arxiv:cs/ v2 [cs.dm] 21 Aug 2001

Size: px
Start display at page:

Download "arxiv:cs/0106002v2 [cs.dm] 21 Aug 2001"

Transcription

1 Solving Assembly Line Balancing Problems by Combining IP and CP Alexander Bockmayr and Nicolai Pisaruk arxiv:cs/ v2 [cs.dm] 21 Aug 2001 Université Henri Poincaré, LORIA B.P. 239, F Vandœuvre-lès-Nancy, France {bockmayr Abstract. Assembly line balancing problems consist in partitioning the work necessary to assemble a number of products among different stations of an assembly line. We present a hybrid approach for solving such problems, which combines constraint programming and integer programming. 1 Introduction Assembly lines are special flow-line production systems typical for the industrial production of high quantity standardized commodities. An assembly line consists of a number of work stations arranged along a conveyor belt. The work pieces are consecutively launched down the conveyor belt and are moved from one station to the next. At each station, one or several tasks necessary to manufacture the product are performed. The problem of partitioning the various tasks among the stations with respect to some objective function is called the assembly line balancing problem (ALBP) [16]. Various classes of assembly line balancing problems have been studied in the literature. We will consider here so-called simple assembly line balancing problems SALBP of the following form: Let M = {1,...,m} be the set of stations and N = {1,...,n} be the set of tasks. We denote by t j the time required for task j and by S j M the set of stations able to fulfill task j. There is a precedence relation on the tasks that will be represented by a graph G = (N, E), where (j 1, j 2 ) E means that task j 1 is an immediate predecessor of task j 2. By CT i we denote the total time available for executing the tasks that have been assigned to station i. The capacities CT i may vary from one station to another due to, e.g., different numbers of operators. The constraint satisfaction problem in assembly line balancing consists in assigning tasks to stations such that the total running time of the tasks assigned to some station does not exceed its capacity, and such that the precedence relations between the tasks are satisfied. The objective function is to minimize the number of stations necessary to fulfill all tasks. Including bin packing as a special case, the assembly line balancing problem is NP-hard. This work was partially supported by the European Commission, Growth Programme, Research Project LISCOS Large Scale Integrated Supply Chain Optimisation Software, Contract No. G1RD-CT

2 The aim of this paper is to present a hybrid solver for assembly line balancing problems, which combines constraint programming (CP) and integer programming (IP). The integration of integer programming and constraint programming has been an important research topic during the last years, see e.g. [15,4,9,10,7,14]. The contribution of this paper is twofold: we develop a branchand-cut solver for SALBP and show how it can cooperate with a CP solver in order to prune the search tree. The organization of the paper is as follows. We start in Sect. 2 with an integer programming model of the simple assembly line balancing problem. Sect. 3 describes the cutting planes that are used in the branch-and-cut solver on the IP side. Sect. 4 introduces a CP model of SALBP and Sect. 5 describes the cooperation between the IP and the CP solver. Finally, Sect. 6 contains a number of empirical results illustrating the benefits of the approach. 2 Integer Programming Model Let T i = {j : i S j } be the set of tasks which can be carried out by station i, and let A = j N (S j {j}). We define the following decision variables { 1, if task j is assigned to station i, x ij = 0, otherwise. 2.1 Constraints Feasible solutions x = [x ij ] of the assembly line balancing problem have to satisfy the following constraints: x ij = 1, j N, (1) i S j t j x ij CT i, i M, (2) j T i x ij1 x ij2 0, k = 1,...,m, (j 1, j 2 ) E, (3) i S j1, i k i S j2, i k x ij {0, 1}, (i, j) A. (4) SOS (Special Ordered Set) constraints (1) ensure that each task is assigned to exactly one workstation. Knapsack constraints (2) guarantee that the total running time of the tasks assigned to some station does not exceed its capacity. The constraints (3) correspond to the precedences given in the graph G. They express that if (j 1, j 2 ) E and task j 2 is assigned to station k, then task j 1 must be assigned to one of the stations 1,...,k. 2.2 Objective function Our objective is to minimize the number of stations necessary to perform all the tasks. Assuming w.l.o.g. that at most n stations are available, we define costs

3 c ij for assigning task j to station i that satisfy the following condition: c ij = c i for all j T i ; nc i c i+1, i = 1,...,m 1. (5) This ensures that lower numbered stations will be used first. Now the objective function can be written as follows: min c i x ij. (6) j N i S j 3 Valid Inequalities and Cut Generation In order to solve the IP model presented above, we will use a branch-and-cut approach [18]. In this section, we present the different classes of inequalities that will be used in our branch-and-cut algorithm. We start by defining the SALB polytope def P SALB = conv({x {0, 1} A : x satisfies (2),(3),(7)}). Here conv(s) denotes the convex hull of a set of points S R n. We relaxed the SOS constraints (1) to the inequalities i S j x ij 1, j N. (7) Since the polytope P SALB is contained in the multiple knapsack polytope (MK), defined as the convex hull of the set of points x {0, 1} A satisfying (7) and (2), all inequalities valid for the MK polytope are also valid for the SALB polytope. Furthermore, the multiple knapsack problem is a special type of the generalized assignment problem (GAP); therefore, the inequalities valid for the GAP polytope are also valid for the SALB polytope. The known classes of inequalities for the GAP and MK polytopes are based on the notion of cover, which we briefly recall in the next section. 3.1 Lifted Cover and (1,d)-Configuration Inequalities For a R n >0 and b R >0, let P(a, b) def = conv x {0, 1}n : n a j x j b j=1 denote the knapsack polytope. A subset C N is called a cover if a j > b; a cover C is minimal if C \ {s} is not a cover for all s C. For a cover C, the cover inequality x j C 1 (8)

