Impacts of Large-scale Wind and Solar Power Integration on California s Net Electrical Load

Size: px
Start display at page:

Download "Impacts of Large-scale Wind and Solar Power Integration on California s Net Electrical Load"

Transcription

1 Impacts of Large-scale Wind and Solar Power Integration on California s Net Electrical Load Hamid Shaker a,, Hamidreza Zareipour a, David Wood a a Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada, T2N1N4 Abstract Integration of wind- and solar-based generation into the electric grid has significantly grown over the past decade and is expected to grow to unprecedented levels in coming years. Several jurisdictions have set high targets for renewable energy integration. While electric grid operators have managed the variable and nondispatchable nature of wind and solar power at current levels, large-scale integration of these resources would pose new challenges. In particular, the variable nature of wind and solar may lead to new electric grid operation and planning procedures. Net load in electric grids is defined as the conventional load minus the nondispatchable generation. Net load is the basis of operation planning in day-today delivery of electricity to the consumers. With large-scale integration of wind and solar power, the net load in the system would be significantly affected. In this paper, we focus on characteristics of net load in electric grids when a large amount of wind and solar power generation is integrated into the grid. We use Corresponding author address: hshakera@ucalgary.ca (Hamid Shaker) Preprint submitted to Elsevier April 19, 2016

2 the data from California s power system. California intends to produce 33% of its electricity from renewable resources by 2020, 80% of which is expected to come from wind and solar power. We use both historical data and simulated scenarios of future wind and solar power generation. For future scenarios, we use the data provided by National Renewable Energy Laboratory to generate wind and solar power integration scenarios for years 2018 and The simulated net load data are analyzed from a variety of perspectives, such as, average daily shapes, load and net load factor, duration curves, volatility, and hourly ramps. The results showed that compared to conventional load, characteristics of net load would be significantly different and need to be taken into account when designing measures and mechanisms for operating electric grids with high penetration of renewables. Keywords: Net load; variable generation; large-scale wind and solar integration; California renewable energy portfolio. 1. Introduction California s renewable portfolio standard mandates the state to supply 33% of its electric energy demand through renewables by 2020 [1]. It is expected that 80% of the mandate to come from solar and wind power [2]. The three main investor owned utilities in California, i.e., Pacific Gas and Electric, San Diego Gas and Electric and Southern California Edison, collectively supplied 22.7% of their retail electricity through renewables in 2013 [1]. This indicates that the utilities are working to meet the mandate. The increasing trend in large-scale integration of renewables, in particular, 2

3 wind and solar power, is universal. In 2014, the cumulative global installed wind capacity reached 370 GW, which had nearly a 250 GW increase compared to 2008 [3]. The cumulative global wind capacity is higher than the total installed generation capacity of Japan, the third largest power system in the world [4]. China and the USA have the highest wind capacity by reaching GW and 65.9 GW in 2014, respectively [3]. Among the United States, California power system with nearly 6 GW wind power capacity ranks second after Texas with about 16.5 GW [5]. Solar Photovoltaic (PV) power generation capacity also increased substantially over the past few years. Global solar PV capacity has grown from 1.3 GW in year 2000 to GW at the end of 2013 [6]. According to the International Energy Agency (IEA), solar power could potentially provide one third of the global final energy demand after 2060 [7]. In the USA, on average, the annual solar capacity has grown more than 40% since 2006 [8]. California is the leader in the United States. Only in 2013 California installed 2,746 MW of new solar power capacity, nearly half of the total United States new solar PV installations [9]. By mid 2014, nearly 8 GW of solar PV had received environmental permits to come online in California [2, 10]. The current integration trends indicate an inevitable major role for wind and solar in future power systems. However, both wind and solar are known to be nondispatchable or variable generation sources for the most part. Operation planning in conventional power systems has been based on a forecast of future load, an understanding of the random variations in the load, and the chances of major con- 3

4 tingencies in the supply system. With the large-scale integration of wind and solar generators, a new source of uncertainty is added to the operation planning problem. Wind and solar generators are often treated as non-dispatchable units that inject power to the grid when available. Thus, in systems with substantial wind and solar power sources, net load, i.e., the non-dispatchable generation subtracted from the conventional load becomes the new planning measure. The inherent variability of the wind and solar power, however, makes the net load time series a more volatile one compared to the conventional load time series. The higher variability and less predictability of the net load induces more cycling of the conventional units, which causes more wear-and-tear and higher maintenance costs [11]. In [12], the challenges of significant wind and solar integration were categorized in their low capacity credit, reduced utilization of dispatchable plants, and overproduced generation. It was mentioned that a system with a higher proportion of generators which are incapable of rapid entry and exit to the electricity market can face more challenges when low or negative net load appears. Moreover, high wind and solar power generation would decrease the average utilization and therefore the life-cycle generation of the dispatchable units. This increases the generation costs of supplying the net load [12]. This could potentially result in losing revenue and in extreme cases bankruptcy of those units. The concept of net load and the challenges that may arise from its variability has been discussed in the literature. In particular, a number of studies on evaluating and modelling the flexibility requirements of power systems with high penetration of renewables have considered net load [13, 14, 15, 16, 17, 18, 19]. 4

5 It is argued in [13] that with the current level of wind and solar power, the conventional load variations still makes the highest source of variability and uncertainty in power systems. However, higher wind and solar penetrations along with adaptation of smart grid technologies, such as demand response, will significantly increase the variability and uncertainty of the net load. In [14], flexibility requirements of large-scale variable generation were quantified based on simulated values of onshore wind and solar PV power production in 27 European countries. It is shown in [14] that increasing wind and solar power generation above a 30% share in annual electricity consumption will significantly increase flexibility requirements. It is suggested in [15] that in order to decrease the costs associated with the increased variability of net load in future power systems, new market designs with flexible ramping capability may become a necessity. Flexible ramping refers to the ability of the system to ramp up/down the generation or load to stabilize system frequency. In [16], using an insufficient ramp resource expectation algorithm, the flexibility requirements for a system with high variability in the net load were quantified. Transmission network constraints were considered in [17] to assess the flexibility of a power system based on the variability of the net load data. Furthermore, the work in [18] proposed a new power system planning model by considering large integration of renewable energy sources and the corresponding required flexibility of dispatchable generation units. It has been observed that with more wind capacity in the system, a part of the base-load generation units is replaced by mid-load and peak-load generation units due to decrease of the total net load and increasing its volatility. Finally, in [19], flexibility requirements 5

6 of high wind and solar PV integrated power system of Germany were analyzed considering both production flexibility of conventional power plants and storage. The results showed that high penetration of variable generation does not decrease the peak net load much. However, the equivalent full load hours decrease significantly. The occurrence of hours with zero or negative net load also increases. Moreover, their results suggested that combination of wind and solar PV production leads to less storage requirement compared to only wind power generation. Storage is one of the options to cope with the challenges of renewable power generation. The benefits of energy storage in providing system flexibility and controlling negative net load situations have been investigated in a number of studies [19, 20, 21, 22, 23, 24]. It was found that energy storage can reduce cycling of conventional power plants and improve the efficiency of power system [21]. Reference [22] provided a comprehensive analysis by combining a simulation of the impacts of future variable renewables on net load with a focus on surplusrelated storage requirements in Germany. The author concluded that renewable surpluses can be minimized by decreasing must-run requirements. The storage requirement would also decrease if power curtailment and demand response were utilized. Furthermore, storage in distribution systems in Germany was analyzed in [23]. The results suggested that in the current situation storage may not be economically viable. However, in high penetration levels storage could be one of the options to ensure system security. In fact, an adequate mix of technical initiatives, load shifting and demand side management, and energy storage are required for high penetration of renewables [24]. 6

7 In other research works, the net load time series has been the basis for building unit commitment studies [25, 26, 27, 20], studying the market impact of a price-maker wind unit [28], determining the optimal level of reserves [29], and managing systems with large numbers of electric vehicles [30]. Despite the increasing importance of understanding how the system net load and its characteristics would change as the share of renewables grows, the literature focusing on this topic is limited. In [31], the annual and seasonal changes of load duration curves after integrating renewable resources, mainly biomass, has been studied. In this work, less than 5% of renewable generation capacity comes from wind and solar power. Moreover, there are several studies carried out by the industry on impacts of large-scale wind and solar power integration on power systems. Examples include the Eastern wind integration study [32], the Western wind and solar integration study [33], the California power system study [34, 35, 36], the Nova Scotia renewable integration study [37] and the New England wind integration study [38]. While net load has been the basis of such studies, neither has particularly focused on characteristics of the net load time series. The objective of the current work is analyzing the impacts of large-scale wind and solar power integration on the characteristics of net load time series. Based on a range of wind and solar integration scenarios generated for the case of California s power system, we study the impacts of renewables on the following aspects: Average hourly values, Load and net load factor 7

8 Load and net load duration curves, Load and net load volatilities, Hourly ramps. The main contribution of this paper is to provide an in-depth discussion on how the net load characteristics would deviate from what power systems are accustomed to today and highlight the challenges that large-scale integration of these two resources may impose to power systems. Understanding those deviations would be necessary for power system operators to plan and adjust their operation strategies, procedures and policies to ensure power system security and reliability with presence of large-scale wind and solar power. The rest of the paper is organized as follows. The description of net load definition and the data is discussed in Section 2. Methodologies for future generation scenarios are provided in Section 3. Section 4 focuses on the assessment of the net load from different perspectives. Finally, the paper ends with the conclusions in Section Background and Data In this section, first we provide a generic definition for net load. We also provide a description of the data that has been used in this study Net Load Definition Assume the value of the conventional load at time interval t is L t, and the value of negawatt at time interval t to be NG t. The value of net load at time t is 8

