CHAPTER D1 ION OPTICS OF MAGNETIC/ELECTRIC SECTOR MS

Size: px
Start display at page:

Download "CHAPTER D1 ION OPTICS OF MAGNETIC/ELECTRIC SECTOR MS"

Transcription

1 Back to Basics Section D: Ion Optics CHAPTER D1 ION OPTICS OF MAGNETIC/ELECTRIC SECTOR MS TABLE OF CONTENTS QuickGuide Summary Preamble MassAnalysisofIons MagneticSector ElectrostaticAnalyser(ElectricSector) Magnet / Electrostatic Analyser Combination 375 ElectricFocusingLenses Y-Focus,Z-FocusandDeflectLenses Curvature and Rotation Lenses MetastableIons EnergyFilter Conclusion Micromass UK Limited Page 367

2 This page is intentionally blank. Micromass UK Limited Page 368

3 Quick Guide Substances are converted into species having positive or negative charges (ions) in the ion source. For an ion of mass (m) and a number (z) of positive or negative charges, the value m/z is an important mass spectrometric observable. Astreamofions(an ion beam) is directed out of the ion source towards a collector which records their arrival. As with a light beam and glass lenses, an ion beam can be directed and focused using electric and magnetic fields, often called lenses by analogy with their optical counterparts. The system of electric and magnetic fields or lenses is called the ion optics of the mass spectrometer. Electric lenses correct aberrations in the shape of the ion beam. Electric and magnetic fields can be used sequentially, as described in this issue. Crossed electromagnetic fields are described in the separate issue on quadrupoles. Another important property of electric and magnetic fields is their ability to separate ions according to their individual masses (m 1,m 2... m n ) or, more strictly, their mass-to-charge ratio (m 1 /z, m 2 /z... m n /z). After the ion source, the ion optics split the ion beam into its component m/z values (compare splitting white light into a spectrum of colours). By changing the strengths of the electric and magnetic fields, ions of different m/z values can be focused at just one spot (the collector). From the strengths of the electric and magnetic fields, m/z values are measured. A chart showing the number of ions (abundance) arriving at the collector and their respective m/z values is a mass spectrum. Summary The ion optics of a mass spectrometer cause the ion beam leaving the ion source to arrive at a collector after being separated into individual m/z values and focused. Micromass UK Limited Page 369

4 Field Current Direction of Deflection Figure 1 Fleming s Left Hand Rule Micromass UK Limited Page 370

5 ION OPTICS OF MAGNETIC/ELECTRIC SECTOR MASS SPECTROMETERS Preamble In the ion source, substances are converted into positive or negative ions having masses (m 1,m 2,... m n ) and a number (z) of electric charges. From a mass spectrometric viewpoint, the ratio of mass to charge (m 1 /z, m 2 /z... m n /z) is important. Generally, z =1,inwhich case, m 1 /z = m 1, m 2 /z = m 2... m n /z = m n, so that the mass spectrometer measures masses of ions. To do this a stream of ions (the ion beam) is injected into the mass analyser region, a series of electric and magnetic fields known as the ion optics. In this region, the ion beam is focused, corrected for aberrations in shape and the individual m/z ratios measured. The ion beam finally arrives at a collector which measures the number (abundance) of ions at each m/z value. The width and shape of the ion beam is controlled by a series of slits (object or source, collector, alpha etc.), situated between the ion source and the collector. A chart of m/z values and their respective abundances makes up the mass spectrum. Ion optics are considered in greater detail below. Mass Analysis of Ions Magnetic Sector In this section, magnetic and electric sectors and electric focusing lenses are discussed. When moving charged species (ions) experience a magnetic field, they are deflected. The direction of the deflection can be described by Fleming's left hand rule (Figure 1). Themagnitudeofthedeflectionisgovernedbythemomentumofthe ion and is described by the following equations (1,2). Firstly, the kinetic energy of the ion is equal to the energy gained through acceleration from the ion source (equation 1). zv = --mv2 1 2 Secondly, the centrifugal force on the ion as its path is deflected by a magnetic field is equal to the force exerted by the field on a moving charge (equation 2). mv = zb r (1) (2) Micromass UK Limited Page 371

6 Ion beam Magnet Deflected ions Figure 2 Deflection in a magnetic field of an ion beam consisting of increasing mass-to-charge ratios, m 1 /z...m 5 /z and split into different trajectories (1-5) respectively Object Slit α - Slit Focused Ion Beam (Collector Slit) Figure 3 Directional (or angular) focusing of a magnet. Micromass UK Limited Page 372