4 is valid for P(a, b); moreover, if C is a minimal cover, then (8) defines a facet of P C (a, b) def = P(a, b) {x R n : x j = 0, j N \ C}. A pair (H, z) is called a (1, d)-configuration [12] if H N, z N \ H, and 2 d H are such that j H a j b; H {z} is a minimal cover for every H H with H = d. If (H, z) is a (1, d)-configuration, the inequality x j + ( H d + 1)x z H j H defines a facet of P H {z} (a, b). Lifting of inequalities is a key issue in branch-and-cut. It allows one to strengthen an inequality by calculating non-zero coefficients for variables that initially are not present. For a formal definition and general results about lifting see [18]. The lifted cover and (1,d)-configuration inequalities are automatically generated by the solver we have used. For the precedence-constrained knapsack polytope, a straightforward generalization of minimal covers, the so-called minimal induced covers, has been investigated, see e.g. [5,13,17]. By analogy, we introduce the induced cover inequalities for the SALB polytope. Two tasks j 1, j 2 N are called incomparable if both (j 1, j 2 ) E and (j 2, j 1 ) E. A set W N is called incomparable if the elements in W are pairwise incomparable. To each station k M corresponds a knapsack given by the inequality j T k t j x kj CT k. We say that C T k is a minimal induced cover (MIC) [5] if C is incomparable, t j x kj > CT k, \{s} t jx kj CT k for all s C. Here C def = {j N : j j 1 for some j 1 C}. Let C N be a MIC for knapsack k. Then the inequality x kj x ij C 1. is valid for the SALB polytope. \C i S j : i<k 3.2 Cycle Inequalities The class of cycle inequalities was introduced in [8] for the GAP polytope. Since we are not aware of a separation algorithm for this class, we describe here a separation heuristic for the subclass of cycle inequalities with cycles of length 4.

5 Given two tasks u and v; assume that t u t v. Let C k and C l be covers of the knapsacks k and l resp. such that: a) u, v C k, b) u C l, v C l, c) C k C l = {u}. Then x kj + x lj C k + C l 3 (9) k l {v} is a valid inequality for the SALB polytope [8]. 4-Cycle Heuristic Choose two knapsacks k, l M, and two items u, v T k T l such that, for the point x = [x ij ] to be separated, all four values x ku, x lu, x kv, x lv are greater than zero. Assume that t u t v. Compute a minimal cover C k of the knapsack j T k \{u,v} t jx lj CT l t u t v by solving min (1 x kj ) : t j CT k t u t v + 1. (10) C T k \{u,v} Set C k = C k {u, v}. Compute a minimal cover C l of the knapsack j T l \C k t j x lj CT k t u by solving min (1 x lj ) : t j CT k t u + 1. (11) C T l \C k Set C l = C l {u}. If both covers C k and C l exist, lift inequality (9) using the procedure described in section 3.4; otherwise, return failure. 3.3 Extended Cover and Heterogeneous Two-Cover Inequalities Let C be a cover with respect to some knapsack k M, and D N \C be such that D {i} is a cover of knapsack l M \ {k}, for all i C. Then the extended cover inequality kj + x lj ) + (x x lj C + D 1 j D is valid for the multiple knapsack polytope [6]. Consider two knapsacks k, l M, k l. Assume that C T k is a cover with respect to knapsack k, and let D be a subset of T l \ C such that for all D D and C C with C = D, the set (C \ C ) D is a cover for knapsack l. Then the heterogeneous two-cover inequality x kj + ( C 1)x lj C ( C 1) D is valid for the multiple knapsack polytope [6]. For separation of extended cover and heterogeneous two-cover inequalities, we use the heuristics described in [6].

6 3.4 A General Lifting Procedure Let Ā A and (i,j) Ā α ij x ij β (12) be a valid inequality for P SALB. For (i 0, j 0 ) A \ Ā, the inequality α i0j 0 x i0j 0 + α ij x ij β (13) (i,j) Ā if valid for P SALB if the coefficient α i0j 0 is computed by the following procedure: Lifting Heuristic Let A = Ā. For (i, j) Ā, if j = j 0, or i 0 < i and (j, j 0 ) E, or i 0 > i and (j 0, j) E, exclude (i, j) from A. For each i M, generate a permutation π i = (π1 i,...,πi n i ) of the elements of T i, n i = T i ; for s = 2,...,n i, compute s s vi,s π def = max y j : y {0, 1} s, t π i j y j CT i. (14) j=1 j=1 Solve the optimization problem γ = max (i,j) A α ij z ij z ij 1, j N, i: (i,j) A vi,s π, s = 2,...,n i; i M, z iπi j 1 j s, (i,πj i) A z ij {0, 1}, (i, j) A. (15) and set α i0j 0 = β γ. Note that both optimization problems (14) and (15) can be solved in polynomial time. Problem (14) is a special type of knapsack problem and can be solved efficiently by dynamic programming. Problem (15) is a special case of the weighted matroid intersection problem [11]. In fact, it can also be reduced to the minimum cost maximum flow problem, see e.g. [2]. 4 Constraint Programming Model Our CP formulation of the SALB problem is based on the cumulative constraint [1]. The basic version of cumulative can be defined as follows.

