A Fuzzy Algorithm for QoS-Based Routing in MPLS Network

Size: px
Start display at page:

Download "A Fuzzy Algorithm for QoS-Based Routing in MPLS Network"

Transcription

1 A Fuzzy Algorithm for QoS-Based Routing in MPLS Network Nahid Ebrahimi Majd, Mohammad Hossien Yaghmaee Communication and Computer Research Lab.,Ferdowsi University of Mashhad Mashhad, Iran s: Abstract The current Internet provides best effort service. In the best effort services the Quality of Service (QoS) perceived by a user is inconsistent and unpredictable. The QoS based routing provides QoS guarantees to multimedia applications and an efficient utilization of the network resources. The key performance objectives associated with QoS based routing include the aspects that enhance the QoS of traffic streams like minimization of delay, maximization of throughput, minimization of blocking rate. In this paper, we propose a new QoS routing algorithm which uses a fuzzy logic controller to mixed link parameters. As it will be shown, the proposed algorithm has less bandwidth blocking ratio and more throughput than the traditional QoS routing algorithms which use other logics to mix parameters. This heuristic algorithm takes into account three metrics: available bandwidth, propagation delay and packet loss probability. We prove that this algorithm is solvable in polynomial time.. Introduction Current Internet is connectionless and stateless. IP is a connectionless protocol, which means there is not such a process to setup a connection between source and destination before packet transmission, as in ATM network and telephone network. Stateless means the routers along the path of the traffic flows do not maintain specific information about the state of each flow. The packets in a flow are routed according only to routers' routing table. While this scheme is simple and scalable, and leads to the success of the Internet, it's not enough to provide QoS. Different from above "best-effort" services, QoS service usually requires resource reservation. A path is pre-determined and associated resources (link bandwidth, buffer space, Sometimes it is desirable to force a packet to follow a particular route which is explicitly chosen rather than being chosen by the normal dynamic routing etc.) along the path are reserved before the actual transmission. In other words, the path or connection between source and destination is setup first. When the transmission finishes, the path and associated resources are released. To reserve the resources of a flow, the routers along the path need to keep track of the state of the flow. Some information is maintained in the routers regarding the state of the flow. In short, to provide QoS, both connection and state information are needed. To provide QoS in the Internet, many techniques have been proposed and studied, including Integrated Services(IntServ)[], Differential Services(DiffServ)[2], MPLS(MultiProtocol Label Switching)[3], Traffic Engineering and QoS-based Routing. Specific working groups are also organized under IETF (Internet Engineering Task Force)[4]. MPLS was first proposed as a fast forwarding scheme, but later found also useful for QoS. Similar to DiffServ domain, MPLS also has the concept of MPLS domain, which consists of the MPLS-capable routers. Packets are assigned labels at the ingress routers of the MPLS domain. Then inside the domain, classification, forwarding, and services for the packets are based on the labels. The labels will be removed when the packets leave the domain. QoS-based routing and MPLS can work together, too. QoS-based routing can select the path, and MPLS will do the packet forwarding along the path. MPLS can also provide more precise routing information for QoS-based routing, which may help QoS-based routing to select better paths[9]. In MPLS [5], the packet s path through the network is completely determined by initial label the ingress Label Switched Router (LSR) assigns it. This path is known as Label Switched Path (LSP). Each distinct flow traversing the LSP is known as a Forwarding Equivalent Class (FEC). The FEC of a packet can be determined by a number of parameters, i.e. DSCP, IP protocol ID, Source and/or destination IP addresses or network addresses[]. algorithm. This may be done as a matter of policy, or for traffic engineering. Conventional solutions include: /6/$2. (C)26 IEEE