9 defined as NL t = L t NG t. (1) Typical examples of negawatt include the non-disptachable power generated by wind, solar or small of-the-river hydro facilities [26, 25, 16, 14, 15, 31, 39]. For example, in Alberta s electricity market, wind power plants do not bid in the market and inject their available power to the system. The system operator treats them as negative load in scheduling practices [40]. However, in some studies, the non-conventional load in the system (e.g., electric vehicle fleet load [30] or the import/export [13]) has been deducted from the conventional system load to determine system net load Description of the Data In order to analyze the effect of large-scale wind and solar on the net load, we have used the historical hourly load data [41], and wind and solar power generation data [42] of the California power system from year 2000 to the end of year These data contain the gradual growth of wind and solar power integration over this period. According to the California ISO website [43], California s power system had 60,703 MW of installed capacity with a recorded peak demand of 50,270 MW by January The year 2013 historical data shows a peak solar PV generation of 2,830 MW and peak wind generation of 4,215 MW. These numbers are relatively small compared to the peak load at this year, i.e., 44,924 MW. However, meeting the 33% renewable goal of year 2020 would require a signifi- 9

10 cantly larger share of wind and solar generation capacity. To simulate larger levels of wind and solar power integration in California in the present study, we have used the data produced by the National Renewable Energy Laboratory (NREL), which is further discussed next. In the Western wind and solar integration study [33], NREL, in conjunction with a few other institutions such as GE Energy Consulting Group, performed a study to analyze the effect of integrating large amounts of wind and solar power into the Western US power systems. The first phase of this study investigated the benefits and challenges of integrating up to 35% wind and solar energy in the Western Interconnection, by The second phase evaluated the effect of wind and solar generation on wear-and-tear costs and emissions associated with cycling of fossil-fuelled generation fleet [44]. Over the course of these studies, two datasets have been developed for wind and solar generation [45, 46]. These datasets are both simulated data, validated against some real-life weather data. The Western wind dataset is for the years 2004 to 2006 with a 10-minute resolution. The surface covering the Western interconnection power system was modelled with a resolution of 2 km 2 km grids, and 32,043 locations were selected across the modelled surface. Each grid point was estimated to hold ten Vestas V90 3 MW wind turbines. For the selected grid points, simulated wind speed data, and accordingly wind power, were generated [45, 47]. The solar dataset was created for year 2006 and has the resolution of 5 minutes. It consists of 6,000 simulated PV plants. Potential solar plants have been detected, and simulated solar power generation for the plants were created [46]. 10

11 We use the actual data of year 2013 for our analysis. In addition, we use the NREL datasets to build two sets of scenarios, one for year 2018 and the other for year 2023, with 5-year intervals from year The NREL dataset only has solar data for year 2006, and for consistency, we also use the wind data of the NREL dataset for year In addition, actual system load of 2006 is used as the base for creating the load scenarios for years 2018 and This is because there is an inherent correlation between weather conditions, wind/solar generation and electrical load in a power system. Thus, the load, wind, and solar data of the same year have been used. Further details on how the wind, solar, and load scenarios are generated are provided next. 3. Generated Simulated Data Scenarios In this section, and based on the data described in the previous section, the generated simulated load, wind power, solar power, and net load scenarios are discussed The Load Scenarios We have used the latest publicly available report on load forecast for California as the basis for our future load scenarios [48]. This report covers the period of year 2012 to Table 1 summarizes the non-coincident peak load of years 2006, 2018, and 2023 for low, medium, and high load growth rates. The peak load scenarios for year 2023 in this table are extrapolated based on business as usual load growth following year 2022 load forecast. 11

12 Table 1: Historical and forecasts of California non-coincident peak load. Forecast (MW) Increase over 2006 (%) Year Actual (MW) Low Medium High Low Medium High , ,500 67,500 69, ,200 71,500 74, To limit the number of scenarios in this study, we only use the medium growth case. Load scenarios for years 2018 and 2023 are generated by scaling up the hourly load values of year 2006 at the medium growth rates of Table 1, i.e., 5.47% and 11.72%, respectively. The two future load scenarios are referred to as L18 and L23 for years 2018 and 2023, respectively The Wind Power Production Scenarios The California power system has three major zones, namely NP15, ZP26 and SP15. These zones cover the north, central and southern parts of California, respectively. Zone SP15 covers parts of Nevada and Arizona too. These three zones are marked in Fig. 1. At the time of writing this paper, there were 2,823 MW of wind capacity in NP15 and 4,969 MW in SP15. ZP26 currently does not have any wind facilities [49]. Note that these numbers are the nameplate capacity of the facilities. Some of them are not fully operational at the time. We assumed that they would be fully operational by year In addition, the generation queue of California Independent System Operator (Cal-ISO) [50] shows 660 MW new wind capacity planned in the NP15 to be commissioned by the end of It also shows 3,036 MW new wind capacity for ZP26 and 1,270 MW new capacity in SP15. Although 12

13 Table 2: The existing capacity and the amount in the generation queue for wind plants in each zone or county for the California electric power system. County Zone Existing wind New wind cap. capacity (MW) in the queue (MW) NP15 2,823 SP15 4,969 Alameda NP15 Southwest 36 Kern ZP26 South 3,036 Riverside SP15 Centre 150 San Diego NP15 Southwest 419 Solano NP15 Centre 205 Baja California SP15 1,120 Sum (MW) 12,758 7,792 4,966 the generation queue only shows the list of projects under study or approval and it does not guarantee the projects to be online by the expected online date, it provides a reasonable indication of what will happen in the future. Hence, we have used the generation queue as the basis to build our future scenarios, i.e., we assume the generation queue will be fully realized. Table 2 summarizes the existing and future wind plants for each zone or county. It shows that currently California has 7,792 MW wind capacity and it is expected to add 4,966 MW new wind capacity by the end of year The data of Table 2 is used in the following sections to select appropriate places to represent the year 2018 and also year 2023 wind generation. The objective here is to select the sites in each zone or sub zone that represent the wind generation of future scenarios as closely as possible to the future expected situation in line with the generation queue. 13

14 Selecting Wind Power Plant Sites for Year 2018 Assuming that all of the existing and new wind facilities will be online by year 2018, there will be 3,483 MW capacity in NP15, 3,036 MW capacity in ZP26, and 6,239 MW in SP15. It will sum up to 12,758 MW of total wind generation capacity for year 2018, which we call it Scenario W18. There are no wind sites for ZP26 in the NREL wind dataset. To address this, the closest sites to the southern border of zone ZP26 will be considered as the ZP26 sites. The selected wind capacity is a multiplier of 30 MW. We chose 116 sites in NP15 and 309 sites in SP15, each with a capacity of 30 MW. These were the sites with better wind regimes. Figure 1 represents the location of all selected sites from the NREL dataset for year Selecting Wind Power Plant Sites for Year 2023 In order to study higher wind penetration levels, six scenarios have been developed for year The expected capacity grows by 4,966 MW over the period of years 2013 to For generating the year 2023 scenarios, we consider two cases for the capacity growth: one at a moderate level of 4,000 MW, and another one with an extreme growth of 8,000 MW. The second case is to observe an unexpected extreme growth in wind power installations and quantify the expected net load impacts. The resulting total wind capacity for the year 2023 is 16,750 MW and 20,750 MW, for the two cases. We consider three scenarios in terms of where the additional capacity will be located. Those three include: (i) the new capacity is equally distributed in NP15 and SP15; (ii) 75% of all new capacity is 14

15 44 NP15 SP15 42 Latitude [degrees] NP15 ZP26 34 SP Longitude [degrees] Figure Figure1: 1: Selected wind windsites sitesfor foryear year2018. located where the in NP15 additional and 25% capacity in SP15; will be and, located. (iii) 75% Those of all three new include: capacity (i) is the located new in capacity SP15 and is equally 25% is distributed located in NP15. in NP15 The and latter SP15; two (ii) cases 75% are of extreme all new capacity growth in is one located area in versus NP15 the and other, 25% and in SP15; would and, allow (iii) investigation 75% of all of new the capacity consequences is located of such in SP15 cases and on 25% net load. is located We name in NP15. these The scenarios latter two as W23M-EQ, cases are extreme W23M-NP, growth and in W23M-SP one area versus for the the case other, with and 16,750 would MW allow total investigation capacity and of W23E-EQ, the consequences W23E-NP, of and such W23E-SP cases on net for the load. case We with name 20,750 these MW scenarios total capacity, as W23M-EQ, respectively. W23M-NP, and 3.3. W23M-SP The Solar for the PV case Power with Production 16,750 MW Scenarios total capacity and W23E-EQ, W23E-NP, and W23E-SP for the case with 20,750 MW total capacity, respectively. Currently, the installed solar PV capacity in NP15, SP15, and ZP26 is, respectively, 1,257 MW, 3,108 MW and 26 MW [49]. The generation queue of Cal-ISO shows 12,160 MW new solar PV capacity under study to be added to the system 15