7 There are n tasks; task j is characterized by three parameters, which can be either domain variables or values: the starting time start j, the duration dur j, and the amount res j of some resource consumed by the task. We are also given the completion time e for all the tasks, and the upper bound v on the resource consumption; e and v again are domain variables or values. The global constraint cumulative([[start 1, dur 1, res 1 ],..., [start n, dur n, res n ]], v, e) is satisfied if the following conditions hold: res j v, t = 1,...,e, 1 j n : start j t<start j+dur j max (start j + dur j ) e. 1 j n In addition to the n given tasks, we introduce m artificial tasks numbered n + 1,...,n + m def = n; for CT max = max i M CT i, let S n+i = {i}, t n+i = CT max CT i, i M. Each task j {1,...,n + m} is associated with a triple (start j, dur j, res j ) of domain variables, where start j = i if task j is assigned to station i, dur j = 1, res j = t j. Now the CP model can be stated as follows: start j S j, j = 1,...,n, Variables: dur j {1}, j = 1,...,n, res j {t j }, j = 1,...,n. cumulative([[start 1, dur 1, res 1 ],...,[start n, dur n, res n ]], Constraints: CT max, m + 1); start j1 start j2, (j 1, j 2 ) E. 5 Combining IP and CP 5.1 Reducing the Problem Size The size of the IP and CP model described before can be reduced as follows. In a first step, we build the CP model and do propagation, but without labeling. Let S j denotes the domain of start j after propagation, and let T i = {j : i S j }. The IP model is obtained by imposing the constraints (1) (4) for these reduced sets S j and T i. In a second step, we do propagation by combining both solvers. Iteratively, for each task j N, we perform the following operations: Minimize i S j i x ij subject to the constraints (1) (4) using cut generation, but without branching. Let γ 1 denote the objective value returned by the solver. For i S j and i < γ 1, set x ij = 0 and remove i from the domain of start j.

8 Maximize i S j i x ij under the constraints (1) (4) using cut generation, but without branching. Let γ 2 denote the objective value returned by the solver. For i S j and i > γ 2, set x ij = 0 and remove i from the domain of start j. Initiate propagation for the CP problem. For q N, if i is not in the domain of start q, set x iq = Propagation and Rounding Off LP solutions After reducing the problem size, we can use both solvers, IP or CP, to continue. If we decide to use the CP solver, there is no further interaction with the IP solver. If we use the IP solver, we propose the following cooperation between IP and CP. Assume that S j, for j N, is the domain of start j after preprocessing. For these sets S j, consider the IP problem (6),(1) (4). Propagation for subproblems. The IP procedure starts processing a node of the branch-and-cut tree by calling the CP solver in the following way. For the LP subproblem at this node, let d ij, d+ ij {0, 1} denote the current lower and upper bounds of the variables x ij. For j N, set S j = {i : d + ij = 1}. For these sets S j, build the CP problem and do propagation. At the end, let d + ij = 0 for those i S j that are not in the domain of start j. Rounding of LP solutions. Let x = [x ij ] be a solution of some LP subproblem. For j N, define S j = {i : x ij > 0}, build the CP model, and run labeling for a limited amount of time, trying to find a feasible solution. 6 Empirical Results This paper describes ongoing work. Therefore, we can give only preliminary empirical results. These are based on a selection of benchmarks from the data sets in [16]. For these examples, the cycle time CT is the same for all stations, i.e., CT = CT i, i M. The computational experiments were done on a Pentium III 600 MHz using the CHIP C Library [3] and the branch-and-cut code developed by the second author. We compare two versions of the problem reduction heuristics described in Sect The first version generates cuts only when computing an initial feasible LP solution. All other LP problems are solved without generating cuts (except standard lifted cover and (1, d)-configuration cuts, which are automatically produced by the IP solver). The second version generates all the different cuts for all LP problems. We measure the quality of a problem reduction strategy by the sum of the cardinalities of the sets S j upon termination of the procedure. These values are given in the last three columns of Table 1 for CP alone, CP and LP with standard cuts, and finally for CP and LP with all cuts.

9 Instance # tasks Cycle # stations Initial After After LP with name n time CT m size CP standard cuts all cuts Sawyer Sawyer Gunther Gunther Lutz Lutz Warnecke Warnecke Tonge Table 1. Reducing problem size Next we give in Table 2 the total running times for the hybrid solver described in Sect. 5.2 including problem reduction by CP propagation. Instance CP Cut Total name prop. gener. sol. time time time Sawyer30 (47-7) Sawyer30 (28-12) Gunther (54-9) Gunther (44-12) Lutz3 (118-14) Lutz3 (74-23) Warnecke (155-10) Warnecke (73-22) : Tonge70 (251-14) 1: : : Table 2. Running time in min:sec Note that neither the CP nor the IP solver alone are able to solve, for example, problem Warnecke (73-22) in less than one hour of running time. 7 Conclusion and Further Research Current computational experience does not allow us to tell whether CP and IP, alone or in cooperation, are able to solve to optimality the unsolved instances of the simple assembly line balancing problem in the data sets from [16]. Further research and implementation work is necessary to answer this question, in particular when the precedence relations are not tight.