2 Source routing which requires the packet to carry an encoding of its route along with it. Network layer encapsulation which causes the packet to be tunneled. It is possible to implement tunnel as a LSP and use label switching rather than network layer encapsulation. The set of packet which are to be sent through the LSP tunnel, constitute a FEC. To put a packet into an LSP tunnel, the transmit endpoint just pushes a label for the tunnel onto the label stack and sends the labeled packet to the next hop in the tunnel[]. In this paper, we focus on QoS-based routing, which is an important component in the whole QoS framework in the Internet. The proposed algorithm uses explicit routing to transmit each flow in a particular FEC. So routing is done per-flow and each flow is sent in an explicit route to the destination. But in spite of saving information of each flow independently, this method is scalable and this scalability is for two reason: Firstly, it s algorithm is simple which is solvable in polynomial time. Secondly, the only information saved for a flow is it s utilized bandwidth. This paper briefly discusses the different approaches found in the literature for QoS routing and proposes a fuzzy approach, named Fuzzy Mixed Metric (). The was implemented in NS (Network Simulator Version 2)[6].The performance of is compared with that of other approaches that are also based on dijkstra s shortest path algorithm. The objective is to evaluate the bandwidth blocking rate and utilization of the proposed algorithm. The results show that is a promising algorithm for three-metric route computation, leaded decreasing the bandwidth blocking rate. The rest of the paper is organized as follows. Section 2 presents the proposed algorithm. The proposed approach was implemented and tested, as shown in Section 3. Section 4 presents some final considerations and future work. 2. The Proposed Algorithm Given the observations made above, a hybrid scheme can be proposed. This mechanism is simple and satisfies the user s Qos requirements. Some changes was maid to algorithm presented in [7] by means of a careful utilization of a single mixed metric. This algorithm assumes that routes are fixed after connection setup using some kind of explicit routing or pining. The key idea of is to execute a search in the network graph to eliminate of Dijkstra s algorithm. In this scheme, the source knows the network topology. uses a single mixed metric in Dijkstra s algorithm that combines propagation delay and loss probability. Instead of loss probability, the algorithm uses the logarithm of transmission-success probability function (slog) [8] to avoid complex composition rules. has the behavior of an additive metric, because it mixed from two other additive metrics. Furthermore, we assume that routes can not have more than 9% of loss probability, that is, slog [8]. Let G = ( N, A) be a network with N node and A arcs. Each arc (i,j) is assigned two numbers: b ij is the available bandwidth and f ij = fmm( slog ij, d ij ) is the fuzzy single mixed metric, where slog ij is the logarithmic transmission-success probability and d ij is the propagation delay.when arc (i,j) is inexistent b ij = and f ij =. Given a path p = (i,j,k,,q,r), the path width, w(p), is min[b ij, b jk,, b qr ] and its length is l(p) = f ij + f jk + + f qr. Given a constant B, the minimum bandwidth, the problem is to find a path, p, between i and r such that w(p) B and has the minimum l(p). Supposing that node is the source and node m is the destination, is as follows: Step : i,j : f ij = if b ij < B. Step 2 : L = {}; i, i : F i = f i. Step 3 : Find k L F k = min i L F i. If F k =, a path can not be found and the algorithm stops. If m L, the path was found and the algorithm stops. L := L {k}. Step 4 : i L : F i := min[f i, F k + f ki ]. Go to step 3. This algorithm should found a path with minimum delay and packet loss probability. Step consists of O(N 2 ) operations and is executed once. Step 2 requires O(N) operations and is also executed once. Step 3 and 4 require O(N) operations and are repeated N- times in the worst case. So the complexity of the above algorithm is O(N 2 ), the same as the original Dijkstra s algorithm.the membership functions and the rule base of fuzzy mixed metric are shown in fig.. Mamdaniminimum inference engine, singleton fuzzifier and center average defuzzifier were used in this fuzzy system. There are nine fuzzy rules used to define the relationship of the inputs and outputs as shown in fig.(d). Situations where the delay and slog of link are both low, fmm of link is very low and then that link has a big chance to select by Dijkstra algorithm. But when both of them are high, fmm is very high. It means that link is a very bad link for routing. And when one of them is for example low and the other one is high, the link is not bad.

