for sequential computation: CSE341T 08/31/2015 Lecture 3 Cost Model: Work, Span and Parallelism In this lecture, we will look at how one analyze a parallel program written using Cilk Plus. When we analyze the cost of an algorithm

More information

Optimizations. Optimization Safety. Optimization Safety. Control Flow Graphs. Code transformations to improve program

Optimizations. Optimization Safety. Optimization Safety. Control Flow Graphs. Code transformations to improve program Optimizations Code transformations to improve program Mainly: improve execution time Also: reduce program size Control low Graphs Can be done at high level or low level E.g., constant folding Optimizations

More information

Dynamical Clustering of Personalized Web Search Results

Dynamical Clustering of Personalized Web Search Results Dynamical Clustering of Personalized Web Search Results Xuehua Shen CS Dept, UIUC [email protected] Hong Cheng CS Dept, UIUC [email protected] Abstract Most current search engines present the user a ranked

More information

How does the Kinect work? John MacCormick

How does the Kinect work? John MacCormick How does the Kinect work? John MacCormick Xbox demo Laptop demo The Kinect uses structured light and machine learning Inferring body position is a two-stage process: first compute a depth map (using structured

More information

Change Impact Analysis

Change Impact Analysis Change Impact Analysis Martin Ward Reader in Software Engineering [email protected] Software Technology Research Lab De Montfort University Change Impact Analysis Impact analysis is a process that predicts

More information

Detecting Anomalies in Network Traffic Using Maximum Entropy Estimation

Detecting Anomalies in Network Traffic Using Maximum Entropy Estimation Detecting Anomalies in Network Traffic Using Maximum Entropy Estimation Yu Gu, Andrew McCallum, Don Towsley Department of Computer Science, University of Massachusetts, Amherst, MA 01003 Abstract We develop

More information

Compact Representations and Approximations for Compuation in Games

Compact Representations and Approximations for Compuation in Games Compact Representations and Approximations for Compuation in Games Kevin Swersky April 23, 2008 Abstract Compact representations have recently been developed as a way of both encoding the strategic interactions

More information

MapReduce Approach to Collective Classification for Networks

MapReduce Approach to Collective Classification for Networks MapReduce Approach to Collective Classification for Networks Wojciech Indyk 1, Tomasz Kajdanowicz 1, Przemyslaw Kazienko 1, and Slawomir Plamowski 1 Wroclaw University of Technology, Wroclaw, Poland Faculty

More information

Common Patterns and Pitfalls for Implementing Algorithms in Spark. Hossein Falaki @mhfalaki [email protected]

Common Patterns and Pitfalls for Implementing Algorithms in Spark. Hossein Falaki @mhfalaki hossein@databricks.com Common Patterns and Pitfalls for Implementing Algorithms in Spark Hossein Falaki @mhfalaki [email protected] Challenges of numerical computation over big data When applying any algorithm to big data

More information

Approximating the Partition Function by Deleting and then Correcting for Model Edges

Approximating the Partition Function by Deleting and then Correcting for Model Edges Approximating the Partition Function by Deleting and then Correcting for Model Edges Arthur Choi and Adnan Darwiche Computer Science Department University of California, Los Angeles Los Angeles, CA 995

More information

Data Mining in Web Search Engine Optimization and User Assisted Rank Results

Data Mining in Web Search Engine Optimization and User Assisted Rank Results Data Mining in Web Search Engine Optimization and User Assisted Rank Results Minky Jindal Institute of Technology and Management Gurgaon 122017, Haryana, India Nisha kharb Institute of Technology and Management

More information

D-optimal plans in observational studies

D-optimal plans in observational studies D-optimal plans in observational studies Constanze Pumplün Stefan Rüping Katharina Morik Claus Weihs October 11, 2005 Abstract This paper investigates the use of Design of Experiments in observational

More information

Assignment 5: Visualization

Assignment 5: Visualization Assignment 5: Visualization Arash Vahdat March 17, 2015 Readings Depending on how familiar you are with web programming, you are recommended to study concepts related to CSS, HTML, and JavaScript. The

More information

Research Statement Immanuel Trummer www.itrummer.org

Research Statement Immanuel Trummer www.itrummer.org Research Statement Immanuel Trummer www.itrummer.org We are collecting data at unprecedented rates. This data contains valuable insights, but we need complex analytics to extract them. My research focuses

More information

Big Graph Processing: Some Background

Big Graph Processing: Some Background Big Graph Processing: Some Background Bo Wu Colorado School of Mines Part of slides from: Paul Burkhardt (National Security Agency) and Carlos Guestrin (Washington University) Mines CSCI-580, Bo Wu Graphs

More information

Traffic Driven Analysis of Cellular Data Networks

Traffic Driven Analysis of Cellular Data Networks Traffic Driven Analysis of Cellular Data Networks Samir R. Das Computer Science Department Stony Brook University Joint work with Utpal Paul, Luis Ortiz (Stony Brook U), Milind Buddhikot, Anand Prabhu

More information

Sense Making in an IOT World: Sensor Data Analysis with Deep Learning

Sense Making in an IOT World: Sensor Data Analysis with Deep Learning Sense Making in an IOT World: Sensor Data Analysis with Deep Learning Natalia Vassilieva, PhD Senior Research Manager GTC 2016 Deep learning proof points as of today Vision Speech Text Other Search & information

More information

Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University [email protected]

Bayesian Machine Learning (ML): Modeling And Inference in Big Data. Zhuhua Cai Google, Rice University caizhua@gmail.com Bayesian Machine Learning (ML): Modeling And Inference in Big Data Zhuhua Cai Google Rice University [email protected] 1 Syllabus Bayesian ML Concepts (Today) Bayesian ML on MapReduce (Next morning) Bayesian

More information

Clustering Technique in Data Mining for Text Documents

Clustering Technique in Data Mining for Text Documents Clustering Technique in Data Mining for Text Documents Ms.J.Sathya Priya Assistant Professor Dept Of Information Technology. Velammal Engineering College. Chennai. Ms.S.Priyadharshini Assistant Professor

More information

DATA ANALYSIS II. Matrix Algorithms

DATA ANALYSIS II. Matrix Algorithms DATA ANALYSIS II Matrix Algorithms Similarity Matrix Given a dataset D = {x i }, i=1,..,n consisting of n points in R d, let A denote the n n symmetric similarity matrix between the points, given as where

More information

Reputation Network Analysis for Email Filtering

Reputation Network Analysis for Email Filtering Reputation Network Analysis for Email Filtering Jennifer Golbeck, James Hendler University of Maryland, College Park MINDSWAP 8400 Baltimore Avenue College Park, MD 20742 {golbeck, hendler}@cs.umd.edu

More information

Cell Phone based Activity Detection using Markov Logic Network

Cell Phone based Activity Detection using Markov Logic Network Cell Phone based Activity Detection using Markov Logic Network Somdeb Sarkhel [email protected] 1 Introduction Mobile devices are becoming increasingly sophisticated and the latest generation of smart

More information