10 While this is an interesting theoretical question, the main impact of this work is practical. The hybrid IP/CP solver described in this paper may become a platform for modeling and solving assembly line problems with all kind of side constraints, which are typical for real-world industrial applications. References 1. A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex scheduling and placement problems. Mathl. Comput. Modelling, 17(7):57 73, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows : theory, algorithms and applications. Prentice Hall, N. Beldiceanu, H. Simonis, Ph. Kay, and P. Chan. The CHIP system, A. Bockmayr and T. Kasper. Branch-and-infer: A unifying framework for integer and finite domain constraint programming. INFORMS J. Computing, 10(3): , E. A. Boyd. Polyhedral results for the precedence-constrained knapsack problem. Discrete Appl. Math., 41(3): , C. E. Ferreira, A. Martin, and R. Weismantel. Solving multiple knapsack problems by cutting planes. SIAM J. Optim., 6(3): , F. Focacci, A. Lodi, and M. Milano. Cutting planes in constraint programming: A hybrid approach. In Principles and Practice of Constraint Programming, CP 2000, Singapore, pages Springer, LNCS 1894, E. S. Gottlieb and M. R. Rao. The generalized assignment problem: Valid inequalities and facets. Math. Program., Ser. A, 46(1):31 52, S. Heipcke. Combined modelling and problem solving in mathematical programming and constraint programming. PhD thesis, Univ. Buckingham, J. N. Hooker, G. Ottosson, E. S. Thorsteinsson, and H.-J. Kim. On integrating constraint propagation and linear programming for combinatorial optimization. In Sixteenth National Conference on Artificial Intelligence, AAAI 99, B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. Springer, M. W. Padberg. (1,k)-configurations and facets for packing problems. Math. Program., 18:94 99, K. Park and S. Park. Lifting cover inequalities for the precedence-constrained knapsack problem. Discrete Appl. Math., 72(3): , P. Refalo. Linear formulation of constraint programming models and hybrid solvers. In Principles and Practice of Constraint Programming, CP 2000, Singapore, pages Springer, LNCS 1894, R. Rodosek, M. G. Wallace, and M. T. Hajian. A new approach to integrating mixed integer programming and constraint logic programming. Annals of Operations Research, 86:63 87, A. Scholl. Balancing and sequencing of assembly lines, 2., rev. ed. Physica-Verl., R. L. M. J. van de Leensel, C. P. M. van Hoesel, and J. J. van de Klundert. Lifting valid inequalities for the precedence constrained knapsack problem. Math. Program., 86(1): , L. Wolsey. Integer programming. Wiley, 1998.

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition

More information

A Constraint Programming based Column Generation Approach to Nurse Rostering Problems

A Constraint Programming based Column Generation Approach to Nurse Rostering Problems Abstract A Constraint Programming based Column Generation Approach to Nurse Rostering Problems Fang He and Rong Qu The Automated Scheduling, Optimisation and Planning (ASAP) Group School of Computer Science,

More information

Integrating Benders decomposition within Constraint Programming

Integrating Benders decomposition within Constraint Programming Integrating Benders decomposition within Constraint Programming Hadrien Cambazard, Narendra Jussien email: {hcambaza,jussien}@emn.fr École des Mines de Nantes, LINA CNRS FRE 2729 4 rue Alfred Kastler BP

More information

Scheduling Shop Scheduling. Tim Nieberg

Scheduling Shop Scheduling. Tim Nieberg Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations

More information

A Tool for Generating Partition Schedules of Multiprocessor Systems

A Tool for Generating Partition Schedules of Multiprocessor Systems A Tool for Generating Partition Schedules of Multiprocessor Systems Hans-Joachim Goltz and Norbert Pieth Fraunhofer FIRST, Berlin, Germany {hans-joachim.goltz,nobert.pieth}@first.fraunhofer.de Abstract.

More information

Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows

Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows TECHNISCHE UNIVERSITEIT EINDHOVEN Branch-and-Price Approach to the Vehicle Routing Problem with Time Windows Lloyd A. Fasting May 2014 Supervisors: dr. M. Firat dr.ir. M.A.A. Boon J. van Twist MSc. Contents

More information

INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models

INTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models Integer Programming INTEGER PROGRAMMING In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is

More information

Discrete Optimization

Discrete Optimization Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.1-4.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 2015-03-31 Todays presentation Chapter 3 Transforms using

More information

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

More information

In this paper we present a branch-and-cut algorithm for

In this paper we present a branch-and-cut algorithm for SOLVING A TRUCK DISPATCHING SCHEDULING PROBLEM USING BRANCH-AND-CUT ROBERT E. BIXBY Rice University, Houston, Texas EVA K. LEE Georgia Institute of Technology, Atlanta, Georgia (Received September 1994;

More information

Linear Programming. March 14, 2014

Linear Programming. March 14, 2014 Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

More information

A Column-Generation and Branch-and-Cut Approach to the Bandwidth-Packing Problem

A Column-Generation and Branch-and-Cut Approach to the Bandwidth-Packing Problem [J. Res. Natl. Inst. Stand. Technol. 111, 161-185 (2006)] A Column-Generation and Branch-and-Cut Approach to the Bandwidth-Packing Problem Volume 111 Number 2 March-April 2006 Christine Villa and Karla

More information

Scheduling of Mixed Batch-Continuous Production Lines

Scheduling of Mixed Batch-Continuous Production Lines Université Catholique de Louvain Faculté des Sciences Appliquées Scheduling of Mixed Batch-Continuous Production Lines Thèse présentée en vue de l obtention du grade de Docteur en Sciences Appliquées par

More information

A Global Constraint for Bin-Packing with Precedences: Application to the Assembly Line Balancing Problem.