3 3. Simulation Results In this section, we present some simulation results using NS2 simulator. The NS2 is a discrete event simulator widely accepted and used for the analysis of the computer networks. The Information Science Institute makes the whole package available in their site (a) M em bership functions of link propagation delay log(- -6 ) log (- -4 ) log(- -2 ) (b) Membership functions of slog of link V ery Low Very High MNSv2 patch. The MPLS Network Simulator (MNS) has been developed to extend the NS2 capabilities with the primary purpose of developing a simulator that enables to simulate various MPLS applications without constructing a real MPLS network. This patch gives to simulator a good support to establishment of CR-LSP (Constraint based Routing-Label Switching Path) for QoS traffic as well as basic MPLS function and LDP (Label Distribution Protocol) and label switching. We implemented the algorithm in MNS. The queue length of each link was set to zero in some intervals related to packet loss probability. By this method the packet loss probability of links was really implemented. By measuring the bandwidth blocking rate and throughput we evaluate the efficiency of to increasing the network resource utilization. The performance of is compared with two other algorithms. The first one implements the proposal of Wang and Crowcraft (Bandwidth pruning and Delay Dijkstra search)[7]. The second one is the same as first approach, but the Dijkstra search is based on a Single Mixed Metric() of delay and loss probability obtained by adding the parameters(bandwidth pruning and mixed metric Dijkstra search)[8]. Fig.2 shows the topology used in our experiments. In this topology an exponential traffic source sends packets from source node A to destination node B. The Link bandwidths, propagation delays, and loss probabilities are uniformly distributed on the interval [min, max] as presented in table (c) Fuzzy output: Membership functions of of link ) IF Link Delay is LOW AND Link slog is LOW THEN Link is VERY LOW 2) IF Link Delay is LOW AND Link slog is MEDIUM THEN Link is LOW 3) IF Link Delay is LOW AND Link slog is HIGH THEN Link is MEDIUM 4) IF Link Delay is MEDIUM AND Link slog is LOW THEN Link is LOW 5) IF Link Delay is MEDIUM AND Link slog is MEDIUM THEN Link is MEDIUM 6) IF Link Delay is MEDIUM AND Link slog is HIGH THEN Link is HIGH 7) IF Link Delay is HIGH AND Link slog is LOW THEN Link is MEDIUM 8) IF Link Delay is HIGH AND Link slog is MEDIUM THEN Link is HIGH 9) IF Link Delay is HIGH AND Link slog is HIGH THEN Link is VERY HIGH (d) Fuzzy Rule Structure: Figure. Membership functions and rule base of :(a) membership function of link propagation delay (b) membership function of slog ij (c) Membership function of link propagation delay(d) fuzzy rule base We have used version 2.26all-in-one for linux with the addition of MNS version 2. patch to simulate the MPLS features. NS2 has been integrated with the Figure 2. The network topology used in simulation At the start of simulation, random numbers presented in intervals are set to these parameters. To simulate link loss probability, the queue size of link has set to zero in interval times related to it. In this simulation study, sequential calls were arrived at node A, in first 3 seconds, and they were held to the end of simulation. The QoS requirements of