7 From equations (1,2), the velocity of the ion can be eliminated to give the relationship (3). m ---- z = B 2 r V Where: r = radius of arc of ions being deflected in the magnetic field V = accelerating potential applied to ions leaving the ion source B = magnetic field strength z = number of charges on an ion m = mass of any one ion v = velocity of an ion after acceleration through the electric field (V). If only ions with a single charge (z =1) are considered then, with a constant field strength and constant accelerating voltage, the radius of arc depends on mass and, from (3), equation (4) is obtained. r = m V (4) B 2 Thus, it is possible to separate ions of different mass (Figure 2) with ions arriving at position 1 (greater deflection) being of lower mass than those arriving at position 5 (lesser deflection). In the modern scanning mass spectrometer, it is more convenient that ions should arrive at a single point for monitoring (collection) and so r (or r 2 )is kept constant. This means that B and/or V must be varied to bring all ions to the same focus, viz., one of the relationships (5) must apply: m B 2 (V constant) m 1/V (B constant) m B 2 /V (5) From these relationships, (5), it can be seen that, if either the magnetic field (B) or the voltage (V) or both B and V are scanned, the whole range of masses of the ions may be brought into focus sequentially at a given point, the collector. Generally, a scanning magnetic sector mass spectrometer carries out mass analysis by keeping V constant and varying the magnetic field (B). A further property of the magnetic field is that a diverging ion beam entering that field leaves with the beam converging. Thus, the magnet is said to be directional (or angular) focusing (Figure 3). (3) Micromass UK Limited Page 373

8 (LOW ENERGY IONS) (HIGH ENERGY IONS) OUTER ESA PLATE SLIT INNER ESA PLATE Y FOCUS SLIT SOURCE SLIT (VARIABLE) Figure 4 Focusing and dispersion properties of an electrostatic analyser. Micromass UK Limited Page 374

9 So far, it has been assumed that all ions leaving the source have exactly the same kinetic energy but this is not really the case. In EI, the spread in kinetic energy can be as much as 1 volt and, with FAB can be as much as 4 volts. This spread results in a blurred image at the collector because the magnet has no energy focusing and ions of different kinetic energies are brought to slightly different foci. Thus a single magnetic sector has directional (or angular) focusing and therefore is said to be single focusing only. Electrostatic Analyser (Electric Sector) An electrostatic analyser (ESA) is a directional (or angular) focusing device and is also energy dispersive (Figure 4). As shown in equations (1,2), the energy gained by ions accelerated from the ion source is zv 1 = --mv 2 and in the electric sector, the 2 centrifugal force acting on the ions is given by equation (6), mv ze = (6) R where: E = electric potential (voltage) between the inner and outer ESA plates. R = radius of curvature of ion trajectory From these equations, the relationship (7) is obtained. 2V R = (7) E No mass or charge appears in this equation so that, in the electric sector, the ion flight path bends in an arc, which depends only on the accelerating voltage (V) and the ESA voltage (E). Magnet / Electrostatic Analyser Combination The ion beam is collimated when a magnetic analyser is combined with an ESA, the combination can be made both energy and mass focused, vis., the ion beam is collimated in the ESA and then properly focused in the magnetic field (Figure 5). The combination is called double focusing because it is both directional (or angular) and energy focusing. The double focusing mass spectrometer is designed such that ions of different energies (but of the same mass), converge at the collector (Figure 5). Double Focusing Forward Geometry ion optics is a combination, in which the ESA is placed before the magnet as shown in Figure 5. Micromass UK Limited Page 375

10 (HIGH ENERGY IONS) (IONS OF TUNED MASS) OUTER ESA PLATE ELECTROMAGNET (LOW ENERGY IONS) β SLIT INNER ESA PLATE COLLECTOR SLIT Y FOCUS SOURCE SLIT (VARIABLE) SOURCE SLIT (FIXED) α SLIT LENS FOCUS (BEAM CENTRE) SOURCE EI/CI Figure 5 Double focusing ion optics (forward geometry). HIGH ENERGY IONS ELECTROMAGNET OUTER ESA PLATE SOURCE SLIT (VARIABLE) 1st FFR GAS CELL Y FOCUS α SLIT LENS SOURCE SLIT (FIXED) FOCUS (BEAM CENTRE) SOURCE EI/CI LOW ENERGY IONS COLLECTOR SLIT (VARIABLE) INNER ESA PLATE CONVERSION DYNODE FARADAY COLLECTOR MULTIPLIER Figure 6 Double focusing ion optics (reverse geometry). Micromass UK Limited Page 376

