TB3016. Using the PIC MCU CTMU for Temperature Measurement IMPLEMENTATION BASIC PRINCIPLE MEASUREMENT CIRCUIT
|
|
|
- Chester Peters
- 9 years ago
- Views:
Transcription
1 Using the PIC MCU CTMU for Temperature Measurement Author: Padmaraja Yedamale Microchip Technology Inc. The Charge Time Measurement Unit (CTMU), introduced on the latest generation of PIC24F and PIC18F devices, uses a constant current source to calculate both capacitance changes and the time difference between events. The same current source can also be used to measure temperature by exploiting a basic principle of semiconductor physics. This allows the use of a common and inexpensive diode, in the place of a relatively more expensive thermistor or other temperature sensor. This brief describes the basic concepts of temperature measurement using the CTMU. BASIC PRINCIPLE We can show that the forward voltage (V F ) of a P-N junction, such as a diode, is an extension of the equation for the junction s thermal voltage: IMPLEMENTATION To implement this theory, all that is needed is to connect a regular junction diode to one of the microcontroller s A/D pins (Figure 1). The A/D channel multiplexer is shared by the CTMU and the ADC. To perform a measurement, the multiplexer is configured to select the pin connected to the diode. The CTMU current source is then turned on, and an A/D conversion is performed on the channel. As shown in the equivalent circuit diagram, the diode is driven by the CTMU at I F. The resulting V F across the diode is measured by the ADC. FIGURE 1: Simplified Block Diagram CTMU TEMPERATURE MEASUREMENT CIRCUIT PIC microcontroller V F = I F kt q ln I S Current Source CTMU where k is the Boltzmann constant (1.38 x J K -1 ), T is the absolute junction temperature in kelvin, q is the electron charge (1.6 x C), I F is the forward current applied to the diode, and I S is the diode s characteristic saturation current. Since k and q are physical constants, and I S is a constant for the device, this only leaves T and I F as independent variables. If I F is held constant, it follows from the equation that V F will vary as a function of T. As the natural log term of the equation will always be negative, the temperature will be negatively proportional to V F. In other words, as temperature increases, V F decreases. By using the CTMU s current source to provide a constant I F, it becomes possible to calculate the temperature by measuring the V F across the diode. ANx VF Equivalent Circuit A/D Converter A/D MUX CTMU IF ADC VF 2009 Microchip Technology Inc. DS93016A-page 1
2 EXPERIMENTAL VALIDATION To test the theory, several devices with simple P-N junctions were tested in a controlled temperature environment while measuring V F as previously described. Included in the testing were three common silicon diodes, two common bipolar transistors, and two LEDs. An additional trial was run with two diodes (1N914) connected in parallel as a single unit. Each device was evaluated using an ADC voltage reference (VREF) of 3.3V. Temperature was varied from 0 C to 105 C inclusive, with 256 conversions being taken at roughly 5 C intervals over this range. The ADC readings (proportional to voltage) were recorded for each temperature point. These readings were used to directly calculate resolution, and converted to voltage to calculate line slope. Resolution (expressed as temperature per ADC counts) is calculated as: Number of samples Temperature range Counts at min temperature Counts at max tempertaure The results of the trial are summarized in Table 1, and presented in graphic form in Figure 2. As can be seen, the correlation between temperature and V F is negative. Also as expected, the relationship between temperature and the forward voltage on the junction is essentially linear. This makes it possible for any readily available diode or for that matter, any inexpensive semiconductor to function as a low-resolution temperature sensor in conjunction with the CTMU. TABLE 1: EXPERIMENTAL VF VALUES (AS ADC COUNTS) FOR DIFFERENT DEVICES AS A FUNCTION OF TEMPERATURE Component ADC Readings (256 samples) Resolution Min. Temp Max. Temp ( C/Count) Slope 1N ,890 12, mv/ C 1N ,500 8, mv/ C 1N914 31,500 6, mv/ C 2N3904 (NPN) 45,100 23, mv/ C 2N3906 (PNP) 43,860 22, mv/ C SML-LXT0805GW-TR (Green LED) 52,500 27, mv/ C CML 5311F (Red LED) 54,280 32, mv/ C Two 1N914 (parallel) 31,500 6, mv/ C DS93016A-page Microchip Technology Inc.