16 Table 3: The existing capacity and the amount in the generation queue for solar PV plants in each zone or country for the California electric power system. Country Zone Existing solar PV New solar PV cap. capacity (MW) in the queue (MW) NP15 1,257 1,008 SP15 3,108 ZP ,572 Arizona SP15 South 455 Nevada SP15 East 577 SP15 centre 2,960 SP15 South 1,731 SP15 West 857 Sum (MW) 16,551 4,391 12,160 by the end of year 2018 [50]. Similar to wind scenarios we have used this data to build the future scenarios. Table 3 summarizes the aggregated existing and expected solar PV plants for each zone. This information will be used to select appropriate locations to represent year 2018 and also year 2023 solar PV power generation. Assuming that all of the existing and new solar PV facilities will be online by year 2018, the expected total solar PV capacity in NP15, SP15, and ZP26 will be 2,265 MW, 8,656 MW and 4,598 MW, respectively. Moreover, the expected capacity additions in the areas in Nevada and Arizona that are within the Cal-ISO jurisdiction are 577 MW and 455 MW, respectively. Thus, the total solar PV generation capacity for year 2018 is expected to be 16,551 MW Selecting Solar Power Plant Sites for Year 2018 The NREL solar database [46] considers different solar plants with a variety of sizes from 4 MW to 200 MW capacity depending on the characteristics of the 16

17 44 42 NP15 ZP26 SP15 Latitude [degrees] Longitude [degrees] Figure 2: Selected solar PV sites for year modelled sites. It shows a total of 405 sites in California, 24 sites in Nevada, and 5 sites in Arizona, all within Cal-ISO jurisdiction. In each zone we have chosen the number of required sites from the candidate locations of that zone to reach the desired total solar PV capacity for year We refer to this scenario as S18. Since there is no certainty about the operation of any of the available locations in the future and since all of them have similar solar regimes, we have chosen the required sites randomly. The resulting total capacity in this scenario is 16,593 MW for year Figure 2 represents the locations of selected sites for this scenario. 17

18 Selecting Solar Power Plant Sites for Year 2023 Two scenarios for year 2023 were generated to evaluate the effect of increased solar PV capacity in this year. Removing the sites that were considered for year 2018, a total of 9,027 MW capacity would remain to be realized. Hence, we have divided this remaining capacity by two and made two additional scenarios for year The first one is built using half the remaining sites and has a total solar PV capacity of 21,137 MW. This would represent a moderate solar PV capacity increase, and is referred to as S23M. Considering that more than 12,000 MW solar PV was expected to come online over the pervious period of years 2013 to 2018, a 4,513 MW increase in the following five years could be considered moderate. The sites for this scenario are randomly selected from the remaining choices. The last scenario includes all of the possible solar PV plants from all of the considered zones. This leads to a total capacity of 25,620 MW and is referred to as S23E. This scenario is extremely optimistic, i.e., by the year 2023, all of the potentials solar power production sites are developed. This, of course, is not unrealistic considering the extreme solar PV growth over the past years in California and other places around the world The Net Load Scenarios Following the aforementioned scenarios for load, wind, and solar PV, there will be one net load scenario for year 2018 but 12 different net load scenarios for year A general description of the net load scenarios is provided in Table 4. Figure 3 summarizes the net load scenarios for year

19 Figure 3: The procedure of building net load scenarios using the NREL datasets for year The naming style of year 2023 net load scenarios is: (Solar growth symbol)(wind growth symbol)-(wind growth zonal ratio symbol). In this naming, symbols M and E represent the Moderate and Extreme growth rates for solar PV and wind, respectively. Wind growth zonal ratio symbol could be EQ, NP or SP as the equal wind growth rate, 75% new wind growth rate in NP15, and 75% new wind growth rate in SP15 zones, respectively. For example, Scenario EM-NP represents the extreme solar PV capacity and moderate wind capacity, where 75% of new wind installations over year 2018 are considered in zone NP15. 19

20 Table 4: Description of year 2023 net load scenarios. MM-EQ means moderate solar growth and extreme wind growth equally distributed between NP15 and SP15 over year Growth Rate Over Year 2018 New Wind Capacity Share (%) Scenario Name Solar Wind NP15 SP15 Net Load Solar Wind Moderate (M) Moderate (M) MM-EQ S23M W23M-EQ Moderate (M) Moderate (M) MM-NP S23M W23M-NP Moderate (M) Moderate (M) MM-SP S23M W23M-SP Extreme (E) Moderate (M) EM-EQ S23E W23M-EQ Extreme (E) Moderate (M) EM-NP S23E W23M-NP Extreme (E) Moderate (M) EM-SP S23E W23M-NP Moderate (M) Extreme (E) ME-EQ S23M W23E-EQ Moderate (M) Extreme (E) ME-NP S23M W23E-NP Moderate (M) Extreme (E) ME-SP S23M W23E-SP Extreme (E) Extreme (E) EE-EQ S23E W23E-EQ Extreme (E) Extreme (E) EE-NP S23E W23E-NP Extreme (E) Extreme (E) EE-SP S23E W23E-SP Table 5 summarizes the all employed scenarios in this study. In this table, energy penetration level is defined as the annual electricity energy generated by wind/solar facilities divided by the annual electrical load. The historical solar and wind capacities in this table are retrieved from [51]. The capacities in the table only include the large-scale renewable generation. We believe the developed wind and solar PV capacity growth scenarios over the period of years 2018 to 2023 are realistic. Based on Table 5, 1,922 MW of new solar PV capacity was added to the California s power system over one year from 2012 to This means that with the same rate, over a five year period capacity addition of 9,610 MW is possible. This is even lower than the extreme solar PV growth of year 2023 in scenarios starting with EM or EE. Moreover, the extreme wind power growth in our scenarios has 8,000 MW of new installations. This is equal to the annual average of 1,600 MW, which is not too unrealistic. Texas alone installed 2,760 MW of new wind capacity during year 2008 [5]. 20

21 Table 5: Summary of historical and future net load scenarios. Year/ Peak Capacity (MW) Capacity Penetration (%) Energy Penetration (%) Scenario Load (MW) Solar Wind Solar Wind Solar Wind Total , , , ,654 1,150 4, ,924 3,072 6, ,944 16,593 12, MM-EQ 56,081 21,137 16, MM-NP 56,081 21,137 16, MM-SP 56,081 21,137 16, EM-EQ 56,081 25,620 16, EM-NP 56,081 25,620 16, EM-SP 56,081 25,620 16, ME-EQ 56,081 21,137 20, ME-NP 56,081 21,137 20, ME-SP 56,081 21,137 20, EE-EQ 56,081 25,620 20, EE-NP 56,081 25,620 20, EE-SP 56,081 25,620 20, As Table 5 shows, all of year 2023 scenarios agree with the 33% renewable goal of year In other words, at least 33% 0.8 = 26.4% of total system load is supplied from wind and solar power in all of the year 2023 scenarios. Some of them, such as EE-EQ, EE-NP, and EE-SP represent very high energy penetration of wind and solar for extreme case analyses. The energy penetrations are calculated based on the assumption that all of the available energy is injected to the grid and no curtailment is used. As can be seen, in order to supply any amount of load from wind and solar, a much higher capacity of these resources is needed. For instance, Scenario EE-SP shows that for supplying 36.9% of load from wind and solar, a total capacity of 82.7% of these resources compared to the peak load is required. 21

22 4. Numerical Results and Discussions In this section, we analyze the developed net load scenarios from a number of viewpoints. Those include annual and seasonal average shapes, load and net load factors, load and net load duration curves, renewable energies curtailment potential, volatility, and hourly ramp analyses. While the specific discussions are based on the developed scenarios for California, the general directions and methodologies presented in the paper may be used to evaluate similar issues in other systems Daily Shoulder and Valley Hours: Load Versus Net Load In this section, we discuss the shape of net load time series, specifically looking at the valley and shoulder hours, based on annual and seasonal average hourly values. Figure 4 represents the annual average values of net load along with other variables for each hour of the day for the year 2018 and year 2023 scenarios. We have also presented the same values for the actual data of years 2012 and 2013 as references. In this figures, the left vertical axis represents the values of load and net load, whereas the right vertical axis measures wind and solar PV generation. We only bring the results for Scenario EE-NP for year However, other scenarios also presented similar features. As this figure shows, comparing the average hourly net load shape for year 2012 with 13.1% wind and solar capacity penetration to year 2023 with 82.7% in scenario EE-NP, a mid day valley is appearing and growing. For all four years, 22

23 # Load Net load Solar PV Wind Year 2012 # # Year 2013 # MW 2 1 MW Hour Hour # Year 2018 # # Year 2023-(EE-NP) # MW 2 1 MW Hour Hour Figure 4: Average annual values for each hour of the day in different years. the load has a morning ramp up that starts at around 5 am. This upward ramp continues until the daily peak load occurs and then the downward afternoon ramp starts. However, looking at the net load shape for years 2018 and 2023, a morning ramp down is forming when solar power generation grows. Thus, in the morning hours, the impact of solar generation on the average net load shape is dominant compared to wind power. The higher the solar capacity the deeper will the valley become. Compared to the shape of conventional load, a morning ramp down is new phenomenon for power system operators. Furthermore, the load and net load shapes are more alike during the night when wind blows and there is no solar PV 23

24 power generation. Hence, the overall impact of solar power on the net load shape is more significant than that of wind power. This is because the average hourly wind does not vary significantly over a day, whereas the opposite is the case for solar power generation. The new net load shape, i.e., a morning downward ramp and an evening upward ramp, would require new power systems operation strategies. Currently, the system is designed and operated such that enough capabilities for upward ramping in the morning hours and downward ramping in the evenings are available. Also, the dispatched units during the morning ramp would be needed for a longer part of the day as the load grows in the morning and is sustained during the day. However, with significant solar and wind power integration, the operators must plan for sufficient capability to ramp down in the morning and ramp up in the evening. Moreover, since the net load in the high penetration scenarios is generally lower than the load, conventional generators will be dispatched less often. This may limit the ramping capability available to the operators since fewer conventional units may find themselves in the merit order. Thus, the future operation strategies would need to be adjusted, for both system operators and generation companies, to ensure system security and economic sustainability. Another observation from Fig. 4 is that, on average, wind generation peaks at night time and drops to minimal levels around mid-day. On the other hand, solar generation peaks during the mid-day when the demand is also high. The opposite directions of wind and solar generation patterns result in a smoother net load shape and reduce the morning downward ramp and the evening upward 24