11 Double Focusing Reverse Geometry ion optics is a combination, in which the magnet is placed before the ESA and is shown in Figure 6. The double focusing combination of electrostatic and magnetic sector analysers allows the inherent energy spread of the beam to be compensated for by design, and ensures that there is no spread in the beam at the collector arising from either of these sources. Electric Focusing Lenses Y-Focus, Z-Focus and Deflect Lenses It has been stated above that the focus of all masses will occur at a single position, the collector slit (Figures 5, 6). However, because the actual shape of the field within and around the pole tips of the magnet varies with changing field, especially at higher field strengths, the final focal point of the beam shifts as field strength changes. This leads to a change of focus with mass and affects the ability of the instrument to resolve small mass differences. On early mass spectrometers, the problem could be corrected by physically adjusting the position of the magnet for any given mass. On modern instruments, an electric field called the Y-focus is used to compensate for these imperfections (Figures 5, 6). The aim of this lens is to focus the ions at the same position (the collector slit) throughout the mass range. Thus, using the electric and magnetic sectors with a Y-focus lens ensures all ions are brought to the same focus and allows small differences in mass to be detected, viz., the resolution of the instrument is enhanced. On VG instruments, these lenses are sited before and after the magnetic sector. The focus and deflection lenses are used to steer the beam so that it coincides with the gap in the collector slit. The Z-focus lenses are used to change the divergence of the beam by adjusting voltages on lens plates situated on either side of the beam. The deflection lenses are used to move the whole beam; the Y-deflection lens is used to move the beam from one side to the other and the Z-deflection moves the beam up or down. The two lenses allow the ion beam to be aligned correctly with the collector slit. Voltages on the lens plates are adjusted to effect such movements of the beam (Figure 7). Micromass UK Limited Page 377

12 TYPE BEAM IN BEAM OUT Y Focus Y Deflect Z Focus Z Deflect Figure 7 Y-Focus, Z-focus and deflect lenses with their effects on the ion beam Micromass UK Limited Page 378

13 Curvature and Rotation Lenses Curvature and rotation lenses are used to correct for any imperfections (aberrations) in the cross-sectional shape of the beam before it reaches the collector slit. The curvature lens provides a means of changing any banana shaped beam cross-section into a rectangular shape (Figure 8). The rotation lens is used to rotate the beam such that the sides of the beam become parallel with the long axis of the collector slit (Figure 8). Metastable Ions Energy Filter An ion beam mainly comprises normal ions all having the same kinetic energy gained on acceleration from the ion source but there are also some ions in the beam with much less than the full kinetic energy; these are called metastable ions. An energy filter is a system of electrostatic fields which strictly has little to do with the main focusing fields but, rather, provides a means of discriminating between normal and metastable ions. The system is a filter, preventing metastable ions from being detected by the collector and it consists of a series of parallel lens plates to which is applied a decelerating voltage of 90-99% of the original accelerating potential (V). Normal ions have enough energy to pass through the filter, to reach the collector but metastable ions do not. Conclusion Through the use of sequential electric (electrostatic) and magnetic fields (sectors) and various correcting lenses, the ion beam leaving the ion source can be adjusted so that it arrives at the collector in focus and with a rectangularly shaped cross-section aligned with the collector slits. For the use of crossed electromagnetic fields, the relevant issue on quadrupole instruments should be consulted. Micromass UK Limited Page 379

14 Curvature Rotate Figure 8 Curvature and Rotate lenses and their effects on the ion beam. Micromass UK Limited Page 380

Mass spectrometry. What are the principles behind MS? What do all MS instruments have in common?

Mass spectrometry. What are the principles behind MS? What do all MS instruments have in common? Mass spectrometry What are the principles behind MS? What do all MS instruments have in common? What are the different types of MS? Lecture outline: 1) Introduction to mass spectrometry 2) sample introduction

More information

How To Analyze Plasma With An Inductively Coupled Plasma Mass Spectrometer

How To Analyze Plasma With An Inductively Coupled Plasma Mass Spectrometer What is ICP-MS? and more importantly, what can it do? Inductively Coupled Plasma Mass Spectrometry or ICP-MS is an analytical technique used for elemental determinations. The technique was commercially

More information

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be

More information

TOF FUNDAMENTALS TUTORIAL

TOF FUNDAMENTALS TUTORIAL TOF FUNDAMENTALS TUTORIAL Presented By: JORDAN TOF PRODUCTS, INC. 990 Golden Gate Terrace Grass Valley, CA 95945 530-272-4580 / 530-272-2955 [fax] www.rmjordan.com [web] info@rmjordan.com [e-mail] This

More information

C) D) As object AB is moved from its present position toward the left, the size of the image produced A) decreases B) increases C) remains the same

C) D) As object AB is moved from its present position toward the left, the size of the image produced A) decreases B) increases C) remains the same 1. For a plane mirror, compared to the object distance, the image distance is always A) less B) greater C) the same 2. Which graph best represents the relationship between image distance (di) and object

More information

View of ΣIGMA TM (Ref. 1)

View of ΣIGMA TM (Ref. 1) Overview of the FESEM system 1. Electron optical column 2. Specimen chamber 3. EDS detector [Electron Dispersive Spectroscopy] 4. Monitors 5. BSD (Back scatter detector) 6. Personal Computer 7. ON/STANDBY/OFF

More information

Chapter 22 Magnetism

Chapter 22 Magnetism 22.6 Electric Current, Magnetic Fields, and Ampere s Law Chapter 22 Magnetism 22.1 The Magnetic Field 22.2 The Magnetic Force on Moving Charges 22.3 The Motion of Charged particles in a Magnetic Field

More information

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

More information

E/M Experiment: Electrons in a Magnetic Field.