3 FIGURE 2: ADC VALUES AS A FUNCTION OF TEMPERATURE FOR TESTED DEVICES ADC count (x256) N4007 1N4148 1N914 LED-D22 2N3904(NPN) LED-D27 2N3906(PNP) 2 1N Temperature (C) INCREASING TEMPERATURE MEASUREMENT RESOLUTION The method described here is adequate for resolution of about 1 C. In most cases, this represents an A/D channel voltage change of about 3 mv. At this scale, attempts to get better resolution will run into the limitations of the A/D converter. To achieve higher temperature resolutions, some minor changes to the conversion method are needed. These include: Using a lower reference voltage for the ADC. One significant determining factor in temperature resolution is the selection of VREF. Smaller values of VREF tend to produce a larger difference voltage to be converted; this produces a larger incremental reading per degree, and thus higher resolution. Table 2 shows the expected temperature resolution for the same experiment, assuming an ADC VREF of 2.0V. Using two diodes in series. Although this does not increase resolution per se, the resulting doubling of the change in the measured voltage per unit of temperature will result in increased accuracy. Adding a single stage of voltage amplification with an op amp. By increasing the voltage to the ADC and matching it to the ADC voltage reference, resolution is increased. Although this adds several external components and some cost to the solution, this may be desirable in applications where a more precise determination of temperature is required. TABLE 2: Component EXPECTED TEMPERATURE RESOLUTION FOR VREF OF 2.0V Resolution ( C/Count) VREF = 3.3V (observed) VREF = 2.0V (predicted) 1N N N N N SML-LXT0805GW-TR CML 5311F Two 1N914 (parallel) Microchip Technology Inc. DS93016A-page 3
4 CONCLUSION For applications using a PIC18F or PIC24F microcontroller with the CTMU, adding a temperature function does not depend on the use of a special temperature sensor; it can be done using a commodity diode and a small addition of code to the application firmware. This makes the incremental cost of adding the additional feature very small indeed. REFERENCES PIC24F Family Reference Manual, Section 11, Charge Time Measurement Unit (CTMU) (DS39724). Microchip Technology Inc., DS93016A-page Microchip Technology Inc.
5 Note the following details of the code protection feature on Microchip devices: Microchip products meet the specification contained in their particular Microchip Data Sheet. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. Microchip is willing to work with the customer who is concerned about the integrity of their code. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as unbreakable. Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, Accuron, dspic, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfpic, SmartShunt and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dspicdem, dspicdem.net, dspicworks, dsspeak, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mtouch, PICkit, PICDEM, PICDEM.net, PICtail, PIC 32 logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rflab, Select Mode, Total Endurance, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company s quality system processes and procedures are for its PIC MCUs and dspic DSCs, KEELOQ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip s quality system for the design and manufacture of development systems is ISO 9001:2000 certified Microchip Technology Inc. DS93016A-page 5
6 WORLDWIDE SALES AND SERVICE AMERICAS Corporate Office 2355 West Chandler Blvd. Chandler, AZ Tel: Fax: Technical Support: Web Address: Atlanta Duluth, GA Tel: Fax: Boston Westborough, MA Tel: Fax: Chicago Itasca, IL Tel: Fax: Cleveland Independence, OH Tel: Fax: Dallas Addison, TX Tel: Fax: Detroit Farmington Hills, MI Tel: Fax: Kokomo Kokomo, IN Tel: Fax: Los Angeles Mission Viejo, CA Tel: Fax: Santa Clara Santa Clara, CA Tel: Fax: Toronto Mississauga, Ontario, Canada Tel: Fax: ASIA/PACIFIC Asia Pacific Office Suites , 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: Fax: Australia - Sydney Tel: Fax: China - Beijing Tel: Fax: China - Chengdu Tel: Fax: China - Hong Kong SAR Tel: Fax: China - Nanjing Tel: Fax: China - Qingdao Tel: Fax: China - Shanghai Tel: Fax: China - Shenyang Tel: Fax: China - Shenzhen Tel: Fax: China - Wuhan Tel: Fax: China - Xiamen Tel: Fax: China - Xian Tel: Fax: China - Zhuhai Tel: Fax: ASIA/PACIFIC India - Bangalore Tel: Fax: India - New Delhi Tel: Fax: India - Pune Tel: Fax: Japan - Yokohama Tel: Fax: Korea - Daegu Tel: Fax: Korea - Seoul Tel: Fax: or Malaysia - Kuala Lumpur Tel: Fax: Malaysia - Penang Tel: Fax: Philippines - Manila Tel: Fax: Singapore Tel: Fax: Taiwan - Hsin Chu Tel: Fax: Taiwan - Kaohsiung Tel: Fax: Taiwan - Taipei Tel: Fax: Thailand - Bangkok Tel: Fax: EUROPE Austria - Wels Tel: Fax: Denmark - Copenhagen Tel: Fax: France - Paris Tel: Fax: Germany - Munich Tel: Fax: Italy - Milan Tel: Fax: Netherlands - Drunen Tel: Fax: Spain - Madrid Tel: Fax: UK - Wokingham Tel: Fax: /04/09 DS93016A-page Microchip Technology Inc.