A Global Constraint for Bin-Packing with Precedences: Application to the Assembly Line Balancing Problem. A Global Constraint for Bin-Packing with Precedences: Application to the Assembly Line Balancing Problem. Pierre Schaus and Yves Deville Department of Computing Science and Engineering, University of Louvain,

More information

Nan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA

Nan Kong, Andrew J. Schaefer. Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA A Factor 1 2 Approximation Algorithm for Two-Stage Stochastic Matching Problems Nan Kong, Andrew J. Schaefer Department of Industrial Engineering, Univeristy of Pittsburgh, PA 15261, USA Abstract We introduce

More information

Branch and Cut for TSP

Branch and Cut for TSP Branch and Cut for TSP jla,jc@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark 1 Branch-and-Cut for TSP Branch-and-Cut is a general technique applicable e.g. to solve symmetric

More information

Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach

Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach MASTER S THESIS Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branch-and-bound approach PAULINE ALDENVIK MIRJAM SCHIERSCHER Department of Mathematical

More information

24. The Branch and Bound Method

24. The Branch and Bound Method 24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

More information

CHAPTER 9. Integer Programming

CHAPTER 9. Integer Programming CHAPTER 9 Integer Programming An integer linear program (ILP) is, by definition, a linear program with the additional constraint that all variables take integer values: (9.1) max c T x s t Ax b and x integral

More information

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams

Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery

More information

Clustering and scheduling maintenance tasks over time

Clustering and scheduling maintenance tasks over time Clustering and scheduling maintenance tasks over time Per Kreuger 2008-04-29 SICS Technical Report T2008:09 Abstract We report results on a maintenance scheduling problem. The problem consists of allocating

More information

Collinear Points in Permutations

Collinear Points in Permutations Collinear Points in Permutations Joshua N. Cooper Courant Institute of Mathematics New York University, New York, NY József Solymosi Department of Mathematics University of British Columbia, Vancouver,

More information

Mathematical finance and linear programming (optimization)

Mathematical finance and linear programming (optimization) Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may

More information

Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

More information

Lecture 10 Scheduling 1

Lecture 10 Scheduling 1 Lecture 10 Scheduling 1 Transportation Models -1- large variety of models due to the many modes of transportation roads railroad shipping airlines as a consequence different type of equipment and resources

More information

What is Linear Programming?

What is Linear Programming? Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NP-Completeness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms

More information

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling

Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one

More information

5.1 Bipartite Matching

5.1 Bipartite Matching CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson

More information

Key words. Mixed-integer programming, mixing sets, convex hull descriptions, lot-sizing.

Key words. Mixed-integer programming, mixing sets, convex hull descriptions, lot-sizing. MIXING SETS LINKED BY BI-DIRECTED PATHS MARCO DI SUMMA AND LAURENCE A. WOLSEY Abstract. Recently there has been considerable research on simple mixed-integer sets, called mixing sets, and closely related

More information

A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem

A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem A Branch and Bound Algorithm for Solving the Binary Bi-level Linear Programming Problem John Karlof and Peter Hocking Mathematics and Statistics Department University of North Carolina Wilmington Wilmington,

More information

How To Solve The Line Connectivity Problem In Polynomatix

How To Solve The Line Connectivity Problem In Polynomatix Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany RALF BORNDÖRFER MARIKA NEUMANN MARC E. PFETSCH The Line Connectivity Problem Supported by the DFG Research

More information

Dantzig-Wolfe bound and Dantzig-Wolfe cookbook

Dantzig-Wolfe bound and Dantzig-Wolfe cookbook Dantzig-Wolfe bound and Dantzig-Wolfe cookbook thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline LP strength of the Dantzig-Wolfe The exercise from last week... The Dantzig-Wolfe

More information

The Problem of Scheduling Technicians and Interventions in a Telecommunications Company

The Problem of Scheduling Technicians and Interventions in a Telecommunications Company The Problem of Scheduling Technicians and Interventions in a Telecommunications Company Sérgio Garcia Panzo Dongala November 2008 Abstract In 2007 the challenge organized by the French Society of Operational

More information

Modeling and Solving the Capacitated Vehicle Routing Problem on Trees

Modeling and Solving the Capacitated Vehicle Routing Problem on Trees in The Vehicle Routing Problem: Latest Advances and New Challenges Modeling and Solving the Capacitated Vehicle Routing Problem on Trees Bala Chandran 1 and S. Raghavan 2 1 Department of Industrial Engineering

More information

Randomization Approaches for Network Revenue Management with Customer Choice Behavior

Randomization Approaches for Network Revenue Management with Customer Choice Behavior Randomization Approaches for Network Revenue Management with Customer Choice Behavior Sumit Kunnumkal Indian School of Business, Gachibowli, Hyderabad, 500032, India sumit kunnumkal@isb.edu March 9, 2011

More information

Two objective functions for a real life Split Delivery Vehicle Routing Problem

Two objective functions for a real life Split Delivery Vehicle Routing Problem International Conference on Industrial Engineering and Systems Management IESM 2011 May 25 - May 27 METZ - FRANCE Two objective functions for a real life Split Delivery Vehicle Routing Problem Marc Uldry

More information

Models in Transportation. Tim Nieberg

Models in Transportation. Tim Nieberg Models in Transportation Tim Nieberg Transportation Models large variety of models due to the many modes of transportation roads railroad shipping airlines as a consequence different type of equipment

More information

ARTICLE IN PRESS. European Journal of Operational Research xxx (2004) xxx xxx. Discrete Optimization. Nan Kong, Andrew J.