4 each call are: requested bandwidth, minimum delay and drop. The amount of bandwidth available on a link is determined based on bandwidth reservations on this particular link, calculated and held in the code. Simulation lasts for seconds. The first objective is to evaluate the overall received and blocked bandwidth and the second one is to evaluate the delays. Fig.3 shows the results obtained from experiment. The X-axis represents the time. As it shown, yields the most throughput and performance and the least bandwidth blocking rate. This was expected, since the other approaches don t pay attention to loss probability as much as. Thus they may choose paths with high loss probability, so the bandwidth blocking rate has been increased in theme. In other words, because of increasing the drop, the throughput degrades. algorithm does not ensure that the transmission success probability is larger than the desired minimum (or smaller in log). It does not ensure that the delay is smaller than the desired minimum. But if there are two paths with the same delay, then it is guaranteed that transmission success probability will be maximum, and if there are two paths with the same transmission success probability, then it is guaranteed that delay will be minimum. In algorithm, the delay is guaranteed and is the minimum, but loss probability might be every value. Wang and Crowcraft algorithm has the most blocking rate, since it does not consider packet loss in route computation. In this approach, the best path is a path with demand bandwidth and minimum delay and packet loss probability. This could be shown in figure4. There are three paths from source to destination. The delay of paths,2 and 3 are 9ms,9ms and 9ms and the packet loss probability of them are.27,.25 and.2. Wang and Crowcraft algorithm should select the first path, because it's the first path with least delay. It doesn't pay any attention to the path packet loss probability, so it can't discern that the second path is better in packet loss probability. Because of the less packet loss probability in second path, it has been selected by algorithm instead of the first one. At last, fuzzy approach, selects the third path between three paths. This path doesn't have the least delay, but it's delay is not much different from the minimum delay, and lieu of it, the third path's packet loss probability is much less than the packet loss probability of others. Thus a path with minimum blocked bandwidth has been selected. Accordingly the fuzzy approach has been caused maximizing the throughput and more network performance, because of the less packet loss probability. 4. Conclusion Qos routing provides better QoS guarantees to applications and improves the network resource utilization. In this paper we proposed, a QoS routing algorithm capable of finding routes constrained on three QoS requirements, namely the available bandwidth, the minimum propagation delay, and the minimum loss probability. is based on a modified version of Dijkstra s shortest-path algorithm and it uses a fuzzy-based heuristic. We showed that the complexity of this approach is similar to previous algorithms, but it has more efficiency comparing with them and overall drop is minimum. Our future work contains classifying traffic flows to three classes. First, the flows needs required bandwidth and minimum delay and drop, second, the flows needs required bandwidth and minimum delay, third, the flows needs required bandwidth and minimum drop. We will propose a fuzzy approach to classify flows and mix metrics and make decision to route them based on their requirements. 5. Acknowledgment The authors would like to appreciate Iran Telecommunication Research Center (ITRC) for their financial support. 6. References [] R. Braden, D. Clark, S. Shenker, Integrated Services in the Internet Architecture: an Overview, RFC 633, Jun. 994, 33 pages, [2] S.Blake, et. al., An Architecture for Differentiated Services, RFC 2475, Dec. 998, 36 pages ftp://ftp.isi.edu/innotes/rfc2475.txt [3] R. Callon, et. al., A Framework for Multiprotocol Label Switching, draft-ietf-mpls-framework-5.txt, Sep. 999, 69 pages, [4] Active IETF Working Groups, [5] E. Rosen, A. Viswanathan, and R. Callon, Multiprotocol Label Switching Architecture, RFC 33, IETF January 2 [6] K. Fall, K. Varadhan, NS notes and documentation. University of California at Berkely.edu/Lawrence Berkeley National Laboratory, Feb. 2. Available at

5 [7] Z. Wang, J. Crowcroft, Quality of Service Routing for Supporting Multimedia Applications, IEEE JSAC, 4(7): pp , Sep. 996 [8] L.H.M.K.Costa, O.C.M.B. Duarte, A scalable QoS-based routing mechanism for supporting multimedia applications, in IEEE International Conference on Multimedia Computing and Systems ICMCS 99, vol.2,pp , june 999 [9] S. Chen, K. Nahrstedt, An Overview of Quality-of- Service Routing for The Next Generation High-Speed Networks: Problems and Solutions, Department of Computer Science University of Illinois at urbana [] N.M.Din, N.Fisal, Dynamic Resource Allocation of IP Traffic for a Diffserv-MPLS Interface Using Fuzzy Logic, in IEEE 23 [] A.Singh, G.Mittal,S.K.Nand, QoS and Traffic Engineering: MOLS, Diffserv and Constraint based Routing, in Department of Computer Science & Engineering Indian Institute of technology Guwahat, May 2 Table. Characteristics of the simulated topology Min max traffic source burst time(ms).5 Link 2 traffic source idle time(ms).5 bandwidth(mb/s) link delay(ms) 3 number of nodes 2 link loss probability.. number of links 36 Throughput (MB/S) Blocked Bandwidth (B/S) (a) (b) Performance Bandwidth Blocking Rate (c) (d) Figure 3. Simulation results: (a) throughput versus time, (b) blocked bandwidth versus time, (c) performance (utilization/drop) versus time, (d) bandwidth blocking rate versus time Path Path2 Path3 2 Figure 4. Three different paths for checking fmm approach delay

Quality of Service Routing in MPLS Networks Using Delay and Bandwidth Constraints

Quality of Service Routing in MPLS Networks Using Delay and Bandwidth Constraints Quality of Service Routing in MPLS Networks Using Delay and Bandwidth Constraints Mohammad HossienYaghmae Computer Department, Faculty of Engineering, Ferdowsi University of Mashad, Mashhad, Iran [email protected]