AN1286. Water-Resistant Capacitive Sensing INTRODUCTION THEORY OF OPERATION. Sensing Steps. Sensing Steps Description DESIGN
Water-Resistant Capacitive Sensing AN1286 Author: INTRODUCTION Thomas Perme Steven Lin Microchip Technology Inc. This application note describes a new hardware sensing method which is resilient to water
AN1303. Software Real-Time Clock and Calendar Using PIC16F1827 DATA INTERFACE INTRODUCTION IMPLEMENTATION INTERNAL REGISTER MAP
Software Real-Time Clock and Calendar Using PIC16F1827 Author: INTRODUCTION Cristian Toma Microchip Technology Inc. This application note describes the implementation of software Real-Time Clock and Calendar
AN687. Precision Temperature-Sensing With RTD Circuits RTD OVERVIEW INTRODUCTION EQUATION 1:
Precision Temperature-Sensing With RTD Circuits Author: INTRODUCTION Bonnie C. Baker Microchip Technology Inc. The most widely measured phenomena in the process control environment is temperature. Common
AN1142. USB Mass Storage Class on an Embedded Host INTRODUCTION. USB Mass Storage Class. Overview
USB Mass Storage Class on an Embedded Host Author: INTRODUCTION With the introduction of Microchip's microcontrollers with the USB OTG peripheral, microcontroller applications can easily support USB Embedded
AN1325. mtouch Metal Over Cap Technology THEORY OF OPERATION INTRODUCTION CROSS SECTION OF METAL OVER CAPACITIVE (UNPRESSED)
mtouch Metal Over Cap Technology AN1325 Authors: INTRODUCTION Keith Curtis Dieter Peter Microchip Technology Inc. As a user interface, capacitive touch has several advantages: it is low power, low cost,
Installing and Licensing MPLAB XC C Compilers
Installing and Licensing MPLAB XC C Compilers DS50002059G Note the following details of the code protection feature on Microchip devices: Microchip products meet the specification contained in their particular
AN1199. 1-Wire Communication with PIC Microcontroller INTRODUCTION. OVERVIEW OF THE 1-Wire BUS. 1-Wire Protocol. Prerequisites
1-Wire Communication with PIC Microcontroller Author: INTRODUCTION This application note introduces the user to the 1-Wire communication protocol and describes how a 1-Wire device can be interfaced to
Recommended Usage of Microchip 23X256/23X640 SPI Serial SRAM Devices RECOMMENDED CONNECTIONS FOR 23X256,23X640 SERIES DEVICES VCC 23X256/ HOLD.
Recommended Usage of Microchip 23X256/23X640 SPI Serial SRAM Devices Author: INTRODUCTION Martin Bowman Microchip Technology Inc. This document details recommended usage of the Microchip 23X256 and 23X640
AN1156. Battery Fuel Measurement Using Delta-Sigma ADC Devices INTRODUCTION REVIEW OF BATTERY CHARGING AND DISCHARGING CHARACTERISTICS
Battery Fuel Measurement Using Delta-Sigma ADC Devices Author: INTRODUCTION Youbok Lee, Ph.D. Microchip Technology Inc. The battery fuel status indicator is a common feature of the battery-supported handheld
TC1047/TC1047A. Precision Temperature-to-Voltage Converter. General Description. Applications. Block Diagram. Features.
Precision Temperature-to-Voltage Converter Features Supply Voltage Range: - TC147: 2.7V to 4.4V - TC147A: 2.V to.v Wide Temperature Measurement Range: - -4 o C to +12 o C High Temperature Converter Accuracy:
Universal Programming Module 2
Universal Programming Module OVERVIEW The Universal Programming Module (UPM) is a handy, low-cost board that supports the programming of Microchip devices using MPLAB in-circuit emulators and debuggers.
Uninstalling Incorrect USB Device Drivers
DEVELOPMENT SYSTEMS Uninstalling Incorrect USB Device Drivers RECOMMENDED UNINSTALL METHODS When using the Microchip development tools listed below, trouble may be experienced as a result of incorrect
Designing A Li-Ion Battery Charger and Load Sharing System With Microchip s Stand-Alone Li-Ion Battery Charge Management Controller
Designing A Li-Ion Battery Charger and Load Sharing System With Microchip s Stand-Alone Li-Ion Battery Charge Management Controller Author: INTRODUCTION Brian Chu Microchip Technology Inc. Batteries often
AN1470. Manchester Decoder Using the CLC and NCO ABSTRACT INTRODUCTION MANCHESTER ENCODED DATA (AS PER G.E. THOMAS)
Manchester Decoder Using the CLC and NCO Authors: ABSTRACT A Manchester decoder can be built using Microchip s award winning CLC (Configurable Logic Cell) blocks and NCO (Numerically Controlled Oscillator)
Timers: Timer0 Tutorial (Part 1)
Timers: Timer0 Tutorial (Part 1) 2007 Microchip Technology Inc. DS51682A Note the following details of the code protection feature on Microchip devices: Microchip products meet the specification contained
Features, Value and Benefits of Digital Control for Power Supplies
Author: INTRODUCTION Sagar Khare Microchip Technology Inc. Control of Switch Mode Power Supplies (SMPSs) has traditionally been a purely analog domain. The advent of low-cost, high-performance Digital
AN1332. Current Sensing Circuit Concepts and Fundamentals CURRENT SENSING RESISTOR INTRODUCTION. Description. Microchip Technology Inc.
Current Sensing Circuit Concepts and Fundamentals Author: INTRODUCTION Yang Zhen Microchip Technology Inc. Current sensing is a fundamental requirement in a wide range of electronic applications. Typical
AN1265. KEELOQ with AES Microcontroller-Based Code Hopping Encoder INTRODUCTION DUAL ENCODER OPERATION BACKGROUND FUNCTIONAL INPUTS AND
KEELOQ with AES Microcontroller-Based Code Hopping Encoder Authors: INTRODUCTION This application note describes the design of a microcontroller-based KEELOQ Hopping Encoder using the AES encryption algorithm.