25 ramp. A smoother net load shape would be more desirable from a planning point of view because the available transmission and generation infrastructure would be more evenly utilized. Thus, simultaneous growth of wind and solar power mitigates some of the challenges associated with these intermittent resources. The balance between the wind and solar generation capacities are presented in Fig. 5 for Scenario MM-EQ as an example. It depicts the energy penetration level of wind and solar PV generation together for different load deciles. The decile penetration of wind and solar individually are not shown in the interests of brevity. The individual penetrations show the opposite behaviour for the wind and solar generation. Hence, as Fig. 5 shows, the opposite behaviour of wind and solar results in an almost flat penetration level for all load levels. This shows the benefit of simultaneous growth of wind and solar resources in the power system. Figure 6 presents the seasonal hourly average values for the load and net load in year We only bring Scenario MM-EQ as a representation since other scenarios behaved similarly. Comparing the four quarters, the upward and downward net load ramp is significantly higher is Q1 and Q4, i.e., from October to March. During the period of July to September, i.e., Q3, the net load ramps are the lowest, and the system would require the least ramping capability. On the other hand, comparing the load and net load patterns for the four quarters in Fig. 6 one can observe that the highest ramping capability for conventional load is required during Q3. This would call for revisiting the problem of maintenance scheduling in generation facilities. In particular, maintenance of units that provide the system with ramping may be shifted to Q3 when the system can spare some units. In 25

26 % 50% 60% 70% 80% 90% 100% Penetration (%) (MM-EQ) Year Figure 5: Total renewable penetration levels by load decile. general, the variations in the net load shapes in the four seasons would require alternative arrangements for providing the system with enough flexibility to deal with the upward and downward ramps during the day. In [30], the authors discuss how proper planning of electric vehicle charging could compensate the net load valley at times. An understanding of the net load shape variations would improve such plans and help the system in dealing with various issues, such as, high ramps and low net load at some periods Load Factor and Net Load Factor Load factor is an indication of how much load changes within a specific period, typically a year. The ideal load factor for cost and environmental considerations 26

27 # Year 2023-(EE-NP)-Q1 #10 4 Load Net load Solar PV Wind # Year 2023-(EE-NP)-Q2 # MW MW Hour Hour # Year 2023-(EE-NP)-Q3 #10 4 # Year 2023-(EE-NP)-Q4 # MW MW Hour Hour Figure 6: Quarterly average values for each hour of the day for Scenario EE-NP. is when the load is constant in all times [30]. Although wind and solar power have relatively similar capacity factors over different years, when their penetration increases, net load factor decreases significantly compared to the conventional load. For year 2013, the net load capacity factor was 2% lower than the load factor. However, the load factor of year 2018 is 6.7% lower than that of the conventional load. This decrease is even more for different scenarios of year Figure 7 represents the net load factors for the 12 scenarios of year 2023 along with the load factor without any wind and solar power in this year. Observe that the net load factor of year 2023 is 10-15% lower 27

28 60 50 Load/Net load factor (%) Load MM-EQ MM-NP MM-SP EM-EQ EM-NP EM-SP ME-EQ ME-NP ME-SP EE-EQ EE-NP EE-SP Figure 7: Load and net load factor of different scenarios for year than the load factor in different scenarios. In general, small net load factors are not favorable. Low net load factor means that the transmission and generation infrastructure will be under utilized during a large number of hours over a year. In particular, a big portion of the installed generating capacity will be offline or generating at the allowable minimum very often. This could increase the cycling cost of generators [21, 44] and their emissions, especially for slower thermal units [39]. This would also impact the economics of peaking generators significantly in competitive markets, and may lead to long-term system reliability concerns. 28

29 4.3. Duration Curves Figures 8(a) and 8(b) show load duration curves and net load duration curves of years 2013 to 2023, respectively. Duration curves show the variations without a timestamp. Scenario EE-NP is chosen as a representative of the 2023 scenarios. Similar to other cases, different scenarios exhibit similar patterns and thus only one of them are shown here. As Fig. 8 shows, since the renewable integration increases from year 2013 to year 2023, the net load duration curves move down compared to their corresponding load duration curves. For instance, for year 2023, the load duration curve in Fig. 8(a) is above those of the other years, whereas the net load duration curves in Fig. 8(b) for this year is below those of other years. Thus, the peak system net load has decreased as a result of high solar and wind power penetration. The expected peak load, not considering the renewables for year 2023 is 56 GW. The peak net load could be as low as 48 GW. However, the nearly 8 GW net load peak shaving comes from more than 40 GW of total wind and solar power installations. Thus, renewable capacity only contributes up to approximately one fifth of its capacity to peak net load shaving. One important observation from Fig. 8 is that low net load values are more frequent compared to the low load values. The minimum load was around 19 GW in year However, in year 2023, the net load is less than 19 GW over more than 3,000 hours. Thus, system operators will need to deal with low net load periods very often. In addition, observe from the figure that there will be several hours with a negative net load, i.e., the hours during which the generated renewable en- 29

30 MW MW MW MW # # (EE-NP) (EE-NP) # # Hours Hours (a) Hours Hours (b) Figure 8: Duration Curve s: a) Load; b) Net load (EE-NP) ergy would be more than system demand. Low and negative net load could lead to potentially challenging security, reliability, and economic sustainability issues. At very low demand, and to securely plan system operation, many units may be required to run at their minimum output to ensure system ramping requirements. Moreover, very low net loads result in difficulties in finding optimum schedules 30

31 for the dispatchable units [26]. Thus, running at minimum output is inefficient from the emissions and economics point of view. Negative net load would also require curtailment of renewable resources or may lead to negative electricity prices to encourage consumption and discourage generation. Hence, under high penetration of renewables, the full environmental benefits of wind and solar power may not be realized. Also, low or negative prices may force some of the peaking units out of business, which is a system reliability concern in the long-term [29]. For example, on June 16, 2013 between 2 pm and 3 pm, the wholesale electricity price of Germany fell to -100 e /MWh. At that time, solar and wind generators produced 28.9 GW of power, while the total generation was over 51 GW. Since the grid could not cope with more than 45 GW without becoming unstable, prices went negative to encourage cutbacks and protect the grid from overgenerating. The burden of this adjustment fell on gas-fired and coal power plants by decreasing their output to only about 10% of capacity. This means that these units were losing money on electricity generation [52]. The top 20 energy utilities in Europe were worth e 1 trillion in year At the end of year 2013 they were worth less than half of it. This decrease is due to the changes that wind and solar electricity generation brought into the grid [52]. In particular, Table 6 summarizes the total energy associated with the negative net loads for different scenarios for year The table also shows the number of hours in each scenario when negative net load occurs. Observe that the excess energy in the system could be as high as 149 GWh under high renewable penetration. 31

32 Comparing the renewable integration scenarios, the amount of excess energy in the system grows significantly for Scenarios EE-EQ, EE-NP, and EE-SP. The energy penetration levels for these scenarios are around 36% versus those of the others that are around 33%. This may indicate that renewable integration to a certain threshold level may pose significantly less challenges. This means that after such threshold, adding more renewables may not yield the same incremental value and needs to be carefully justified. Also, observe that among scenarios with the same total installed capacity, the ones with less wind power installations in the south, i.e., SP15, would lead to less excess energy. For example, the total wind capacity in Scenarios EE-EQ, EE-NP, and EE-SP is around 21 GW. However, Scenarios EE-NP, where 25% of the wind additions are in SP15 and the other 75% are in NP15, lead to significantly less excess energy. This point may be taken into account when providing incentives for wind power integration programs. The excess energy in the system may justify the integration of bulk electric energy storage. Energy storage can reduce cycling and improve the efficiency of the system as a whole trough significant operating cost savings [21]. At this time, California has mandated to have 1,325 MW of energy storage capacity by the end of 2020, which is the United States first energy storage mandate [53, 54] Volatility Volatility is a well-known index for measuring changes in a time series. It measures the standard deviation of changes in a time series over a specific time 32

33 Table 6: Energies associated with negative net loads in scenarios of year Scenario Hours with Negative Excess Energy Total Renewable Net Load (GWh) Energy Penetration (%) MM-EQ MM-NP MM-SP EM-EQ EM-NP EM-SP ME-EQ ME-NP ME-SP EE-EQ EE-NP EE-SP window. To calculate the volatility usually the logarithmic return of the time series over the time period h, denoted by r t,h is used, which is calculated by r t,h = ln( L t L t h ) = ln(l t ) ln(l t h ). (2) L t is the parameter being assessed at time t. Then, standard deviation of logarithmic returns over a time window T, denoted by σ h,t, is defined as the historical volatility and calculated by σ h,t = T t=1 (r t,h r T,h ) 2, (3) T 1 where r T,h is average of the logarithmic returns over T. Since electricity load follows daily and weekly periodicities, the return time series are highly correlated 33