More information

Path Selection Analysis in MPLS Network Based on QoS

Path Selection Analysis in MPLS Network Based on QoS Cumhuriyet Üniversitesi Fen Fakültesi Fen Bilimleri Dergisi (CFD), Cilt:36, No: 6 Özel Sayı (2015) ISSN: 1300-1949 Cumhuriyet University Faculty of Science Science Journal (CSJ), Vol. 36, No: 6 Special

More information

A New Fault Tolerant Routing Algorithm For GMPLS/MPLS Networks

A New Fault Tolerant Routing Algorithm For GMPLS/MPLS Networks A New Fault Tolerant Routing Algorithm For GMPLS/MPLS Networks Mohammad HossienYaghmae Computer Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran [email protected]

More information

Building MPLS VPNs with QoS Routing Capability i

Building MPLS VPNs with QoS Routing Capability i Building MPLS VPNs with QoS Routing Capability i Peng Zhang, Raimo Kantola Laboratory of Telecommunication Technology, Helsinki University of Technology Otakaari 5A, Espoo, FIN-02015, Finland Tel: +358

More information

How To Provide Qos Based Routing In The Internet

How To Provide Qos Based Routing In The Internet CHAPTER 2 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 22 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 2.1 INTRODUCTION As the main emphasis of the present research work is on achieving QoS in routing, hence this

More information

A Fast Path Recovery Mechanism for MPLS Networks

A Fast Path Recovery Mechanism for MPLS Networks A Fast Path Recovery Mechanism for MPLS Networks Jenhui Chen, Chung-Ching Chiou, and Shih-Lin Wu Department of Computer Science and Information Engineering Chang Gung University, Taoyuan, Taiwan, R.O.C.

More information

Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions

Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions Steve Gennaoui, Jianhua Yin, Samuel Swinton, and * Vasil Hnatyshin Department of Computer Science Rowan University

More information

New QOS Routing Algorithm for MPLS Networks Using Delay and Bandwidth Constraints

New QOS Routing Algorithm for MPLS Networks Using Delay and Bandwidth Constraints New QOS Routing Algorithm for MPLS Networks Using Delay and Bandwidth Constraints Santosh Kulkarni 1, Reema Sharma 2,Ishani Mishra 3 1 Department of ECE, KSSEM Bangalore,MIEEE, MIETE & ISTE 2 Department

More information

PART III. OPS-based wide area networks

PART III. OPS-based wide area networks PART III OPS-based wide area networks Chapter 7 Introduction to the OPS-based wide area network 7.1 State-of-the-art In this thesis, we consider the general switch architecture with full connectivity

More information

Course Description. Students Will Learn

Course Description. Students Will Learn Course Description The next generation of telecommunications networks will deliver broadband data and multimedia services to users. The Ethernet interface is becoming the interface of preference for user

More information

Multiprotocol Label Switching (MPLS)

Multiprotocol Label Switching (MPLS) Multiprotocol Label Switching (MPLS) รศ.ดร. อน นต ผลเพ ม Asso. Prof. Anan Phonphoem, Ph.D. [email protected] http://www.cpe.ku.ac.th/~anan Computer Engineering Department Kasetsart University, Bangkok, Thailand

More information

Supporting End-to-End QoS in DiffServ/MPLS Networks

Supporting End-to-End QoS in DiffServ/MPLS Networks Supporting End-to-End QoS in DiffServ/MPLS Networks Ji-Feng Chiu, *Zuo-Po Huang, *Chi-Wen Lo, *Wen-Shyang Hwang and Ce-Kuen Shieh Department of Electrical Engineering, National Cheng Kung University, Taiwan

More information

Implement a QoS Algorithm for Real-Time Applications in the DiffServ-aware MPLS Network

Implement a QoS Algorithm for Real-Time Applications in the DiffServ-aware MPLS Network Implement a QoS Algorithm for Real-Time Applications in the DiffServ-aware MPLS Network Zuo-Po Huang, *Ji-Feng Chiu, Wen-Shyang Hwang and *Ce-Kuen Shieh [email protected], [email protected],

More information

MPLS. Packet switching vs. circuit switching Virtual circuits

MPLS. Packet switching vs. circuit switching Virtual circuits MPLS Circuit switching Packet switching vs. circuit switching Virtual circuits MPLS Labels and label-switching Forwarding Equivalence Classes Label distribution MPLS applications Packet switching vs. circuit