AN1857. RGBW Color Mixing DALI Control Gear. COLOR MIXING USING RED, GREEN, BLUE AND WHITE LEDs INTRODUCTION HARDWARE
RGBW Color Mixing DALI Control Gear AN1857 Author: INTRODUCTION Mihai Cuciuc Microchip Technology Inc. This application note provides an example of obtaining custom colors by combining the spectra of the
AN1275. KEELOQ with Advanced Encryption Standard (AES) Receiver/Decoder KEY FEATURES OVERVIEW. Microchip Technology Inc.
KEELOQ with Advanced Encryption Standard (AES) Receiver/Decoder Author: OVERVIEW Enrique Aleman Microchip Technology Inc. This application note describes a KEELOQ with AES code hopping decoder implemented
AN1492. Microchip Capacitive Proximity Design Guide INTRODUCTION CAPACITIVE SENSING BASICS SENSING
Microchip Capacitive Proximity Design Guide Author: INTRODUCTION Xiang Gao Microchip Technology Inc. Proximity detection provides a new way for users to interact with electronic devices without having
AN905. Brushed DC Motor Fundamentals INTRODUCTION PRINCIPLES OF OPERATION. Stator. Rotor SIMPLE TWO-POLE BRUSHED DC MOTOR. Microchip Technology Inc.
Brushed DC Motor Fundamentals AN905 Author: Reston Condit Microchip Technology Inc. INTRODUCTION Brushed DC motors are widely used in applications ranging from toys to push-button adjustable car seats.
TC7660. Charge Pump DC-to-DC Voltage Converter. Package Types. Features. General Description. Applications. Functional Block Diagram TC7660
Charge Pump DC-to-DC Voltage Converter Features Wide Input Voltage Range:.V to V Efficient Voltage Conversion (99.9%, typ) Excellent Power Efficiency (9%, typ) Low Power Consumption: µa (typ) @ V IN =
AN1212. Using USB Keyboard with an Embedded Host INTRODUCTION. USB Keyboard Overview. USB Keyboard with an Embedded Host USB KEYBOARD OUTPUT REPORT
Using USB Keyboard with an Embedded Host Author: INTRODUCTION Amardeep Gupta Microchip Technology Inc. Microcontroller applications can easily support USB embedded host functionality with the introduction
AN1353. Op Amp Rectifiers, Peak Detectors and Clamps INTRODUCTION BASIC RECTIFIERS. Choosing the Components. Positive Half-Wave Rectifier.
Op Amp Rectifiers, Peak Detectors and Clamps Author: Dragos Ducu, Microchip Technology Inc. INTRODUCTION This application note covers a wide range of applications, such as halfwave rectifiers, fullwave
AN1543. Using MRF24W with PIC32 Internal Program Flash Memory For EZ_CONFIG_STORE ALTERNATIVE LOW-COST SOLUTIONS OVERVIEW SCOPE
Using MRF24W with PIC32 Internal Program Flash Memory For EZ_CONFIG_STORE Author: OVERVIEW This application note describes the EZ_CONFIG_STORE feature used in the Wi-Fi G Demo Board and TCPIP-WiFi EZConfig
AN1256. Microchip s Power MOSFET Driver Simulation Models INTRODUCTION MODEL DESCRIPTION. Using The Power MOSFET Simulation Models
Microchip s Power MOSFET Driver Simulation Models Author: INTRODUCTION Cliff Ellison (Microchip Technology Inc.) Ron Wunderlich (Innovative Ideas and Design) The simulation models for Microchip s power
MCP73X23 Lithium Iron Phosphate (LiFePO 4 ) Battery Charger Evaluation Board User s Guide
MCP73X23 Lithium Iron Phosphate (LiFePO 4 ) Battery Charger Evaluation Board User s Guide 2009 Microchip Technology Inc. DS51850A Note the following details of the code protection feature on Microchip
WORKSHOP-IN-A-BOX 2: LOW POWER SOLUTIONS DEMONSTRATION BOARD
WORKSHOP-IN-A-BOX 2: LOW POWER SOLUTIONS DEMONSTRATION BOARD 2004 Microchip Technology Inc. DS51512A Note the following details of the code protection feature on Microchip devices: Microchip products meet
MCP1701A. 2 µa Low-Dropout Positive Voltage Regulator. Features. General Description. Applications. Package Types
2 µa Low-Dropout Positive Voltage Regulator Features 2.0 µa Typical Quiescent Current Input Operating Voltage Range up to 10.0V Low-Dropout Voltage (LDO): - 120 mv (typical) @ 100 ma - 380 mv (typical)
MCP2515 CAN Bus Monitor Demo Board User s Guide
MCP2515 CAN Bus Monitor Demo Board User s Guide 2008 Microchip Technology Inc. DS51757A Note the following details of the code protection feature on Microchip devices: Microchip products meet the specification
PIC32 Microcontroller Families
32-bit Microcontrollers Winter 2009 PIC32 Microcontroller Families With USB, CAN and Ethernet www.microchip.com/pic32 Building on the heritage of Microchip Technology s world-leading 8- and 16-bit PIC
AN1066. Microchip MiWi Wireless Networking Protocol Stack INTRODUCTION CONSIDERATIONS TERMINOLOGY FEATURES
Microchip MiWi Wireless Networking Protocol Stack Author: INTRODUCTION Implementing applications with wireless networking is now common. From consumer devices to industrial applications, there is a growing