34 and therefore, the time window T should be chosen short enough (e.g. 24 h) so as to have negligible return correlations [55]. Thus, the historical volatility for each studied day, denoted by σ h,24 (d), is calculated as σ h,24 (d) = 24 d t=1+24 (d 1) (r t,h r t,h (d)) (%), (4) where d stands for the studied day or period of time, and r t,h (d) is the logarithmic return s average over the specified day d. Considering hourly, daily, and weekly logarithmic returns, the averages of σ h,24 (d) over all studied days, i.e., σ 1,24, σ 24,24 and σ 168,24 are volatility indices. For instance, σ 1,24 quantifies the electricity load or any other time series changes from one hour to another during a day. Because in some cases we have very low or negative net loads and zero solar generation, volatility calculation results in very large amounts for those instances. Hence, we have assumed the floor of 1,000 MW for the time series for the purpose of volatility analysis. Table 7 summarizes the volatilities of load and net load over the studied years and scenarios. Although volatility of load, wind and solar PV do not change significantly over the years and different scenarios, it is clear from the figure that with increased level of wind or solar penetration, volatility of the net load notably increases compared to that of the load. For instance, σ 1,24 for the net load in year 2013 is 5%, which is very close to the load volatility, i.e., 4%. However, in year 2023, σ 1,24 of the net load is 2-3 times higher than the conventional load. In addition, daily and weekly volatilities of the net load could be up to eight times 34

Value of storage in providing balancing services for electricity generation systems with high wind penetration

Value of storage in providing balancing services for electricity generation systems with high wind penetration Journal of Power Sources 162 (2006) 949 953 Short communication Value of storage in providing balancing services for electricity generation systems with high wind penetration Mary Black, Goran Strbac 1

More information

2016 ERCOT System Planning Long-Term Hourly Peak Demand and Energy Forecast December 31, 2015

2016 ERCOT System Planning Long-Term Hourly Peak Demand and Energy Forecast December 31, 2015 2016 ERCOT System Planning Long-Term Hourly Peak Demand and Energy Forecast December 31, 2015 2015 Electric Reliability Council of Texas, Inc. All rights reserved. Long-Term Hourly Peak Demand and Energy

More information

ERCOT Analysis of the Impacts of the Clean Power Plan Final Rule Update

ERCOT Analysis of the Impacts of the Clean Power Plan Final Rule Update ERCOT Analysis of the Impacts of the Clean Power Plan Final Rule Update ERCOT Public October 16, 2015 ERCOT Analysis of the Impacts of the Clean Power Plan Final Rule Update In August 2015, the U.S. Environmental

More information

Overview of California Renewable Energy and Grid Infrastructure Policies, National and Global Trends

Overview of California Renewable Energy and Grid Infrastructure Policies, National and Global Trends Overview of California Renewable Energy and Grid Infrastructure Policies, National and Global Trends Angelina Galiteva Governor, California ISO, Founder Renewables 100 Policy Institute Paris, December

More information

Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2015

Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2015 June 2015 Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2015 This paper presents average values of levelized costs for generating technologies that

More information

Energy Storage for Renewable Integration

Energy Storage for Renewable Integration ESMAP-SAR-EAP Renewable Energy Training Program 2014 Energy Storage for Renewable Integration 24 th Apr 2014 Jerry Randall DNV GL Renewables Advisory, Bangkok 1 DNV GL 2013 SAFER, SMARTER, GREENER DNV

More information

Generation Expansion Planning under Wide-Scale RES Energy Penetration

Generation Expansion Planning under Wide-Scale RES Energy Penetration CENTRE FOR RENEWABLE ENERGY SOURCES AND SAVING Generation Expansion Planning under Wide-Scale RES Energy Penetration K. Tigas, J. Mantzaris, G. Giannakidis, C. Nakos, N. Sakellaridis Energy Systems Analysis

More information

Reasons for the drop of Swedish electricity prices

Reasons for the drop of Swedish electricity prices Reasons for the drop of Swedish electricity prices Project for Svensk Energi Dr. Lion Hirth Neon Neue Energieökonomik GmbH Karl-Marx-Platz 12, 12043 Berlin, Germany hirth@neon-energie.de Summary report

More information

UNITED STATES OF AMERICA BEFORE THE FEDERAL ENERGY REGULATORY COMMISSION. ) ) Reliability Technical Conference ) Docket No.

UNITED STATES OF AMERICA BEFORE THE FEDERAL ENERGY REGULATORY COMMISSION. ) ) Reliability Technical Conference ) Docket No. UNITED STATES OF AMERICA BEFORE THE FEDERAL ENERGY REGULATORY COMMISSION Reliability Technical Conference Docket No. AD14-9-000 REMARKS OF BRAD ALBERT GENERAL MANAGER, RESOURCE MANAGEMENT ARIZONA PUBLIC

More information

Natural Gas and Electricity Coordination Experiences and Challenges

Natural Gas and Electricity Coordination Experiences and Challenges 1 Natural Gas and Electricity Coordination Experiences and Challenges Challenges Facing the New England Power System Gordon van Welie, President and CEO, ISO New England 2015 IEEE Power & Energy Society

More information

Methodology for Merit Order Dispatch. Version 1.0

Methodology for Merit Order Dispatch. Version 1.0 Methodology for Merit Order Dispatch Version 1.0 25 th April 2011 TABLE OF CONTENTS 1. OBJECTIVES... 1 2. ROADMAP FOR IMPLEMENTATION... 1 3. DEFINITIONS... 3 4. OPERATIONS PLANNING... 3 4.1. General Considerations...

More information

Glossary of Terms Avoided Cost - Backfeed - Backup Generator - Backup Power - Base Rate or Fixed Charge Baseload Generation (Baseload Plant) -

Glossary of Terms Avoided Cost - Backfeed - Backup Generator - Backup Power - Base Rate or Fixed Charge Baseload Generation (Baseload Plant) - Glossary of Terms Avoided Cost - The incremental cost Flint Energies would pay for the next kilowatt-hour of power in the open marketplace for energy. Flint Energies Board of Directors sets this Avoided

More information

Renewable Energy and the Role of Energy Storage

Renewable Energy and the Role of Energy Storage Renewable Energy and the Role of Energy Storage Presented to: IEEE Power and Energy Society General Meeting Jim Croce President and CEO July 26, 2011 Presentation Agenda 1. Overview of energy storage applications

More information

Fiscal Year 2011 Resource Plan

Fiscal Year 2011 Resource Plan Salt River Project Fiscal Year 2011 Resource Plan Page 1 Last summer SRP hosted three resource planning workshops for a diverse group of stakeholders and customers to explain the planning process, discuss

More information

State of Renewables. US and state-level renewable energy adoption rates: 2008-2013

State of Renewables. US and state-level renewable energy adoption rates: 2008-2013 US and state-level renewable energy adoption rates: 2008-2013 Elena M. Krieger, PhD Physicians, Scientists & Engineers for Healthy Energy January 2014 1 Introduction While the United States power sector

More information

France Electricity Report for 2014

France Electricity Report for 2014 France Electricity Report for 2014 Press kit Contents 1. The consumption drop 6 2. The development of renewable energies 8 3. The fossil fuel power generation slump 9 4. The CO 2 emissions decrease 5.

More information

VOLATILITY AND DEVIATION OF DISTRIBUTED SOLAR

VOLATILITY AND DEVIATION OF DISTRIBUTED SOLAR VOLATILITY AND DEVIATION OF DISTRIBUTED SOLAR Andrew Goldstein Yale University 68 High Street New Haven, CT 06511 andrew.goldstein@yale.edu Alexander Thornton Shawn Kerrigan Locus Energy 657 Mission St.

More information

Preparatory Paper on Focal Areas to Support a Sustainable Energy System in the Electricity Sector

Preparatory Paper on Focal Areas to Support a Sustainable Energy System in the Electricity Sector Preparatory Paper on Focal Areas to Support a Sustainable Energy System in the Electricity Sector C. Agert, Th. Vogt EWE Research Centre NEXT ENERGY, Oldenburg, Germany corresponding author: Carsten.Agert@next-energy.de

More information

Emissions Comparison for a 20 MW Flywheel-based Frequency Regulation Power Plant

Emissions Comparison for a 20 MW Flywheel-based Frequency Regulation Power Plant Emissions Comparison for a 20 MW Flywheel-based Frequency Regulation Power Plant Beacon Power Corporation KEMA Project: BPCC.0003.001 May 18, 2007 Final Report with Updated Data Emissions Comparison for

More information

Tax Credit Extension: Impact on Renewables Investment and Emissions Outcomes

Tax Credit Extension: Impact on Renewables Investment and Emissions Outcomes CONCORD, MA - WASHINGTON, DC 47 Junction Square Drive Concord, MA 01742 978-369-5533 www.mjbradley.com MJB&A Issue Brief March 7, 2016 Tax Credit Extension: Impact on Renewables Investment and Emissions

More information

[Sent to Covered Activities and Resource Mapping working groups on Oct. 21, 2011.]