More information

Performance Evaluation of Quality of Service Assurance in MPLS Networks

Performance Evaluation of Quality of Service Assurance in MPLS Networks 114 Performance Evaluation of Quality of Service Assurance in MPLS Networks Karol Molnar, Jiri Hosek, Lukas Rucka, Dan Komosny and Martin Vlcek Brno University of Technology, Communication, Purkynova 118,

More information

Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks

Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks Analysis of traffic engineering parameters while using multi-protocol label switching (MPLS) and traditional IP networks Faiz Ahmed Electronic Engineering Institute of Communication Technologies, PTCL

More information

Experiences with Class of Service (CoS) Translations in IP/MPLS Networks

Experiences with Class of Service (CoS) Translations in IP/MPLS Networks Experiences with Class of Service (CoS) Translations in IP/MPLS Networks Rameshbabu Prabagaran & Joseph B. Evans Information and Telecommunications Technology Center Department of Electrical Engineering

More information

for guaranteed IP datagram routing

for guaranteed IP datagram routing Core stateless distributed admission control at border routers for guaranteed IP datagram routing Takahiro Oishi Masaaki Omotani Kohei Shiomoto NTT Network Service Systems Laboratories, NTT corporation

More information

Provisioning algorithm for minimum throughput assurance service in VPNs using nonlinear programming

Provisioning algorithm for minimum throughput assurance service in VPNs using nonlinear programming Provisioning algorithm for minimum throughput assurance service in VPNs using nonlinear programming Masayoshi Shimamura (masayo-s@isnaistjp) Guraduate School of Information Science, Nara Institute of Science

More information

Disjoint Path Algorithm for Load Balancing in MPLS network

Disjoint Path Algorithm for Load Balancing in MPLS network International Journal of Innovation and Scientific Research ISSN 2351-8014 Vol. 13 No. 1 Jan. 2015, pp. 193-199 2015 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/

More information

IP Traffic Engineering over OMP technique

IP Traffic Engineering over OMP technique IP Traffic Engineering over OMP technique 1 Károly Farkas, 1 Zoltán Balogh, 2 Henrik Villför 1 High Speed Networks Laboratory Department of Telecommunications and Telematics Technical University of Budapest,

More information

Quality of Service using Traffic Engineering over MPLS: An Analysis. Praveen Bhaniramka, Wei Sun, Raj Jain

Quality of Service using Traffic Engineering over MPLS: An Analysis. Praveen Bhaniramka, Wei Sun, Raj Jain Praveen Bhaniramka, Wei Sun, Raj Jain Department of Computer and Information Science The Ohio State University 201 Neil Ave, DL39 Columbus, OH 43210 USA Telephone Number: +1 614-292-3989 FAX number: +1

More information

Factors to Consider When Designing a Network

Factors to Consider When Designing a Network Quality of Service Routing for Supporting Multimedia Applications Zheng Wang and Jon Crowcroft Department of Computer Science, University College London Gower Street, London WC1E 6BT, United Kingdom ABSTRACT

More information

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

An Efficient Fault Tolerance Model for Path Recovery in MPLS Networks

An Efficient Fault Tolerance Model for Path Recovery in MPLS Networks An Efficient Fault Tolerance Model for Path Recovery in MPLS Networks Arunkumar C K M.Tech student, Dept. of ECE, Dayananda Sagar College of Engineering, VTU, Banglore, India ABSTRACT: Increasing demand

More information

Figure 1: Network Topology

Figure 1: Network Topology Improving NGN with QoS Strategies Marcel C. Castro, Tatiana B. Pereira, Thiago L. Resende CPqD Telecom & IT Solutions Campinas, S.P., Brazil E-mail: {mcastro; tatibp; tresende}@cpqd.com.br Abstract Voice,

More information

How To Share Bandwidth On A Diffserv Network

How To Share Bandwidth On A Diffserv Network Proceedings of the 2007 IEEE International Conference on Telecommunications and Malaysia International Conference on Communications, 14-17 May 2007, Penang, Malaysia Bandwidth Sharing Scheme in DiffServ-aware