Section 15. Input Capture
Section 15. Input Capture HIGHLIGHTS This section of the manual contains the following topics: 15.1 Introduction...15-2 15.2 Input Capture Registers...15-4 15.3 Timer Selection...15-8 15.4 Input Capture
Touch Through Metal. mtouch Metal Over Capacitive Technology Part 1
Touch Through Metal mtouch Metal Over Capacitive Technology Part 1 2010 Microchip Technology Incorporated. All Rights Reserved. Touch Through Metal Slide 1 Hello and welcome to Microchip s Touch Through
MCP2200 USB to RS-232 Demo Board User s Guide
MCP2200 USB to RS-232 Demo Board User s Guide DS51901A Note the following details of the code protection feature on Microchip devices: Microchip products meet the specification contained in their particular
dspic30f3012/3013 dspic30f3012/3013 Rev. B0 Silicon Errata dspic30f3012/3013 (Rev. B0) Silicon Errata Silicon Errata Summary
dspic30f3012/3013 Rev. B0 Silicon Errata dspic30f3012/3013 (Rev. B0) Silicon Errata The dspic30f3012/3013 (Rev. B0) samples you have received were found to conform to the specifications and functionality
Resistive Temperature Detector (RTD) Reference Design
Resistive Temperature Detector (RTD) Reference Design DS51891A Note the following details of the code protection feature on Microchip devices: Microchip products meet the specification contained in their
AN1465. Digitally Addressable Lighting Interface (DALI) Communication TERMINOLOGY PHYSICAL LAYER DALI FREE-FORM LAYOUT. Topology FIGURE 1:
Digitally Addressable Lighting Interface (DALI) Communication Author: Shaima Husain Microchip Technology Inc. The Digitally Addressable Lighting Interface (DALI) has emerged as a standard in Europe to
MCP73811/2. Simple, Miniature Single-Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers. Description. Features.
Simple, Miniature Single-Cell, Fully Integrated Li-Ion / Li-Polymer Charge Management Controllers Features Complete Linear Charge Management Controller - Integrated Pass Transistor - Integrated Current
TCP/IP Networking: Web-Based Status Monitoring
TCP/IP Networking: Web-Based Status Monitoring Microchip TCP/IP Stack HTTP2 Module 2007 Microchip Technology Incorporated. All Rights Reserved. Web-Based Status Monitoring Slide 1 Welcome to the first
AN956. Migrating Applications to USB from RS-232 UART with Minimal Impact on PC Software OVERVIEW INTRODUCTION. Microchip Technology Inc.
Migrating Applications to USB from RS-232 UART with Minimal Impact on PC Software Author: INTRODUCTION Rawin Rojvanit Microchip Technology Inc. The RS-232 serial interface is no longer a common port found
28-PIN DEMO BOARD USER S GUIDE
28-PIN DEMO BOARD USER S GUIDE 2006-2015 Microchip Technology Inc. DS40001301B Note the following details of the code protection feature on Microchip devices: Microchip products meet the specification
TABLE 1: BUCK REGULATOR
A Digital Constant Current Power LED Driver Author: INTRODUCTION Stephen Bowling Microchip Technology Inc. This document describes a power LED driver solution using the PIC12HV615 microcontroller (MCU).
Integrated Development Environment
Development Tools Integrated Development Environment Transforming Ideas Into Realities The typical product development life cycle is comprised of smaller cycles each representing an iterative process toward
Integrated Development Environment
Development Tools Integrated Development Environment Transforming Ideas Into Realities The typical product development life cycle is comprised of smaller cycles each representing an iterative process toward
AN1307 FULL STEP MODE PHASE VOLTAGE AND PHASE CURRENT MICROSTEPPING WITH 1/4 STEP SIZE
Stepper Motor Control with dspic DSCs AN1307 Author: INTRODUCTION Sorin Manea Microchip Technology Inc. This application note describes how to drive a stepper motor with a dspic33f motor control family
AN232. Low-Frequency Magnetic Transmitter Design ABOUT THIS APPLICATION NOTE INTRODUCTION LFMC LINK COMPONENTS
Low-Frequency Magnetic Transmitter Design AN232 Author: INTRODUCTION Ruan Lourens Microchip Technology Inc. Low-frequency magnetic communications (LFMC) is a viable wireless communications alternative
Section 5. Flash Programming
Section 5. Flash Programming HIGHLIGHTS This section of the manual contains the following topics: 5.1 Introduction...5-2 5.2 Control Registers... 5-3 5.3 Run-Time Self-Programming (RTSP) Operation... 5-10
AN990. Analog Sensor Conditioning Circuits An Overview INTRODUCTION SENSOR APPLICATIONS. Target Audience. Goals. Description.
Analog Conditioning Circuits An Overview Author: INTRODUCTION Target Audience This application note is intended for hardware design engineers that need to condition the output of common analog sensors.