E/M Experiment: Electrons in a Magnetic Field. E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.

More information

Understanding astigmatism Spring 2003

Understanding astigmatism Spring 2003 MAS450/854 Understanding astigmatism Spring 2003 March 9th 2003 Introduction Spherical lens with no astigmatism Crossed cylindrical lenses with astigmatism Horizontal focus Vertical focus Plane of sharpest

More information

Time-of-Flight Mass Spectrometry

Time-of-Flight Mass Spectrometry Time-of-Flight Mass Spectrometry Technical Overview Introduction Time-of-flight mass spectrometry (TOF MS) was developed in the late 1940 s, but until the 1990 s its popularity was limited. Recent improvements

More information

Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed

Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed Theory Refer to your Lab Manual, pages 291 294. Geometrical Optics Equipment Needed Light Source Ray Table and Base Three-surface Mirror Convex Lens Ruler Optics Bench Cylindrical Lens Concave Lens Rhombus

More information

Modern Physics Laboratory e/m with Teltron Deflection Tube

Modern Physics Laboratory e/m with Teltron Deflection Tube Modern Physics Laboratory e/m with Teltron Deflection Tube Josh Diamond & John Cummings Fall 2010 Abstract The deflection of an electron beam by electric and magnetic fields is observed, and the charge

More information

Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams

Introduction to Beam. Area Moments of Inertia, Deflection, and Volumes of Beams Introduction to Beam Theory Area Moments of Inertia, Deflection, and Volumes of Beams Horizontal structural member used to support horizontal loads such as floors, roofs, and decks. Types of beam loads

More information

Magnetic Fields and Forces. AP Physics B

Magnetic Fields and Forces. AP Physics B Magnetic ields and orces AP Physics acts about Magnetism Magnets have 2 poles (north and south) Like poles repel Unlike poles attract Magnets create a MAGNETIC IELD around them Magnetic ield A bar magnet

More information

CHARGED PARTICLES & MAGNETIC FIELDS - WebAssign

CHARGED PARTICLES & MAGNETIC FIELDS - WebAssign Name: Period: Due Date: Lab Partners: CHARGED PARTICLES & MAGNETIC FIELDS - WebAssign Purpose: Use the CP program from Vernier to simulate the motion of charged particles in Magnetic and Electric Fields

More information

Technical Report FP-2010-06. Simple injector for high-current sheet electron beams

Technical Report FP-2010-06. Simple injector for high-current sheet electron beams Technical Report FP-2010-06 Simple injector for high-current sheet electron beams Stanley Humphries, Ph.D. Field Precision LLC Albuquerque, New Mexico U.S.A. December 2010 1 Figure 1: Model electron trajectories

More information

Summary of the characteristics of different mass analyzers

Summary of the characteristics of different mass analyzers Summary of the characteristics of different mass analyzers All mass spectrometers combine ion formation, mass analysis, and ion detection. This discussion is concerned with how various mass analyzers are

More information

WAVELENGTH OF LIGHT - DIFFRACTION GRATING

WAVELENGTH OF LIGHT - DIFFRACTION GRATING PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant

More information

Charged Particle in a Magnetic Field

Charged Particle in a Magnetic Field Charged Particle in a Magnetic Field Consider a particle moving in an external magnetic field with its velocity perpendicular to the field The force is always directed toward the center of the circular

More information

waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object

waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object PHYS1000 Optics 1 Optics Light and its interaction with lenses and mirrors. We assume that we can ignore the wave properties of light. waves rays We represent the light as rays, and ignore diffraction.

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2014

Candidate Number. General Certificate of Education Advanced Level Examination June 2014 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday

More information

1. The diagram below represents magnetic lines of force within a region of space.

1. The diagram below represents magnetic lines of force within a region of space. 1. The diagram below represents magnetic lines of force within a region of space. 4. In which diagram below is the magnetic flux density at point P greatest? (1) (3) (2) (4) The magnetic field is strongest

More information

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path.

AP2 Magnetism. (c) Explain why the magnetic field does no work on the particle as it moves in its circular path. A charged particle is projected from point P with velocity v at a right angle to a uniform magnetic field directed out of the plane of the page as shown. The particle moves along a circle of radius R.

More information

Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate.

Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate. Series ONS SET-1 Roll No. Candiates must write code on the title page of the answer book Please check that this question paper contains 16 printed pages. Code number given on the right hand side of the

More information

Lab 4: Magnetic Force on Electrons

Lab 4: Magnetic Force on Electrons Lab 4: Magnetic Force on Electrons Introduction: Forces on particles are not limited to gravity and electricity. Magnetic forces also exist. This magnetic force is known as the Lorentz force and it is

More information

1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002

1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 05-232 Imaging Systems Laboratory II Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 Abstract: For designing the optics of an imaging system, one of the main types of tools used today is optical

More information

Mass Spectrometry. Overview

Mass Spectrometry. Overview Mass Spectrometry Overview Mass Spectrometry is an analytic technique that utilizes the degree of deflection of charged particles by a magnetic field to find the relative masses of molecular ions and fragments.2

More information

Chapter 17: Light and Image Formation

Chapter 17: Light and Image Formation Chapter 17: Light and Image Formation 1. When light enters a medium with a higher index of refraction it is A. absorbed. B. bent away from the normal. C. bent towards from the normal. D. continues in the

More information

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge

More information

How To Use An Ionsonic Microscope

How To Use An Ionsonic Microscope Sample Analysis Design Element2 - Basic Software Concepts Scan Modes Magnetic Scan (BScan): the electric field is kept constant and the magnetic field is varied as a function of time the BScan is suitable

More information

Cathode Ray Tube. Introduction. Functional principle

Cathode Ray Tube. Introduction. Functional principle Introduction The Cathode Ray Tube or Braun s Tube was invented by the German physicist Karl Ferdinand Braun in 897 and is today used in computer monitors, TV sets and oscilloscope tubes. The path of the

More information

PosterREPRINT AN LC/MS ORTHOGONAL TOF (TIME OF FLIGHT) MASS SPECTROMETER WITH INCREASED TRANSMISSION, RESOLUTION, AND DYNAMIC RANGE OVERVIEW

PosterREPRINT AN LC/MS ORTHOGONAL TOF (TIME OF FLIGHT) MASS SPECTROMETER WITH INCREASED TRANSMISSION, RESOLUTION, AND DYNAMIC RANGE OVERVIEW OVERVIEW Exact mass LC/MS analysis using an orthogonal acceleration time of flight (oa-tof) mass spectrometer is a well-established technique with a broad range of applications. These include elemental

More information

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

More information

GRID AND PRISM SPECTROMETERS

GRID AND PRISM SPECTROMETERS FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing

More information

!! Regarding the information about figures (Fig.XY) please have a look at the german version!! Spektroscopy

!! Regarding the information about figures (Fig.XY) please have a look at the german version!! Spektroscopy 1. Introduction (under construction) Spektroscopy 2. Prism and Grid Spectrometers Basics of Construction and Operation The experiment can be conducted with one of two types of spectrometer in which the

More information

13C NMR Spectroscopy

13C NMR Spectroscopy 13 C NMR Spectroscopy Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for structural determination. A nucleus with an odd number of protons, an odd number

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise. Magnetism 1. An electron which moves with a speed of 3.0 10 4 m/s parallel to a uniform magnetic field of 0.40 T experiences a force of what magnitude? (e = 1.6 10 19 C) a. 4.8 10 14 N c. 2.2 10 24 N b.

More information

Physics 30 Worksheet # 14: Michelson Experiment

Physics 30 Worksheet # 14: Michelson Experiment Physics 30 Worksheet # 14: Michelson Experiment 1. The speed of light found by a Michelson experiment was found to be 2.90 x 10 8 m/s. If the two hills were 20.0 km apart, what was the frequency of the

More information

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass

Nuclear Structure. particle relative charge relative mass proton +1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons, neutrons and electrons Nuclear Structure particle relative charge relative mass proton 1 1 atomic mass unit neutron 0 1 atomic mass unit electron -1 negligible mass Protons and neutrons make up

More information

Pesticide Analysis by Mass Spectrometry

Pesticide Analysis by Mass Spectrometry Pesticide Analysis by Mass Spectrometry Purpose: The purpose of this assignment is to introduce concepts of mass spectrometry (MS) as they pertain to the qualitative and quantitative analysis of organochlorine

More information

Last Name: First Name: Physics 102 Spring 2006: Exam #2 Multiple-Choice Questions 1. A charged particle, q, is moving with speed v perpendicular to a uniform magnetic field. A second identical charged

More information

Physics 30 Worksheet #10 : Magnetism From Electricity

Physics 30 Worksheet #10 : Magnetism From Electricity Physics 30 Worksheet #10 : Magnetism From Electricity 1. Draw the magnetic field surrounding the wire showing electron current below. x 2. Draw the magnetic field surrounding the wire showing electron

More information

Chapter 36 - Lenses. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 36 - Lenses. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 36 - Lenses A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should be able to: Determine

More information

PHYSICS PAPER 1 (THEORY)

PHYSICS PAPER 1 (THEORY) PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------

More information

Examples of magnetic field calculations and applications. 1 Example of a magnetic moment calculation

Examples of magnetic field calculations and applications. 1 Example of a magnetic moment calculation Examples of magnetic field calculations and applications Lecture 12 1 Example of a magnetic moment calculation We consider the vector potential and magnetic field due to the magnetic moment created by

More information

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block. 1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown

More information

Review Questions PHYS 2426 Exam 2

Review Questions PHYS 2426 Exam 2 Review Questions PHYS 2426 Exam 2 1. If 4.7 x 10 16 electrons pass a particular point in a wire every second, what is the current in the wire? A) 4.7 ma B) 7.5 A C) 2.9 A D) 7.5 ma E) 0.29 A Ans: D 2.