[Sent to Covered Activities and Resource Mapping working groups on Oct. 21, 2011.] 2040 and 2050 Acreage Needs for Renewable Generation Dave Vidaver, Electricity Analysis Office, California Energy Commission dvidaver@energy.state.ca.gov In order to inform the DRECP process, Energy Commission

More information

PROJECT FINANCIAL EVALUATION

PROJECT FINANCIAL EVALUATION Introduction to Financial Figures of Merit PROJECT FINANCIAL EVALUATION An investor, energy policy analyst, or developer may use a variety of figures of merit to evaluate the financial attractiveness of

More information

PIER FINAL PROJECT REPORT RESEARCH EVALUATION OF WIND GENERATION, SOLAR GENERATION, AND STORAGE IMPACT ON THE CALIFORNIA GRID

PIER FINAL PROJECT REPORT RESEARCH EVALUATION OF WIND GENERATION, SOLAR GENERATION, AND STORAGE IMPACT ON THE CALIFORNIA GRID RESEARCH EVALUATION OF WIND GENERATION, SOLAR GENERATION, AND STORAGE IMPACT ON THE CALIFORNIA GRID Arnold Schwarzenegger Governor Prepared For: California Energy Commission Public Interest Energy Research

More information

System-friendly wind power

System-friendly wind power System-friendly wind power Lion Hirth (neon) Simon Müller (IEA) BELEC 28 May 2015 hirth@neon-energie.de Seeking advice on power markets? Neon Neue Energieökonomik is a Berlin-based boutique consulting

More information

The Real Cost of Electrical Energy. Outline of Presentation

The Real Cost of Electrical Energy. Outline of Presentation 2 Outline of Presentation Data Sources Electricity Demand and Supply Cost to Meet Demand Profile Electricity Pricing Cost Impact of Dispatching Generation (Load Following) Simplifying Assumptions Electricity

More information

Impacts of large-scale solar and wind power production on the balance of the Swedish power system

Impacts of large-scale solar and wind power production on the balance of the Swedish power system Impacts of large-scale solar and wind power production on the balance of the Swedish power system Joakim Widén 1,*, Magnus Åberg 1, Dag Henning 2 1 Department of Engineering Sciences, Uppsala University,

More information

The Natural Gas-Electric Interface: Summary of Four Natural Gas-Electric Interdependency Assessments WIEB Staff November 30, 2012

The Natural Gas-Electric Interface: Summary of Four Natural Gas-Electric Interdependency Assessments WIEB Staff November 30, 2012 Introduction. The Natural Gas-Electric Interface: Summary of Four Natural Gas-Electric Interdependency Assessments WIEB Staff November 30, 2012 The increased reliance on natural gas as the primary fuel

More information

The Cost of Solar Power Variability

The Cost of Solar Power Variability The Cost of Solar Power Variability Abstract We compare the power spectra of a year of electricity generation data from the Nevada Solar One solar thermal plant, a Tucson Electric Power solar PV array,

More information

Summary of the Impact assessment for a 2030 climate and energy policy framework

Summary of the Impact assessment for a 2030 climate and energy policy framework Summary of the Impact assessment for a 2030 climate and energy policy framework Contents Overview a. Drivers of electricity prices b. Jobs and growth c. Trade d. Energy dependence A. Impact assessment

More information

Investigating a Higher Renewables Portfolio Standard in California

Investigating a Higher Renewables Portfolio Standard in California Investigating a Higher Renewables Portfolio Standard in California January 2014 Investigating a Higher Renewables Portfolio Standard in California January 2014 2013 Copyright. All Rights Reserved. Energy

More information

Flexible Capacity Planning for Renewable Integration CEF Topical White Paper Jeremy Hargreaves, Elaine Hart, Ryan Jones, Arne Olson E3

Flexible Capacity Planning for Renewable Integration CEF Topical White Paper Jeremy Hargreaves, Elaine Hart, Ryan Jones, Arne Olson E3 July 15, 2013 Flexible Capacity Planning for Renewable Integration CEF Topical White Paper Jeremy Hargreaves, Elaine Hart, Ryan Jones, Arne Olson E3 Problem Statement For California, meeting an economy-

More information

Smarter Energy: optimizing and integrating renewable energy resources

Smarter Energy: optimizing and integrating renewable energy resources IBM Sales and Distribution Energy & Utilities Thought Leadership White Paper Smarter Energy: optimizing and integrating renewable energy resources Enabling industrial-scale renewable energy generation

More information

Page 1 of 11. F u t u r e M e l b o u r n e C o m m i t t e e Agenda Item 7.1. Notice of Motion: Cr Wood, Renewable Energy Target 9 September 2014

Page 1 of 11. F u t u r e M e l b o u r n e C o m m i t t e e Agenda Item 7.1. Notice of Motion: Cr Wood, Renewable Energy Target 9 September 2014 Page 1 of 11 F u t u r e M e l b o u r n e C o m m i t t e e Agenda Item 7.1 Notice of Motion: Cr Wood, Renewable Energy Target 9 September 2014 Motion 1. That Council resolves that the Chair of the Environment

More information

DOES WIND KILL THE ENERGY ONLY MARKET?

DOES WIND KILL THE ENERGY ONLY MARKET? DOES WIND KILL THE ENERGY ONLY MARKET? Oliver Brown, Stephen Poletti, David Young University of Auckland Economic Paradox Low-carbon power system High cap cost low and very low variable costs eg. Wind,

More information

GB Electricity Market Summary

GB Electricity Market Summary GB Electricity Market Summary SECOND QUARTER 2014 APR TO JUN Recorded Levels of UK Generation by Fuel (based upon DECC Energy Trends & FUELHH data): GAS: 10.8GW WIND: 2.6GW AUGUST 2014 COAL: 10.1GW BIOMASS:

More information

Dealing with the rise of Renewables Investing in smart renewables. Felice Egidi Head of Regulatory&Antitrust Affairs Paris, July 2 nd 2014

Dealing with the rise of Renewables Investing in smart renewables. Felice Egidi Head of Regulatory&Antitrust Affairs Paris, July 2 nd 2014 Dealing with the rise of Renewables Investing in smart renewables Felice Egidi Head of Regulatory&Antitrust Affairs Paris, July 2 nd 2014 Summary RES worldwide Global Investments ($bln) Global Installed

More information

Storage Battery System Using Lithium ion Batteries

Storage Battery System Using Lithium ion Batteries Offices and schools Utilities / Renewable energy Storage Battery System Using Lithium ion Batteries Worldwide Expansion of Storage Battery System s Commercial Buildings Residential The Smart Energy System

More information

Advanced Electricity Storage Technologies Program. Smart Energy Storage (Trading as Ecoult) Final Public Report

Advanced Electricity Storage Technologies Program. Smart Energy Storage (Trading as Ecoult) Final Public Report Advanced Electricity Storage Technologies Program Smart Energy Storage (Trading as Ecoult) Final Public Report Introduction Ecoult, working with CSIRO as its principal subcontractor, was provided $1,825,440

More information

Offshore Wind: some of the Engineering Challenges Ahead

Offshore Wind: some of the Engineering Challenges Ahead Offshore Wind: some of the Engineering Challenges Ahead David Infield CDT in Wind Energy Systems Institute of Energy and Environment University of Strathclyde International context (from IPCC report) Greenhouse

More information

Quantifying flexibility markets

Quantifying flexibility markets Quantifying flexibility markets Marit van Hout Paul Koutstaal Ozge Ozdemir Ad Seebregts December 2014 ECN-E--14-039 Acknowledgement The authors would like to thank TenneT for its support of this project.

More information

COMMENTS OF THE SOLAR ALLIANCE NEW JERSEY INTERCONNECTION RULES APRIL 29 TH, 2011

COMMENTS OF THE SOLAR ALLIANCE NEW JERSEY INTERCONNECTION RULES APRIL 29 TH, 2011 COMMENTS OF THE SOLAR ALLIANCE NEW JERSEY INTERCONNECTION RULES APRIL 29 TH, 2011 I. Background The Solar Alliance is a group of approximately 30 of the largest photovoltaic (PV) solar development and

More information

California s Electricity Market. Overview

California s Electricity Market. Overview California s Electricity Market Law Seminar s International Tribal Energy and the California Market June 23, 2008 Denny Brown California Energy Commission Overview Role of the Energy Commission Electricity

More information

Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart

Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart Paul Denholm, Matthew O Connell, Gregory Brinkman, and Jennie Jorgenson National Renewable Energy Laboratory NREL is a national

More information

Tax Credit Incentives for Residential Solar Photovoltaic in Hawai i

Tax Credit Incentives for Residential Solar Photovoltaic in Hawai i Tax Credit Incentives for Residential Solar Photovoltaic in Hawai i February 11, 2013 The typical residential solar PV investment has an internal rate of return of 9% even without state tax credits. With

More information

Introduction to Ontario's Physical Markets

Introduction to Ontario's Physical Markets Introduction to Ontario's Physical Markets Introduction to Ontario s Physical Markets AN IESO MARKETPLACE TRAINING PUBLICATION This document has been prepared to assist in the IESO training of market

More information

CSP-gas hybrid plants: Cost effective and fully dispatchable integration of CSP into the electricity mix

CSP-gas hybrid plants: Cost effective and fully dispatchable integration of CSP into the electricity mix CSP-gas hybrid plants: Cost effective and fully dispatchable integration of CSP into the electricity mix Erik Zindel Director Marketing CSP (Power Block) Siemens AG PowerGen Europe 2012 Köln Messe, 12-14

More information

Energy and Consumer Impacts of EPA s Clean Power Plan. Prepared for the American Coalition for Clean Coal Electricity

Energy and Consumer Impacts of EPA s Clean Power Plan. Prepared for the American Coalition for Clean Coal Electricity Energy and Consumer Impacts of EPA s Clean Power Plan Prepared for the American Coalition for Clean Coal Electricity Contents Executive Summary Overview of the Clean Power Plan NERA Methodology Baseline

More information

Study of hybrid wind-hydro power plants operation and performance in the autonomous electricity system of Crete Island

Study of hybrid wind-hydro power plants operation and performance in the autonomous electricity system of Crete Island Study of hybrid wind-hydro power plants operation and performance in the autonomous electricity system of Crete Island J. S. ANAGNOSTOPOULOS and D. E. PAPANTONIS School of Mechanical Engineering National

More information

Solar Resource Measurement Importance. Wil Grady P.E. Southern California Edison Power Supply NREL PV Solar Resource Workshop Denver 2015

Solar Resource Measurement Importance. Wil Grady P.E. Southern California Edison Power Supply NREL PV Solar Resource Workshop Denver 2015 Solar Resource Measurement Importance Wil Grady P.E. Southern California Edison Power Supply NREL PV Solar Resource Workshop Denver 2015 1 Overview of SCE Large service territory 14 million residents 4.9