PIC18F26K20/46K20 Rev. B2/B3/B5/B6 Silicon Errata and Data Sheet Clarification
PIC18F26K20/46K20 Rev. B2/B3/B5/B6 Silicon Errata and Data Sheet Clarification The PIC18F26K20/46K20 family devices that you have received conform functionally to the current Device Data Sheet (DS41303G),
MPLAB XC8 GETTING STARTED GUIDE. MPLAB XC8 Getting Started Guide
MPLAB XC8 GETTING STARTED GUIDE MPLAB XC8 Getting Started Guide This document provides a starting point for programmers who are just starting out with the MPLAB XC8 C Compiler, particularly those who are
MPLAB Code Configurator User s Guide
MPLAB Code Configurator User s Guide 2013-2014 Microchip Technology Inc. DS40001725B MPLAB CODE CONFIGURATOR USER S GUIDE Note the following details of the code protection feature on Microchip devices:
How To Use Microchip.Com
PICkit 2 Programmer/Debugger User s Guide 2008 Microchip Technology Inc. DS51553E Note the following details of the code protection feature on Microchip devices: Microchip products meet the specification
AN645. PIC16C57 Based Code Hopping Security System PINOUT OVERVIEW FEATURES BLOCK DIAGRAM RECOMMENDED READING
PI657 Based ode Hopping Security System Author: OVERVIEW This document describes a PI657 based code hopping automotive security system. The security system implements all the basic features found on security
AN1861. Bluetooth Smart Communication Using Microchip RN4020 Module and 16-bit PIC Microcontroller BLUETOOTH SMART COMMUNICATION INTRODUCTION
Bluetooth Smart Communication Using Microchip RN4020 Module and 16-bit PIC Microcontroller Author: Venkatesh Bengeri and Pradeep Shamanna INTRODUCTION Most of the embedded applications require real-time
PIC10F200/202/204/206
Memory Programming Specification This document includes the programming specifications for the following devices: PIC10F200 PIC10F202 PIC10F204 PIC10F206 1.0 PROGRAMMING THE PIC10F200/202/204/206 The PIC10F200/202/204/206
LIN Serial Analyzer User s Guide Rev2.0
LIN Serial Analyzer User s Guide Rev2.0 2008 Microchip Technology Inc. DS51675B Note the following details of the code protection feature on Microchip devices: Microchip products meet the specification
TCM809/TCM810. 3-Pin Microcontroller Reset Monitors. General Description. Features. Applications. Pin Configurations. Typical Application Circuit
3-Pin Microcontroller Reset Monitors Features Precision Monitor for 2.5V, 3.V, 3.3V, 5.V Nominal System Voltage Supplies 14 msec Minimum RESET Time-Out Period RESET Output to = 1.V (TCM89) Low Supply Current,
PICkit 3 Programmer/Debugger User s Guide
PICkit 3 Programmer/Debugger User s Guide 2009 Microchip Technology Inc. DS51795A Note the following details of the code protection feature on Microchip devices: Microchip products meet the specification
Peripheral Brief: Programmable Switch Mode Controller (PSMC) 1, 2, 4, 8 PSMCXTMR CLR PSMCXPR = Period. Event PSMCXPRS. Rising.
Peripheral Brief: Programmable Switch Mode Controller (PSMC) Author: INTRODUCTION John Mouton Microchip Technology Inc. This peripheral brief reviews the basic functionality of the Programmable Switch
TC4423A/TC4424A/TC4425A
3A Dual High-Speed Power MOSFET Drivers Features High Peak Output Current: 4.5A (typical) Wide Input Supply Voltage Operating Range: - 4.5V to 18V High Capacitive Load Drive Capability: - 18 pf in 12 ns
MCP3004/3008. 2.7V 4-Channel/8-Channel 10-Bit A/D Converters with SPI Serial Interface. Features. Description. Applications.
2.7V 4-Channel/8-Channel 10-Bit A/D Converters with SPI Serial Interface Features 10-bit resolution ± 1 LSB max DNL ± 1 LSB max INL 4 (MCP3004) or 8 (MCP3008) input channels Analog inputs programmable
AN709. System Level Design Considerations When Using I 2 C TM Serial EEPROM Devices INTRODUCTION INSURING BUS-FREE DURING POWER-UP
M AN709 System Level Design Considerations When Using I 2 C TM Serial EEPROM Devices Author: INTRODUCTION Rick Stoneking Developing systems that implement the I 2 C protocol for communicating with serial
AN1140. USB Embedded Host Stack INTRODUCTION USB OVERVIEW. Host vs. Embedded Host. USB Hosts and Peripheral Devices
USB Embedded Host Stack AN1140 Author: INTRODUCTION USB has become the standard method for devices to communicate with a PC. From general purpose devices, such as Flash drives and mice, to special purpose
Serial EEPROM Powered for Automotive
Automotive Memory Products Serial EEPROM Powered for Automotive www.microchip.com/memory Microchip Serial Memory Products Microchip Technology has developed industry-leading processes for each step in
MCP3204/3208. 2.7V 4-Channel/8-Channel 12-Bit A/D Converters with SPI Serial Interface. Features. Description. Applications.