ARTICLE IN PRESS. European Journal of Operational Research xxx (2004) xxx xxx. Discrete Optimization. Nan Kong, Andrew J. A factor 1 European Journal of Operational Research xxx (00) xxx xxx Discrete Optimization approximation algorithm for two-stage stochastic matching problems Nan Kong, Andrew J. Schaefer * Department of

More information

A Mathematical Programming Solution to the Mars Express Memory Dumping Problem

A Mathematical Programming Solution to the Mars Express Memory Dumping Problem A Mathematical Programming Solution to the Mars Express Memory Dumping Problem Giovanni Righini and Emanuele Tresoldi Dipartimento di Tecnologie dell Informazione Università degli Studi di Milano Via Bramante

More information

A Constraint Programming Application for Rotating Workforce Scheduling

A Constraint Programming Application for Rotating Workforce Scheduling A Constraint Programming Application for Rotating Workforce Scheduling Markus Triska and Nysret Musliu Database and Artificial Intelligence Group Vienna University of Technology {triska,musliu}@dbai.tuwien.ac.at

More information

Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

More information

Linear Programming. April 12, 2005

Linear Programming. April 12, 2005 Linear Programming April 1, 005 Parts of this were adapted from Chapter 9 of i Introduction to Algorithms (Second Edition) /i by Cormen, Leiserson, Rivest and Stein. 1 What is linear programming? The first

More information

Minimally Infeasible Set Partitioning Problems with Balanced Constraints

Minimally Infeasible Set Partitioning Problems with Balanced Constraints Minimally Infeasible Set Partitioning Problems with alanced Constraints Michele Conforti, Marco Di Summa, Giacomo Zambelli January, 2005 Revised February, 2006 Abstract We study properties of systems of

More information

Duality of linear conic problems

Duality of linear conic problems Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

More information

Proximal mapping via network optimization

Proximal mapping via network optimization L. Vandenberghe EE236C (Spring 23-4) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:

More information

Linear Programming I

Linear Programming I Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

More information

Optimal Scheduling for Dependent Details Processing Using MS Excel Solver

Optimal Scheduling for Dependent Details Processing Using MS Excel Solver BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 8, No 2 Sofia 2008 Optimal Scheduling for Dependent Details Processing Using MS Excel Solver Daniela Borissova Institute of

More information

Routing in Line Planning for Public Transport

Routing in Line Planning for Public Transport Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany MARC E. PFETSCH RALF BORNDÖRFER Routing in Line Planning for Public Transport Supported by the DFG Research

More information

3.1 Solving Systems Using Tables and Graphs

3.1 Solving Systems Using Tables and Graphs Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

More information

Transportation Polytopes: a Twenty year Update

Transportation Polytopes: a Twenty year Update Transportation Polytopes: a Twenty year Update Jesús Antonio De Loera University of California, Davis Based on various papers joint with R. Hemmecke, E.Kim, F. Liu, U. Rothblum, F. Santos, S. Onn, R. Yoshida,

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;

More information

Noncommercial Software for Mixed-Integer Linear Programming

Noncommercial Software for Mixed-Integer Linear Programming Noncommercial Software for Mixed-Integer Linear Programming J. T. Linderoth T. K. Ralphs December, 2004. Revised: January, 2005. Abstract We present an overview of noncommercial software tools for the

More information

Largest Fixed-Aspect, Axis-Aligned Rectangle

Largest Fixed-Aspect, Axis-Aligned Rectangle Largest Fixed-Aspect, Axis-Aligned Rectangle David Eberly Geometric Tools, LLC http://www.geometrictools.com/ Copyright c 1998-2016. All Rights Reserved. Created: February 21, 2004 Last Modified: February

More information

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and

More information

A new Branch-and-Price Algorithm for the Traveling Tournament Problem (TTP) Column Generation 2008, Aussois, France

A new Branch-and-Price Algorithm for the Traveling Tournament Problem (TTP) Column Generation 2008, Aussois, France A new Branch-and-Price Algorithm for the Traveling Tournament Problem (TTP) Column Generation 2008, Aussois, France Stefan Irnich 1 sirnich@or.rwth-aachen.de RWTH Aachen University Deutsche Post Endowed

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm. Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three

More information

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.

! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm. Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of

More information

Planning and Scheduling in the Digital Factory

Planning and Scheduling in the Digital Factory Institute for Computer Science and Control Hungarian Academy of Sciences Berlin, May 7, 2014 1 Why "digital"? 2 Some Planning and Scheduling problems 3 Planning for "one-of-a-kind" products 4 Scheduling

More information

Definition 11.1. Given a graph G on n vertices, we define the following quantities:

Definition 11.1. Given a graph G on n vertices, we define the following quantities: Lecture 11 The Lovász ϑ Function 11.1 Perfect graphs We begin with some background on perfect graphs. graphs. First, we define some quantities on Definition 11.1. Given a graph G on n vertices, we define

More information

3. Linear Programming and Polyhedral Combinatorics

3. Linear Programming and Polyhedral Combinatorics Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the

More information

R u t c o r Research R e p o r t. A Method to Schedule Both Transportation and Production at the Same Time in a Special FMS.