More information

PY106 Class13. Permanent Magnets. Magnetic Fields and Forces on Moving Charges. Interactions between magnetic north and south poles.

PY106 Class13. Permanent Magnets. Magnetic Fields and Forces on Moving Charges. Interactions between magnetic north and south poles. Permanent Magnets Magnetic ields and orces on Moing Charges 1 We encounter magnetic fields frequently in daily life from those due to a permanent magnet. Each permanent magnet has a north pole and a south

More information

Exam 2 Practice Problems Part 2 Solutions

Exam 2 Practice Problems Part 2 Solutions Problem 1: Short Questions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Exam Practice Problems Part Solutions (a) Can a constant magnetic field set into motion an electron, which is initially

More information

Reflection and Refraction

Reflection and Refraction Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,

More information

Motion of Charges in Combined Electric and Magnetic Fields; Measurement of the Ratio of the Electron Charge to the Electron Mass

Motion of Charges in Combined Electric and Magnetic Fields; Measurement of the Ratio of the Electron Charge to the Electron Mass Motion of Charges in Combined Electric and Magnetic Fields; Measurement of the Ratio of the Electron Charge to the Electron Mass Object: Understand the laws of force from electric and magnetic fields.

More information

Lesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus

Lesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus Lesson 29: Lenses Remembering the basics of mirrors puts you half ways towards fully understanding lenses as well. The same sort of rules apply, just with a few modifications. Keep in mind that for an

More information

Geometric Optics Converging Lenses and Mirrors Physics Lab IV

Geometric Optics Converging Lenses and Mirrors Physics Lab IV Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The

More information

2.4 The deflection of beta radiation in a magnetic field. Task. How does β-radiation behave in a magnetic field?

2.4 The deflection of beta radiation in a magnetic field. Task. How does β-radiation behave in a magnetic field? Science - Physics - Radioactivity - 2 Types of radiation and their characteristics (P7300900) 2.4 The deflection of beta radiation in a magnetic field Experiment by: Phywe Printed: Oct 16, 2013 4:04:14

More information

How To Build An Amd Quas 3 Ar Mass Spectrometer

How To Build An Amd Quas 3 Ar Mass Spectrometer Classical and special AMD Magnetic Sector mass spectrometers (extracted from power point presentations) High Resolution Mass Spectromter AMD 402/403 S 6 High Resolution Mass Spectrometer AMD 604 S 8 Version

More information

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs

Spectroscopy. Biogeochemical Methods OCN 633. Rebecca Briggs Spectroscopy Biogeochemical Methods OCN 633 Rebecca Briggs Definitions of Spectrometry Defined by the method used to prepare the sample 1. Optical spectrometry Elements are converted to gaseous atoms or

More information

Tuning & Mass Calibration

Tuning & Mass Calibration Tuning & Mass Calibration 1 1 The Sample List Sample List Name Project Name 2 The sample list is the top level screen in the TurboMass Gold Software. Data storage is set up in PROJECT files and within

More information

Physics 25 Exam 3 November 3, 2009

Physics 25 Exam 3 November 3, 2009 1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,

More information

Force on Moving Charges in a Magnetic Field

Force on Moving Charges in a Magnetic Field [ Assignment View ] [ Eðlisfræði 2, vor 2007 27. Magnetic Field and Magnetic Forces Assignment is due at 2:00am on Wednesday, February 28, 2007 Credit for problems submitted late will decrease to 0% after

More information

Electron Charge to Mass Ratio Matthew Norton, Chris Bush, Brian Atinaja, Becker Steven. Norton 0

Electron Charge to Mass Ratio Matthew Norton, Chris Bush, Brian Atinaja, Becker Steven. Norton 0 Electron Charge to Mass Ratio Matthew Norton, Chris Bush, Brian Atinaja, Becker Steven Norton 0 Norton 1 Abstract The electron charge to mass ratio was an experiment that was used to calculate the ratio

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

THE COMPOUND MICROSCOPE

THE COMPOUND MICROSCOPE THE COMPOUND MICROSCOPE In microbiology, the microscope plays an important role in allowing us to see tiny objects that are normally invisible to the naked eye. It is essential for students to learn how

More information

Convex Mirrors. Ray Diagram for Convex Mirror

Convex Mirrors. Ray Diagram for Convex Mirror Convex Mirrors Center of curvature and focal point both located behind mirror The image for a convex mirror is always virtual and upright compared to the object A convex mirror will reflect a set of parallel

More information

2) A convex lens is known as a diverging lens and a concave lens is known as a converging lens. Answer: FALSE Diff: 1 Var: 1 Page Ref: Sec.