More information

Integrating End-User and Grid Focused Batteries and Long-Term Power-to-Gas Storage for Reaching a 100 % Renewable Energy Supply

Integrating End-User and Grid Focused Batteries and Long-Term Power-to-Gas Storage for Reaching a 100 % Renewable Energy Supply Integrating End-User and Grid Focused Batteries and Long-Term Power-to-Gas Storage for Reaching a 100 % Renewable Energy Supply M. Hlusiak, Ch. Breyer 7 th International Renewable Energy Storage Conference

More information

Short-term solar energy forecasting for network stability

Short-term solar energy forecasting for network stability Short-term solar energy forecasting for network stability Dependable Systems and Software Saarland University Germany What is this talk about? Photovoltaic energy production is an important part of the

More information

Cutting Australia s Carbon Abatement Costs with Nuclear Power

Cutting Australia s Carbon Abatement Costs with Nuclear Power Cutting Australia s Carbon Abatement Costs with Nuclear Power Martin Nicholson, October 2011 Abstract The Australian Government Treasury modelling of a carbon price shows that Australia must purchase the

More information

The Impact of Wind Power on Day-ahead Electricity Prices in the Netherlands

The Impact of Wind Power on Day-ahead Electricity Prices in the Netherlands The Impact of Wind Power on Day-ahead Electricity Prices in the Netherlands Frans Nieuwenhout #1, Arno Brand #2 # Energy research Centre of the Netherlands Westerduinweg 3, Petten, the Netherlands 1 nieuwenhout@ecn.nl

More information

Saving energy: bringing down Europe s energy prices

Saving energy: bringing down Europe s energy prices Saving energy: bringing down Europe s energy prices Saving energy: bringing down Europe s energy prices By: Dr. Edith Molenbroek, Prof. Dr. Kornelis Blok Date: May 2012 Project number: BUINL12344 Ecofys

More information

FRAUNHOFER INSTITUTE FOR SOLAR ENERGY SYSTEMS ISE

FRAUNHOFER INSTITUTE FOR SOLAR ENERGY SYSTEMS ISE FRAUNHOFER INSTITUTE FOR SOLAR ENERGY SYSTEMS ISE Power generation from renewable energy in Germany assessment of 2015 Prof. Dr. Bruno Burger Fraunhofer Institute for Solar Energy Systems ISE Freiburg,

More information

New York s Upstate Nuclear Power Plants Contribution to the State Economy

New York s Upstate Nuclear Power Plants Contribution to the State Economy New York s Upstate Nuclear Power Plants Contribution to the State Economy PREPARED FOR New York State IBEW Utility Labor Council Rochester Building and Construction Trades Council Central and Northern

More information

Energy Efficiency and Demand Response Programs in the United States

Energy Efficiency and Demand Response Programs in the United States Energy Efficiency and Demand Response Programs in the United States Structure, Operations, Accomplishments, Lessons Learned Claude Godin Director Energy Data Analytics Overview Introduction - Definitions

More information

Integrating Renewable Electricity on the Grid. A Report by the APS Panel on Public Affairs

Integrating Renewable Electricity on the Grid. A Report by the APS Panel on Public Affairs Integrating Renewable Electricity on the Grid A Report by the APS Panel on Public Affairs 2 Integrating Renewable Electricity on the Grid Executive Summary The United States has ample renewable energy

More information

Wind Power and District Heating

Wind Power and District Heating 1 Wind Power and District Heating New business opportunity for CHP systems: sale of balancing services Executive summary - Both wind power and Combined Heat and Power (CHP) can reduce the consumption of

More information

Study to Determine the Limit of Integrating Intermittent Renewable (wind and solar) Resources onto Pakistan's National Grid

Study to Determine the Limit of Integrating Intermittent Renewable (wind and solar) Resources onto Pakistan's National Grid Pakistan Study to Determine the Limit of Integrating Intermittent Renewable (wind and solar) Resources onto Pakistan's National Grid Final Report: Executive Summary - November 2015 for USAID Energy Policy

More information

Simulation of the Central European Market for Electrical Energy

Simulation of the Central European Market for Electrical Energy Simulation of the Central European Market for Electrical Energy T. Mirbach and H.-J. Haubrich RWTH Aachen University Institute of Power Systems and Power Economics Schinkelstr. 6, D-52056 Aachen, Germany

More information

GLOBAL RENEWABLE ENERGY MARKET OUTLOOK 2013

GLOBAL RENEWABLE ENERGY MARKET OUTLOOK 2013 GLOBAL RENEWABLE ENERGY MARKET OUTLOOK 213 FACT PACK GUY TURNER HEAD OF ECONOMICS AND COMMODITIES APRIL 26, 213 GLOBAL RENEWABLE ENERGY MARKET OUTLOOK, 26 APRIL 213 1 INTRODUCTION This year s Global Renewable

More information

Renewable Electricity and Liberalised Markets REALM. JOULE-III Project JOR3-CT98-0290 GREECE ACTION PLAN. By ICCS / NTUA K. Delkis

Renewable Electricity and Liberalised Markets REALM. JOULE-III Project JOR3-CT98-0290 GREECE ACTION PLAN. By ICCS / NTUA K. Delkis Renewable Electricity and Liberalised Markets REALM JOULE-III Project JOR3-CT98-0290 GREECE ACTION PLAN By ICCS / NTUA K. Delkis October 1999 INTRODUCTION AND BACKGROUND Background to Renewable Energy

More information

Appendix D: Electricity Price Forecast Preliminary Draft

Appendix D: Electricity Price Forecast Preliminary Draft Preliminary Draft Introduction... 1 Findings... 2 Approach and Assumptions... 5 Demand Growth... 5 Firm Capacity Standards... 6 Planning Reserve Margin Targets... 6 Firm Capacity Credit... 7 Existing Resources...

More information

Concepts and Experiences with Capacity Mechanisms

Concepts and Experiences with Capacity Mechanisms Concepts and Experiences with Capacity Mechanisms Manuel Baritaud, International Energy Agency Conference Capacity Mechanisms: Experiences in Various European Countries Bundesministerium fur Wirtschaft

More information

Public Service Company of Colorado 2 GW and 3 GW Wind Integration Cost Study

Public Service Company of Colorado 2 GW and 3 GW Wind Integration Cost Study Final Report: Public Service Company of Colorado 2 GW and 3 GW Wind Integration Cost Study Prepared by Xcel Energy Inc 1800 Larimer Street Suite 1400 Denver, Colorado 80202 Jeff Butler Regulatory Consultant

More information

NV Energy ISO Energy Imbalance Market Economic Assessment

NV Energy ISO Energy Imbalance Market Economic Assessment March 25, 2014 NV Energy ISO Energy Imbalance Market Economic Assessment NV Energy ISO Energy Imbalance Market Economic Assessment 2014 Copyright. All Rights Reserved. Energy and Environmental Economics,

More information

Final Report. Assessment of Wind/Solar Co-Located Generation in Texas. Submitted July 20, 2009 by

Final Report. Assessment of Wind/Solar Co-Located Generation in Texas. Submitted July 20, 2009 by Austin Energy City of Austin Solar America Cities U.S. Department of Energy Final Report Assessment of Wind/Solar Co-Located Generation in Texas Submitted July, 9 by Steven M. Wiese, Principal Elisabeth

More information

THE NET BENEFITS OF LOW AND NO-CARBON ELECTRICITY TECHNOLOGIES

THE NET BENEFITS OF LOW AND NO-CARBON ELECTRICITY TECHNOLOGIES GLOBAL ECONOMY & DEVELOPMENT WORKING PAPER 73 MAY 2014 Global Economy and Development at BROOKINGS THE NET BENEFITS OF LOW AND NO-CARBON ELECTRICITY TECHNOLOGIES Charles R. Frank, Jr. Global Economy and

More information

RENEWABLE ENERGY IN AUSTRALIA

RENEWABLE ENERGY IN AUSTRALIA RENEWABLE ENERGY IN AUSTRALIA Increasing electricity generation from renewable energy sources is one of the main strategies to reduce greenhouse emissions from the power sector. Australia has historically

More information

THE COSTS OF DECARBONISING ELECTRICITY GENERATION

THE COSTS OF DECARBONISING ELECTRICITY GENERATION THE COSTS OF DECARBONISING ELECTRICITY GENERATION This technical annex to Building a low-carbon economy presents further details on the analysis underlying the estimates of the costs of decarbonising the

More information

Demand Response Market Overview. Glossary of Demand Response Services

Demand Response Market Overview. Glossary of Demand Response Services Demand Response Market Overview Glossary of Demand Response Services Open Energi has partnered with Tarmac to provide Demand Response What s inside... Market Overview Balancing Electricity Supply and Demand

More information

RE-POWERING MARKETS Market design and regulation during the transition to low-carbon power systems

RE-POWERING MARKETS Market design and regulation during the transition to low-carbon power systems RE-POWERING MARKETS Market design and regulation during the transition to low-carbon power systems EC-IEA Roundtatble on electricity market design and regulation Brussels, 18 February 2016 Power markets

More information

An introduction to Value-at-Risk Learning Curve September 2003

An introduction to Value-at-Risk Learning Curve September 2003 An introduction to Value-at-Risk Learning Curve September 2003 Value-at-Risk The introduction of Value-at-Risk (VaR) as an accepted methodology for quantifying market risk is part of the evolution of risk

More information

Multi-Faceted Solution for Managing Flexibility with High Penetration of Renewable Resources

Multi-Faceted Solution for Managing Flexibility with High Penetration of Renewable Resources Multi-Faceted Solution for Managing Flexibility with High Penetration of Renewable Resources FERC Technical Conference Increasing RT & DA Market Efficiency Through Improved Software June 24 26, 2013 Nivad

More information

Wind and Energy Markets: A Case Study of Texas.