2.7V 4-Channel/8-Channel 12-Bit A/D Converters with SPI Serial Interface Features 12-bit resolution ± 1 LSB max DNL ± 1 LSB max INL (MCP3204/3208-B) ± 2 LSB max INL (MCP3204/3208-C) 4 (MCP3204) or 8 (MCP3208)
AN1095. Emulating Data EEPROM for PIC18 and PIC24 Microcontrollers and dspic Digital Signal Controllers INTRODUCTION THEORY OF OPERATION
A1095 Emulating Data EEPROM for PIC18 and PIC24 Microcontrollers and dspic Digital Signal Controllers Author: ITRODUCTIO Microchip Technology has expanded its product portfolio to include a wide variety
AN884. Driving Capacitive Loads With Op Amps INTRODUCTION LINEAR RESPONSE. Simplified Op Amp AC Model. Overview. Purpose OP AMP MODEL EQUATION 1:
Driving Capacitive Loads With Op Amps AN884 Author: INTRODUCTION Overview Operational amplifiers (op amps) that drive large capacitive loads may produce undesired results. This application note discusses
AN1426. Design Tips for the MCP3911 INTRODUCTION. Addressable Devices on Single SPI Bus. Addressable SPI for Poly-phase Meter Designs.
Design Tips for the MCP3911 AN1426 Author: Craig King Microchip Technology Inc. Here, pushing the limits of the analog-to-digital conversion will be the focus, showing the true performance limits of the
TC4421/TC4422. Functional Block Diagram. TC4421 Inverting. TC4422 Non-Inverting V DD. 300 mv Output. Input 4.7V. GND Effective. Input.
9A High-Speed MOSFET Drivers Features High Peak Output Current: 9A Wide Input Supply Voltage Operating Range: - 4.5V to 18V High Continuous Output Current: 2A Max Fast Rise and Fall Times: - 3 ns with
PICmicro DC Motor Control Tips n Tricks
PICmicro DC Motor Control Tips n Tricks M Table of Contents Tips n Tricks Tips N Tricks Introduction TIP #1: Brushed DC Motor Drive Circuits...2 TIP #2: Brushless DC Motor Drive Circuits...5 TIP #3: Stepper
AN1387. Using PIC32 MCUs to Develop Low-Cost Controllerless (LCC) Graphics Solutions INTRODUCTION. Basic Graphics Definitions
Using PIC32 MCUs to Develop Low-Cost Controllerless (LCC) Graphics Solutions Author: INTRODUCTION Adam Folts, Microchip Technology Inc. As the demand for Graphical Embedded Applications becomes more popular,
AN1370. Smart Card Communication Using PIC MCUs INTRODUCTION SMART CARD COMMUNICATION USING PC APPLICATION
Smart Card Communication Using PIC MCUs Author: INTRODUCTION Abhay Deshmukh Microchip Technology Inc. This application note describes the fundamentals of the contact type smart cards and how they are communicated
PICkit 2 Microcontroller Programmer USER S GUIDE
PICkit 2 Microcontroller Programmer USER S GUIDE 2007 Microchip Technology Inc. DS51553D Note the following details of the code protection feature on Microchip devices: Microchip products meet the specification
ZENA Wireless Network Analyzer User s Guide
ZENA Wireless Network Analyzer User s Guide 2008 Microchip Technology Inc. DS51606C Note the following details of the code protection feature on Microchip devices: Microchip products meet the specification
Analog-to-Digital Converters
Analog-to-Digital Converters In this presentation we will look at the Analog-to-Digital Converter Peripherals with Microchip s midrange PICmicro Microcontrollers series. 1 Analog-to-Digital Converters
AN688. Layout Tips for 12-Bit A/D Converter Application GETTING A GOOD START INTRODUCTION. Microchip Technology Inc. / 2 MCP602
Layout Tips for 12-Bit A/D Converter Application Author: INTRODUCTION Bonnie C. Baker Microchip Technology Inc. This Application Note originally started as a cook book for a true 12-bit layout. The assumption
Bootloader for dspic30f/33f and PIC24F/24H Devices
Bootloader for dspic30f/33f and PIC24F/24H Devices Author: Leonard Elevich and Veena Kudva Microchip Technology, Inc INTRODUCTION The bootloader for dspic30f/33f and PIC24H/24F devices is used to load
AN1106. Power Factor Correction in Power Conversion Applications Using the dspic DSC INTRODUCTION
Power Factor Correction in Power Conversion Applications Using the dspic DSC Author: INTRODUCTION Vinaya Skanda Microchip Technology Inc. Most of the power conversion applications consist of an AC-to-DC
AN1521. Practical Guide to Implementing Solar Panel MPPT Algorithms SOLAR PANEL MPPT INTRODUCTION
AN5 Practical Guide to Implementing Solar Panel MPPT Algorithms Authors: INTRODUCTION Mihnea Rosu-Hamzescu Sergiu Oprea Microchip Technology Inc. Using a solar panel or an array of panels without a controller
AN1305. Sensorless 3-Phase Brushless Motor Control with the PIC16FXXX TYPICAL MOTOR CONNECTION OVERVIEW DRIVE AND CONTROL CIRCUITRY
Sensorless 3-Phase Brushless Motor Control with the PIC16FXXX Author: OVERVIEW Ward Brown Microchip Technology Inc. In 2002, I wrote my first application note on brushless motor control, AN857, which described
MCP3021. Low Power 10-Bit A/D Converter With I 2 C Interface. Description. Features. Applications. Functional Block Diagram.