2) A convex lens is known as a diverging lens and a concave lens is known as a converging lens. Answer: FALSE Diff: 1 Var: 1 Page Ref: Sec. Physics for Scientists and Engineers, 4e (Giancoli) Chapter 33 Lenses and Optical Instruments 33.1 Conceptual Questions 1) State how to draw the three rays for finding the image position due to a thin

More information

PH3FP. (JUn13PH3Fp01) General Certificate of Secondary Education Foundation Tier June 2013. Unit Physics P3 TOTAL. Time allowed 1 hour

PH3FP. (JUn13PH3Fp01) General Certificate of Secondary Education Foundation Tier June 2013. Unit Physics P3 TOTAL. Time allowed 1 hour Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics Unit Physics P3 Thursday 23 May 2013 For this paper you must have: a ruler a calculator

More information

ElectroMagnetic Induction. AP Physics B

ElectroMagnetic Induction. AP Physics B ElectroMagnetic Induction AP Physics B What is E/M Induction? Electromagnetic Induction is the process of using magnetic fields to produce voltage, and in a complete circuit, a current. Michael Faraday

More information

Information about the T9 beam line and experimental facilities

Information about the T9 beam line and experimental facilities Information about the T9 beam line and experimental facilities The incoming proton beam from the PS accelerator impinges on the North target and thus produces the particles for the T9 beam line. The collisions

More information

6/2016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES. PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields.

6/2016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES. PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields. 6/016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields. APPARATUS: Electron beam tube, stand with coils, power supply,

More information

Lecture L17 - Orbit Transfers and Interplanetary Trajectories

Lecture L17 - Orbit Transfers and Interplanetary Trajectories S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L17 - Orbit Transfers and Interplanetary Trajectories In this lecture, we will consider how to transfer from one orbit, to another or to

More information

Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name

Phys222 Winter 2012 Quiz 4 Chapters 29-31. Name Name If you think that no correct answer is provided, give your answer, state your reasoning briefly; append additional sheet of paper if necessary. 1. A particle (q = 5.0 nc, m = 3.0 µg) moves in a region

More information

Principles of Ion Implant

Principles of Ion Implant Principles of Ion Implant Generation of ions dopant gas containing desired species BF 3, B 2 H 6, PH 3, AsH 3, AsF 5 plasma provides positive ions (B 11 ) +, BF 2+, (P 31 ) +, (P 31 ) ++ Ion Extraction

More information

Interference. Physics 102 Workshop #3. General Instructions

Interference. Physics 102 Workshop #3. General Instructions Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by

More information

9/16 Optics 1 /11 GEOMETRIC OPTICS

9/16 Optics 1 /11 GEOMETRIC OPTICS 9/6 Optics / GEOMETRIC OPTICS PURPOSE: To review the basics of geometric optics and to observe the function of some simple and compound optical devices. APPARATUS: Optical bench, lenses, mirror, target

More information

F321 THE STRUCTURE OF ATOMS. ATOMS Atoms consist of a number of fundamental particles, the most important are... in the nucleus of an atom

F321 THE STRUCTURE OF ATOMS. ATOMS Atoms consist of a number of fundamental particles, the most important are... in the nucleus of an atom Atomic Structure F32 TE STRUCTURE OF ATOMS ATOMS Atoms consist of a number of fundamental particles, the most important are... Mass / kg Charge / C Relative mass Relative Charge PROTON NEUTRON ELECTRON

More information

Optical laser beam scanner lens relay system

Optical laser beam scanner lens relay system 1. Introduction Optical laser beam scanner lens relay system Laser beam scanning is used most often by far in confocal microscopes. There are many ways by which a laser beam can be scanned across the back

More information

LIGHT REFLECTION AND REFRACTION

LIGHT REFLECTION AND REFRACTION QUESTION BANK IN SCIENCE CLASS-X (TERM-II) 10 LIGHT REFLECTION AND REFRACTION CONCEPTS To revise the laws of reflection at plane surface and the characteristics of image formed as well as the uses of reflection

More information

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements

MCE380: Measurements and Instrumentation Lab. Chapter 9: Force, Torque and Strain Measurements MCE380: Measurements and Instrumentation Lab Chapter 9: Force, Torque and Strain Measurements Topics: Elastic Elements for Force Measurement Dynamometers and Brakes Resistance Strain Gages Holman, Ch.

More information

How To Understand The Physics Of A Charge Charge

How To Understand The Physics Of A Charge Charge MFF 3a: Charged Particle and a Straight Current-Carrying Wire... 2 MFF3a RT1: Charged Particle and a Straight Current-Carrying Wire... 3 MFF3a RT2: Charged Particle and a Straight Current-Carrying Wire...