Wind and Energy Markets: A Case Study of Texas. Wind and Energy Markets: A Case Study of Texas. Ross Baldick Department of Electrical and Computer Engineering baldick@ece.utexas.edu The University of Texas at Austin May 21, 2010 1 Abstract Many jurisdictions

More information

An Introduction to Variable-Energy-Resource Integration Analysis Energy Exemplar October 2011

An Introduction to Variable-Energy-Resource Integration Analysis Energy Exemplar October 2011 An Introduction to Variable-Energy-Resource Integration Analysis Energy Exemplar October 2011 1. Introduction Increased Renewable Portfolio Standards (RPS) are being enacted at the state, provincial, and

More information

A Virtual Power Plant to balance wind energy - A Canadian Smart Grid Project. Number of customers

A Virtual Power Plant to balance wind energy - A Canadian Smart Grid Project. Number of customers PowerShift Atlantic will demonstrate one of the world s first virtual power plants designed to allow for more effective integration and balancing of wind power onto the power grid. The project is a collaborative

More information

Electricity Costs White Paper

Electricity Costs White Paper Electricity Costs White Paper ISO New England Inc. June 1, 2006 Table of Contents Executive Summary...1 Highlights of the Analysis...1 Components of Electricity Rates...2 Action Plan for Managing Electricity

More information

FINDING YOUR CHEAPEST WAY TO A LOW CARBON FUTURE. The Danish Levelized Cost of Energy Calculator

FINDING YOUR CHEAPEST WAY TO A LOW CARBON FUTURE. The Danish Levelized Cost of Energy Calculator FINDING YOUR CHEAPEST WAY TO A LOW CARBON FUTURE The Danish Levelized Cost of Energy Calculator Low carbon transition is a multifaceted challenge involving political, technical and economic elements. Denmark

More information

Electricity Insight NEW ZEALAND S ENERGY OUTLOOK. Preview of key insights: Exploring the uncertainty in future electricity demand and supply

Electricity Insight NEW ZEALAND S ENERGY OUTLOOK. Preview of key insights: Exploring the uncertainty in future electricity demand and supply NEW ZEALAND S ENERGY OUTLOOK Electricity Insight Exploring the uncertainty in future electricity demand and supply Preview of key insights: Lower demand growth and excess supply should put strong downward

More information

Boiler efficiency for community heating in SAP

Boiler efficiency for community heating in SAP Technical Papers supporting SAP 2009 Boiler efficiency for community heating in SAP Reference no. STP09/B06 Date last amended 26 March 2009 Date originated 28 May 2008 Author(s) John Hayton and Alan Shiret,

More information

DR Resources for Energy and Ancillary Services

DR Resources for Energy and Ancillary Services DR Resources for Energy and Ancillary Services Marissa Hummon, PhD CMU Energy Seminar Carnegie Mellon University, Pittsburgh, Pennsylvania April 9, 2014 NREL/PR-6A20-61814 NREL is a national laboratory

More information

sink asset load power pool ISO pool participant bids operating constraints ancillary service declarations

sink asset load power pool ISO pool participant bids operating constraints ancillary service declarations G1 DEFINITIONS In the ISO rules: acceptable operational reason means with respect to a source asset, any one or more of the following: i) a circumstance related to the operation of the generating asset

More information

PJM Renewable Integration Study

PJM Renewable Integration Study GE Energy Consulting PJM Renewable Integration Study Executive Summary Report Revision 03 Prepared for: PJM Interconnection, LLC. Prepared by: General Electric International, Inc. February 28, 2014 Legal

More information

Modeling the US Natural Gas Network

Modeling the US Natural Gas Network Modeling the US Natural Gas Network James Ellison Sandia National Laboratories, Critical Infrastructure Modeling and Simulation Group Abstract In order to better understand how the US natural gas network

More information

ANALYSIS OF THE ADMINISTRATION S PROPOSED TAX INCENTIVES FOR ENERGY EFFICIENCY AND THE ENVIRONMENT

ANALYSIS OF THE ADMINISTRATION S PROPOSED TAX INCENTIVES FOR ENERGY EFFICIENCY AND THE ENVIRONMENT June 28, 1999 ANALYSIS OF THE ADMINISTRATION S PROPOSED TAX INCENTIVES FOR ENERGY EFFICIENCY AND THE ENVIRONMENT INTRODUCTION A few months ago in the FY 2000 budget the President proposed a $3.6 billion

More information

4.1.1 Generator Owner 4.1.2 Transmission Owner that owns synchronous condenser(s)

4.1.1 Generator Owner 4.1.2 Transmission Owner that owns synchronous condenser(s) A. Introduction 1. Title: Verification and Data Reporting of Generator Real and Reactive Power Capability and Synchronous Condenser Reactive Power Capability 2. Number: MOD-025-2 3. Purpose: To ensure

More information

ANCILLARY SERVICES SUPPLIED TO THE GRID: THE CASE OF THISVI CCGT POWER PLANT (GREECE)

ANCILLARY SERVICES SUPPLIED TO THE GRID: THE CASE OF THISVI CCGT POWER PLANT (GREECE) Claudio Cavandoli, Alessandro Crippa EDISON S.p.A., Engineering Department ANCILLARY SERVICES SUPPLIED TO THE GRID: THE CASE OF THISVI CCGT POWER PLANT (GREECE) 1 ANCILLARY SERVICES SUPPLIED TO THE GRID:

More information

COMPARING THE COSTS OF INTERMITTENT AND DISPATCHABLE ELECTRICITY GENERATING TECHNOLOGIES. Paul L. Joskow Alfred P. Sloan Foundation and MIT 1 ABSTRACT

COMPARING THE COSTS OF INTERMITTENT AND DISPATCHABLE ELECTRICITY GENERATING TECHNOLOGIES. Paul L. Joskow Alfred P. Sloan Foundation and MIT 1 ABSTRACT September 27, 2010 (Revised February 9, 2011) DISCUSSION DRAFT COMPARING THE COSTS OF INTERMITTENT AND DISPATCHABLE ELECTRICITY GENERATING TECHNOLOGIES Paul L. Joskow Alfred P. Sloan Foundation and MIT

More information

INTEGRATION OF PV IN DEMAND RESPONSE PROGRAMS

INTEGRATION OF PV IN DEMAND RESPONSE PROGRAMS INTEGRATION OF PV IN DEMAND RESPONSE PROGRAMS Prepared by Richard Perez et al. NREL subcontract # AEK-5-55057-01 Task # 2, Deliverable # 2 Robert Margolis, Project Manager ABSTRACT This article makes the

More information

Energy Productivity & Pricing

Energy Productivity & Pricing Energy Productivity & Pricing Markets for energy, renewable energy and carbon Dr Jenny Riesz February 2014 2 Average electricity retail prices Electricity price rises CSIRO Future Grid (2013) Change and

More information

Renewable energy targets: the importance of system and resource costs

Renewable energy targets: the importance of system and resource costs Oxford Energy Comment February 2013 Renewable energy targets: the importance of system and resource costs Malcolm Keay Introduction Early decarbonisation of the electricity industry has been identified

More information

UNITED STATES OF AMERICA FEDERAL ENERGY REGULATORY COMMISSION

UNITED STATES OF AMERICA FEDERAL ENERGY REGULATORY COMMISSION UNITED STATES OF AMERICA FEDERAL ENERGY REGULATORY COMMISSION Reliability Technical Conference Docket No. AD16-15-000 Prepared Statement of Mark Rothleder on behalf of the California Independent System

More information

CALCULATIONS & STATISTICS

CALCULATIONS & STATISTICS CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 1-5 scale to 0-100 scores When you look at your report, you will notice that the scores are reported on a 0-100 scale, even though respondents

More information

Netherlands National Energy Outlook 2014

Netherlands National Energy Outlook 2014 Netherlands National Energy Outlook 2014 Summary Michiel Hekkenberg (ECN) Martijn Verdonk (PBL) (project coordinators) February 2015 ECN-E --15-005 Netherlands National Energy Outlook 2014 Summary 2 The

More information

Evaluating and Planning Flexibility in a Sustainable Power System with Large Wind Penetration

Evaluating and Planning Flexibility in a Sustainable Power System with Large Wind Penetration Evaluating and Planning Flexibility in a Sustainable Power System with Large Wind Penetration A Thesis submitted to The University of Manchester for the degree of Doctor of Philosophy In the Faculty of

More information

Techno-Economics of Distributed Generation and Storage of Solar Hydrogen

Techno-Economics of Distributed Generation and Storage of Solar Hydrogen Techno-Economics of Distributed Generation and Storage of Solar Hydrogen Philipp Grünewald, Tim Cockerill, Marcello Contestabile, Imperial College London, UK Abstract For hydrogen to become a truly sustainable

More information

Ontario Wholesale Electricity Market Price Forecast. Ontario Energy Board

Ontario Wholesale Electricity Market Price Forecast. Ontario Energy Board Ontario Wholesale Electricity Market Price Forecast For the Period May 1, 2015 through October 31, 2016 Presented to Ontario Energy Board April 20, 2015 Navigant Consulting Ltd. 333 Bay Street, Suite 1250

More information

Some micro- and macro-economics of offshore wind*

Some micro- and macro-economics of offshore wind* Some micro- and macro-economics of offshore wind* EPSRC SUPERGEN Wind Energy Hub University of Strathclyde May 2016 Fraser of Allander Institute Energy Modelling Team Fraser of Allander Institute Department

More information