More information

Integrating Internet Protocol (IP) Multicast over Multiprotocol Label Switching (MPLS) for Real Time Video Conferencing Data Transmission

Integrating Internet Protocol (IP) Multicast over Multiprotocol Label Switching (MPLS) for Real Time Video Conferencing Data Transmission Integrating Internet Protocol (IP) Multicast over Multiprotocol Label Switching (MPLS) for Real Time Video Conferencing Data Transmission Majid Ashraf Derwesh Department of Electronics and Communication

More information

MPLS is the enabling technology for the New Broadband (IP) Public Network

MPLS is the enabling technology for the New Broadband (IP) Public Network From the MPLS Forum Multi-Protocol Switching (MPLS) An Overview Mario BALI Turin Polytechnic [email protected] www.polito.it/~baldi MPLS is the enabling technology for the New Broadband (IP) Public

More information

Recovery Modeling in MPLS Networks

Recovery Modeling in MPLS Networks Proceedings of the Int. Conf. on Computer and Communication Engineering, ICCCE 06 Vol. I, 9-11 May 2006, Kuala Lumpur, Malaysia Recovery Modeling in MPLS Networks Wajdi Al-Khateeb 1, Sufyan Al-Irhayim

More information

Distributed Explicit Partial Rerouting (DEPR) Scheme for Load Balancing in MPLS Networks

Distributed Explicit Partial Rerouting (DEPR) Scheme for Load Balancing in MPLS Networks Distributed Eplicit Partial Rerouting (DEPR) Scheme for Load Balancing in MPLS Networks Sherif Ibrahim Mohamed [email protected] Khaled M. F. Elsayed, senior member IEEE [email protected] Department

More information

Research on Video Traffic Control Technology Based on SDN. Ziyan Lin

Research on Video Traffic Control Technology Based on SDN. Ziyan Lin Joint International Mechanical, Electronic and Information Technology Conference (JIMET 2015) Research on Video Traffic Control Technology Based on SDN Ziyan Lin Communication University of China, Beijing

More information

Network Efficient QoS Routing for Multimedia Services in MPLS Networks

Network Efficient QoS Routing for Multimedia Services in MPLS Networks Network Efficient QoS Routing for Multimedia Services in MPLS Networks HahnEarl Jeon The Graduate School Yonsei University Department of Electrical and Electronic Engineering Network Efficient QoS Routing

More information

Broadband Networks. Prof. Karandikar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture - 26

Broadband Networks. Prof. Karandikar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture - 26 Broadband Networks Prof. Karandikar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 26 Optical Network &MPLS So, as you were discussing in the previous lectures, next

More information

Project Report on Traffic Engineering and QoS with MPLS and its applications

Project Report on Traffic Engineering and QoS with MPLS and its applications Project Report on Traffic Engineering and QoS with MPLS and its applications Brief Overview Multiprotocol Label Switching (MPLS) is an Internet based technology that uses short, fixed-length labels to

More information

A Review on Quality of Service Architectures for Internet Network Service Provider (INSP)

A Review on Quality of Service Architectures for Internet Network Service Provider (INSP) A Review on Quality of Service Architectures for Internet Network Service Provider (INSP) Herman and Azizah bte Abd. Rahman Faculty of Computer Science and Information System Universiti Teknologi Malaysia

More information

QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS

QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

DESIGN AND VERIFICATION OF LSR OF THE MPLS NETWORK USING VHDL

DESIGN AND VERIFICATION OF LSR OF THE MPLS NETWORK USING VHDL IJVD: 3(1), 2012, pp. 15-20 DESIGN AND VERIFICATION OF LSR OF THE MPLS NETWORK USING VHDL Suvarna A. Jadhav 1 and U.L. Bombale 2 1,2 Department of Technology Shivaji university, Kolhapur, 1 E-mail: [email protected]

More information

MPLS Multiprotocol Label Switching

MPLS Multiprotocol Label Switching MPLS Multiprotocol Label Switching José Ruela, Manuel Ricardo FEUP Fac. Eng. Univ. Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal INESC Porto, Campus da FEUP, Rua Dr. Roberto Frias, 378, 4200-465

More information

Fuzzy Active Queue Management for Assured Forwarding Traffic in Differentiated Services Network