MCP321 Low Power 1-Bit A/D Converter With I 2 C Interface Features 1-bit resolution ±1 LSB DNL, ±1 LSB INL max. 25 µa max conversion current 5 na typical standby current, 1 µa max. I 2 C compatible serial
How To Improve Electromagnetic Compatibility
Introducing the EMC Newsletter What is EMC? Issue 1, November 2004 NOVEMBER 2004 Rodger Richey Senior Applications Manager Welcome to the first issue of the EMC Newsletter created by the Application Engineers
MCRF202. 125 khz Passive RFID Device with Sensor Input. Not recommended for new designs. Package Type. Features. Description. Applications PDIP/SOIC
Not recommended for new designs. MCRF202 125 khz Passive RFID Device with Sensor Input Features External Sensor input Data polarity changes with Sensor input condition Read-only data transmission 96 or
Introduction to the dspic DSC SMPS (Part 1)
Introduction to the dspic DSC SMPS (Part 1) 2008 Microchip Technology Incorporated. All Rights Reserved. Introduction to dspic DSC SMPS Slide 1 Welcome to part 1 of the Introduction to the dspic DSC SMPS
AN1767. Solutions for Radio Frequency Electromagnetic Interference in Amplifier Circuits WHAT IS ELECTROMAGNETIC INTERFERENCE (EMI)
Solutions for Radio Frequency Electromagnetic Interference in Amplifier Circuits Author: Dragos-George Ducu Microchip Technology Inc. WHAT IS ELECTROMAGNETIC INTERFERENCE (EMI) Nowadays, the number of
MCP14A0151/2. 1.5A MOSFET Driver with Low Threshold Input And Enable. Features. General Description. Applications. Package Types
1.5A MOSFET Driver with Low Threshold Input And Enable Features High Peak Output Current: 1.5A (typical) Wide Input Supply Voltage Operating Range: - 4.5V to 18V Low Shoot-Through/Cross-Conduction Current
MPLAB ICD 3 In-Circuit Debugger User s Guide For MPLAB X IDE
MPLAB ICD 3 In-Circuit Debugger User s Guide For MPLAB X IDE DS52081A Note the following details of the code protection feature on Microchip devices: Microchip products meet the specification contained
AN905. Brushed DC Motor Fundamentals INTRODUCTION PRINCIPLES OF OPERATION. Stator. Rotor SIMPLE TWO-POLE BRUSHED DC MOTOR. Microchip Technology Inc.
Brushed DC Motor Fundamentals AN905 Author: Reston Condit Microchip Technology Inc. INTRODUCTION Brushed DC motors are widely used in applications ranging from toys to push-button adjustable car seats.
dspic Digital Signal Controllers
dspic Digital Signal Controllers Spring 2011 dspic Digital Signal Controllers Digital Signal Controller Solutions Building on the legacy of Microchip s world-leading 8-bit PIC microcontrollers, 16-bit
ZENA Wireless Network Analyzer User s Guide
ZENA Wireless Network Analyzer User s Guide 2007 Microchip Technology Inc. DS51606B Note the following details of the code protection feature on Microchip devices: Microchip products meet the specification
AN1160. Sensorless BLDC Control with Back-EMF Filtering Using a Majority Function SENSORED CONTROL VERSUS SENSORLESS CONTROL INTRODUCTION
Sensorless BLDC Control with Back-EMF Filtering Using a Majority Function Author: INTRODUCTION Adrian Lita and Mihai Cheles Microchip Technology Inc. This application note describes a sensorless Brushless
PICkit TM 2 Microcontroller Programmer USER S GUIDE
PICkit TM 2 Microcontroller Programmer USER S GUIDE 2006 Microchip Technology Inc. DS51553B Note the following details of the code protection feature on Microchip devices: Microchip products meet the specification
PDIP, MSOP, SOIC, TSSOP
2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface Features 12-bit resolution ±1 LSB maximum DNL ±1 LSB maximum INL (MCP3202-B) ±2 LSB maximum INL (MCP3202-C) Analog inputs programmable as
Section 33. Programming and Diagnostics
Section 33. Programming and Diagnostics HIGHLIGHTS This section of the manual contains the following topics: 33.1 Introduction... 33-2 33.2 Operation... 33-3 33.3 Interrupts... 33-13 33.4 Operation in
TB056. Demonstrating the Set_Report Request With a PS/2 to USB Keyboard Translator Example INTRODUCTION. The Set_Report Request.
Demonstrating the Set_Report Request With a PS/2 to USB Keyboard Translator Example Author: INTRODUCTION This Technical Brief details the translation of a PS/2 keyboard to a USB keyboard using the PIC16C745/
M Floating Point to ASCII Conversion
M Floating Point to ASCII Conversion AN670 Authors: INTRODUCTION It is often necessary to output a floating point number to a display. For example, to check calculations, one might want to output floating