More information

Optics and Geometry. with Applications to Photography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November 15, 2004

Optics and Geometry. with Applications to Photography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November 15, 2004 Optics and Geometry with Applications to Photography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November 15, 2004 1 Useful approximations This paper can be classified as applied

More information

How To Use Gc-Ms

How To Use Gc-Ms The CHROMacademy Essential Guide Understanding GC-MS Analysis Part 1 Speakers John Hinshaw GC Dept. Dean CHROMacademy Tony Taylor Technical Director Crawford Scientific Moderator M ( g ) e M ( g ) 2e Peter

More information

Experiment 3 Lenses and Images

Experiment 3 Lenses and Images Experiment 3 Lenses and Images Who shall teach thee, unless it be thine own eyes? Euripides (480?-406? BC) OBJECTIVES To examine the nature and location of images formed by es. THEORY Lenses are frequently

More information

British Journal of Science 43 September 2012, Vol. 6 (2) Study of the Objective Focal Properties for Asymmetrical Double Polepiece Magnetic Lens

British Journal of Science 43 September 2012, Vol. 6 (2) Study of the Objective Focal Properties for Asymmetrical Double Polepiece Magnetic Lens British Journal of Science 43 Study of the Objective Focal Properties for Asymmetrical Double Polepiece Magnetic Lens Talib M. Abbass 1 and Ban A. Nasser 2 1 Department of Physics, College of Education

More information

Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks.

Lesson 3 DIRECT AND ALTERNATING CURRENTS. Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Lesson 3 DIRECT AND ALTERNATING CURRENTS Task. The skills and knowledge taught in this lesson are common to all missile repairer tasks. Objectives. When you have completed this lesson, you should be able

More information

Electromagnetism and Circular Motion in a Cyclotron

Electromagnetism and Circular Motion in a Cyclotron PHYSICS IN ACTION Lesson Workbook by Philip Freeman and Marcello Pavan Electromagnetism and Circular Motion in a Cyclotron What is a Cyclotron and Why Build One? 2 How a Cyclotron Works 2 Lesson 1: The

More information

Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions

Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions Pearson Physics Level 30 Unit VIII Atomic Physics: Chapter 17 Solutions Student Book page 831 Concept Check Since neutrons have no charge, they do not create ions when passing through the liquid in a bubble

More information

Crystal Optics of Visible Light

Crystal Optics of Visible Light Crystal Optics of Visible Light This can be a very helpful aspect of minerals in understanding the petrographic history of a rock. The manner by which light is transferred through a mineral is a means

More information

Lab #4 - Linear Impulse and Momentum

Lab #4 - Linear Impulse and Momentum Purpose: Lab #4 - Linear Impulse and Momentum The objective of this lab is to understand the linear and angular impulse/momentum relationship. Upon completion of this lab you will: Understand and know

More information

Magnetic Fields and Their Effects

Magnetic Fields and Their Effects Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases

More information

Electrostatic electron analyzer with 90 deflection angle

Electrostatic electron analyzer with 90 deflection angle REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 73, NUMBER 11 NOVEMBER 2002 Electrostatic electron analyzer with 90 deflection angle L. Vattuone a) and M. Rocca Istituto Nazionale per la Fisica della Materia and

More information

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses

More information

EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS

EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS The following website should be accessed before coming to class. Text reference: pp189-196 Optics Bench a) For convenience of discussion we assume that the light

More information

ENGINEERING METROLOGY

ENGINEERING METROLOGY ENGINEERING METROLOGY ACADEMIC YEAR 92-93, SEMESTER ONE COORDINATE MEASURING MACHINES OPTICAL MEASUREMENT SYSTEMS; DEPARTMENT OF MECHANICAL ENGINEERING ISFAHAN UNIVERSITY OF TECHNOLOGY Coordinate Measuring

More information

RAY OPTICS II 7.1 INTRODUCTION

RAY OPTICS II 7.1 INTRODUCTION 7 RAY OPTICS II 7.1 INTRODUCTION This chapter presents a discussion of more complicated issues in ray optics that builds on and extends the ideas presented in the last chapter (which you must read first!)

More information

Mass Spectrometry: Quadrupole Mass Filter

Mass Spectrometry: Quadrupole Mass Filter Advanced Lab, Jan. 2008 Mass Spectrometry: Quadrupole Mass Filter The mass spectrometer is essentially an instrument which can be used to measure the mass, or more correctly the mass/charge ratio, of ionized

More information

MOTION OF CHARGED PARTICLES IN ELECTRIC & MAGNETIC FIELDS

MOTION OF CHARGED PARTICLES IN ELECTRIC & MAGNETIC FIELDS MOTION OF CHARGED PARTICLES IN ELECTRIC & MAGNETIC FIELDS BSc I (UNIT III) P a g e 1 Contents 1) Basic definitions 2 2) Motion of charged particle in a uniform electric field 3 3) Electric Field as an

More information

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent

More information

Ahmet Sami KILINÇ, Tamer BAYBURA. Presented by Ahmet Sami KILINÇ

Ahmet Sami KILINÇ, Tamer BAYBURA. Presented by Ahmet Sami KILINÇ Determination of Minimum Horizontal Curve Radius Used in the Design of Transportation Structures, Depending on the Limit Value of Comfort Criterion Lateral Jerk Ahmet Sami KILINÇ, Tamer BAYBURA Presented

More information