R u t c o r Research R e p o r t. A Method to Schedule Both Transportation and Production at the Same Time in a Special FMS. R u t c o r Research R e p o r t A Method to Schedule Both Transportation and Production at the Same Time in a Special FMS Navid Hashemian a Béla Vizvári b RRR 3-2011, February 21, 2011 RUTCOR Rutgers

More information

Basic Components of an LP:

Basic Components of an LP: 1 Linear Programming Optimization is an important and fascinating area of management science and operations research. It helps to do less work, but gain more. Linear programming (LP) is a central topic

More information

How To Design A Supply Chain For A New Market Opportunity

How To Design A Supply Chain For A New Market Opportunity int. j. prod. res., 01 June 2004, vol. 42, no. 11, 2197 2206 Strategic capacity planning in supply chain design for a new market opportunity SATYAVEER S. CHAUHANy, RAKESH NAGIz and JEAN-MARIE PROTHy* This

More information

CSC2420 Spring 2015: Lecture 3

CSC2420 Spring 2015: Lecture 3 CSC2420 Spring 2015: Lecture 3 Allan Borodin January 22, 2015 1 / 1 Announcements and todays agenda Assignment 1 due next Thursday. I may add one or two additional questions today or tomorrow. Todays agenda

More information

Duplicating and its Applications in Batch Scheduling

Duplicating and its Applications in Batch Scheduling Duplicating and its Applications in Batch Scheduling Yuzhong Zhang 1 Chunsong Bai 1 Shouyang Wang 2 1 College of Operations Research and Management Sciences Qufu Normal University, Shandong 276826, China

More information

Formulation of simple workforce skill constraints in assembly line balancing models

Formulation of simple workforce skill constraints in assembly line balancing models Ŕ periodica polytechnica Social and Management Sciences 19/1 (2011) 43 50 doi: 10.3311/pp.so.2011-1.06 web: http:// www.pp.bme.hu/ so c Periodica Polytechnica 2011 Formulation of simple workforce skill

More information

Primal-Dual Schema for Capacitated Covering Problems

Primal-Dual Schema for Capacitated Covering Problems Primal-Dual Schema for Capacitated Covering Problems Tim Carnes and David Shmoys Cornell University, Ithaca NY 14853, USA Abstract. Primal-dual algorithms have played an integral role in recent developments

More information

Scheduling Parallel Jobs with Linear Speedup

Scheduling Parallel Jobs with Linear Speedup Scheduling Parallel Jobs with Linear Speedup Alexander Grigoriev and Marc Uetz Maastricht University, Quantitative Economics, P.O.Box 616, 6200 MD Maastricht, The Netherlands. Email: {a.grigoriev,m.uetz}@ke.unimaas.nl

More information

On a Railway Maintenance Scheduling Problem with Customer Costs and Multi-Depots

On a Railway Maintenance Scheduling Problem with Customer Costs and Multi-Depots Als Manuskript gedruckt Technische Universität Dresden Herausgeber: Der Rektor On a Railway Maintenance Scheduling Problem with Customer Costs and Multi-Depots F. Heinicke (1), A. Simroth (1), G. Scheithauer

More information

JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004

JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004 Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUST-IN-TIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February

More information

On the Capacitated Vehicle Routing Problem

On the Capacitated Vehicle Routing Problem On the Capacitated Vehicle Routing Problem T.K. Ralphs, L. Kopman, W.R. Pulleyblank, and L.E. Trotter, Jr. Revised December 17, 2001 Abstract We consider the Vehicle Routing Problem, in which a fixed fleet

More information

Scheduling Algorithm with Optimization of Employee Satisfaction

Scheduling Algorithm with Optimization of Employee Satisfaction Washington University in St. Louis Scheduling Algorithm with Optimization of Employee Satisfaction by Philip I. Thomas Senior Design Project http : //students.cec.wustl.edu/ pit1/ Advised By Associate

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

arxiv:1203.1525v1 [math.co] 7 Mar 2012

arxiv:1203.1525v1 [math.co] 7 Mar 2012 Constructing subset partition graphs with strong adjacency and end-point count properties Nicolai Hähnle haehnle@math.tu-berlin.de arxiv:1203.1525v1 [math.co] 7 Mar 2012 March 8, 2012 Abstract Kim defined

More information

EXCEL SOLVER TUTORIAL

EXCEL SOLVER TUTORIAL ENGR62/MS&E111 Autumn 2003 2004 Prof. Ben Van Roy October 1, 2003 EXCEL SOLVER TUTORIAL This tutorial will introduce you to some essential features of Excel and its plug-in, Solver, that we will be using

More information

Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing

Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing Multi-layer MPLS Network Design: the Impact of Statistical Multiplexing Pietro Belotti, Antonio Capone, Giuliana Carello, Federico Malucelli Tepper School of Business, Carnegie Mellon University, Pittsburgh

More information

2007/26. A tighter continuous time formulation for the cyclic scheduling of a mixed plant

2007/26. A tighter continuous time formulation for the cyclic scheduling of a mixed plant CORE DISCUSSION PAPER 2007/26 A tighter continuous time formulation for the cyclic scheduling of a mixed plant Yves Pochet 1, François Warichet 2 March 2007 Abstract In this paper, based on the cyclic

More information

Single machine parallel batch scheduling with unbounded capacity

Single machine parallel batch scheduling with unbounded capacity Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University

More information

Thorsten Bonato. Contraction-based Separation and Lifting for Solving the Max-Cut Problem

Thorsten Bonato. Contraction-based Separation and Lifting for Solving the Max-Cut Problem Thorsten Bonato Contraction-based Separation and Lifting for Solving the Max-Cut Problem Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this

More information

Minimizing costs for transport buyers using integer programming and column generation. Eser Esirgen

Minimizing costs for transport buyers using integer programming and column generation. Eser Esirgen MASTER STHESIS Minimizing costs for transport buyers using integer programming and column generation Eser Esirgen DepartmentofMathematicalSciences CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

More information

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued. Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.

More information

Cost Efficient Network Synthesis from Leased Lines

Cost Efficient Network Synthesis from Leased Lines Konrad-Zuse-Zentrum für Informationstechnik Berlin Takustraße 7 D-14195 Berlin-Dahlem Germany DIMITRIS ALEVRAS ROLAND WESSÄLY MARTIN GRÖTSCHEL Cost Efficient Network Synthesis from Leased Lines Preprint

More information

Alternative Job-Shop Scheduling For Proton Therapy

Alternative Job-Shop Scheduling For Proton Therapy Alternative Job-Shop Scheduling For Proton Therapy Cyrille Dejemeppe ICTEAM, Université Catholique de Louvain (UCLouvain), Belgium, cyrille.dejemeppe@uclouvain.be Director: Yves Deville (ICTEAM, UCLouvain)

More information

Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints

Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Olivier Beaumont,, Paul Renaud-Goud Inria & University of Bordeaux Bordeaux, France 9th Scheduling for Large Scale Systems

More information

Logic Cuts Generation in a Branch and Cut Framework for Location Problems Mara A. Osorio Lama School of Computer Science Autonomous University of Puebla, Puebla 72560 Mexico Rosalba Mujica Garca Abstract

More information

Introduction & Overview

Introduction & Overview ID2204: Constraint Programming Introduction & Overview Lecture 01, Christian Schulte cschulte@kth.se Software and Computer Systems School of Information and Communication Technology KTH Royal Institute

More information

Minkowski Sum of Polytopes Defined by Their Vertices

Minkowski Sum of Polytopes Defined by Their Vertices Minkowski Sum of Polytopes Defined by Their Vertices Vincent Delos, Denis Teissandier To cite this version: Vincent Delos, Denis Teissandier. Minkowski Sum of Polytopes Defined by Their Vertices. Journal

More information

A Network Flow Approach in Cloud Computing

A Network Flow Approach in Cloud Computing 1 A Network Flow Approach in Cloud Computing Soheil Feizi, Amy Zhang, Muriel Médard RLE at MIT Abstract In this paper, by using network flow principles, we propose algorithms to address various challenges

More information

Optimization Modeling for Mining Engineers

Optimization Modeling for Mining Engineers Optimization Modeling for Mining Engineers Alexandra M. Newman Division of Economics and Business Slide 1 Colorado School of Mines Seminar Outline Linear Programming Integer Linear Programming Slide 2

More information

Resource Optimization of Spatial TDMA in Ad Hoc Radio Networks: A Column Generation Approach

Resource Optimization of Spatial TDMA in Ad Hoc Radio Networks: A Column Generation Approach Resource Optimization of Spatial TDMA in Ad Hoc Radio Networks: A Column Generation Approach Patrik Björklund, Peter Värbrand and Di Yuan Department of Science and Technology, Linköping University SE-601

More information

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and

More information

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction

COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH. 1. Introduction COMBINATORIAL PROPERTIES OF THE HIGMAN-SIMS GRAPH ZACHARY ABEL 1. Introduction In this survey we discuss properties of the Higman-Sims graph, which has 100 vertices, 1100 edges, and is 22 regular. In fact

More information

An Interactive Train Scheduling Tool for Solving and Plotting Running Maps

An Interactive Train Scheduling Tool for Solving and Plotting Running Maps An Interactive Train Scheduling Tool for Solving and Plotting Running Maps F. Barber 1, M.A. Salido 2, L. Ingolotti 1, M. Abril 1, A. Lova 3, P. Tormos 3 1 DSIC, 3 DEIOAC, Universidad Politécnica de Valencia,

More information

Multiple Spanning Tree Protocol (MSTP), Multi Spreading And Network Optimization Model

Multiple Spanning Tree Protocol (MSTP), Multi Spreading And Network Optimization Model Load Balancing of Telecommunication Networks based on Multiple Spanning Trees Dorabella Santos Amaro de Sousa Filipe Alvelos Instituto de Telecomunicações 3810-193 Aveiro, Portugal dorabella@av.it.pt Instituto

More information

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that

More information

11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS 11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005

More information

HYBRID GENETIC ALGORITHMS FOR SCHEDULING ADVERTISEMENTS ON A WEB PAGE

HYBRID GENETIC ALGORITHMS FOR SCHEDULING ADVERTISEMENTS ON A WEB PAGE HYBRID GENETIC ALGORITHMS FOR SCHEDULING ADVERTISEMENTS ON A WEB PAGE Subodha Kumar University of Washington subodha@u.washington.edu Varghese S. Jacob University of Texas at Dallas vjacob@utdallas.edu

More information

New Exact Solution Approaches for the Split Delivery Vehicle Routing Problem

New Exact Solution Approaches for the Split Delivery Vehicle Routing Problem New Exact Solution Approaches for the Split Delivery Vehicle Routing Problem Gizem Ozbaygin, Oya Karasan and Hande Yaman Department of Industrial Engineering, Bilkent University, Ankara, Turkey ozbaygin,

More information

On the Unique Games Conjecture

On the Unique Games Conjecture On the Unique Games Conjecture Antonios Angelakis National Technical University of Athens June 16, 2015 Antonios Angelakis (NTUA) Theory of Computation June 16, 2015 1 / 20 Overview 1 Introduction 2 Preliminary

More information