Fuzzy Active Queue Management for Assured Forwarding Traffic in Differentiated Services Network Fuzzy Active Management for Assured Forwarding Traffic in Differentiated Services Network E.S. Ng, K.K. Phang, T.C. Ling, L.Y. Por Department of Computer Systems & Technology Faculty of Computer Science

More information

Multi-Protocol Label Switching To Support Quality of Service Needs

Multi-Protocol Label Switching To Support Quality of Service Needs Technical Report, IDE1008, February 2010 Multi-Protocol Label Switching To Support Quality of Service Needs Master s Thesis in Computer Network Engineering - 15hp AMJAD IFTIKHAR AOON MUHAMMAD SHAH & FOWAD

More information

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc

Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc (International Journal of Computer Science & Management Studies) Vol. 17, Issue 01 Performance Evaluation of AODV, OLSR Routing Protocol in VOIP Over Ad Hoc Dr. Khalid Hamid Bilal Khartoum, Sudan [email protected]

More information

Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT:

Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT: Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT: In view of the fast-growing Internet traffic, this paper propose a distributed traffic management

More information

QoS Strategy in DiffServ aware MPLS environment

QoS Strategy in DiffServ aware MPLS environment QoS Strategy in DiffServ aware MPLS environment Teerapat Sanguankotchakorn, D.Eng. Telecommunications Program, School of Advanced Technologies Asian Institute of Technology P.O.Box 4, Klong Luang, Pathumthani,

More information

Dynamic Network Resources Allocation in Grids through a Grid Network Resource Broker

Dynamic Network Resources Allocation in Grids through a Grid Network Resource Broker INGRID 2007 Instrumenting the GRID Second International Workshop on Distributed Cooperative Laboratories Session 2: Networking for the GRID Dynamic Network Resources Allocation in Grids through a Grid

More information

QoS Switching. Two Related Areas to Cover (1) Switched IP Forwarding (2) 802.1Q (Virtual LANs) and 802.1p (GARP/Priorities)

QoS Switching. Two Related Areas to Cover (1) Switched IP Forwarding (2) 802.1Q (Virtual LANs) and 802.1p (GARP/Priorities) QoS Switching H. T. Kung Division of Engineering and Applied Sciences Harvard University November 4, 1998 1of40 Two Related Areas to Cover (1) Switched IP Forwarding (2) 802.1Q (Virtual LANs) and 802.1p

More information

ADAPTIVE RESOURCE ALLOCATION AND INTERNET TRAFFIC ENGINEERING ON DATA NETWORK

ADAPTIVE RESOURCE ALLOCATION AND INTERNET TRAFFIC ENGINEERING ON DATA NETWORK ADAPTIVE RESOURCE ALLOCATION AND INTERNET TRAFFIC ENGINEERING ON DATA NETWORK ABSTRACT Hatim Hussein Department of Electrical and Computer Engineering, George Mason University, Fairfax, Virginia, USA [email protected]

More information

Performance Evaluation of Voice Traffic over MPLS Network with TE and QoS Implementation

Performance Evaluation of Voice Traffic over MPLS Network with TE and QoS Implementation Master Thesis Electrical Engineering November 2011 Performance Evaluation of Voice Traffic over MPLS Network with TE and QoS Implementation Jeevan Kharel Deepak Adhikari School of Computing Blekinge Institute

More information

MPLS Architecture for evaluating end-to-end delivery

MPLS Architecture for evaluating end-to-end delivery International Journal of Scientific and Research Publications, Volume 2, Issue 11, November 2012 1 MPLS Architecture for evaluating end-to-end delivery Nikita Wadhera Lovely Professional University Abstract-

More information

VOL. 3, NO. 3, March 2012 ISSN 2079-8407. Journal of Emerging Trends in Computing and Information Sciences 2009-2012 CIS Journal. All rights reserved.

VOL. 3, NO. 3, March 2012 ISSN 2079-8407. Journal of Emerging Trends in Computing and Information Sciences 2009-2012 CIS Journal. All rights reserved. New Bandwidth Guaranteed QoS Routing Algorithm for MPLS Networks 1 Santosh Kulkarni, 2 Reema Sharma, 3 Ishani Mishra 1 HOD, Department of ECE, KSSEM Bangalore,MIEEE, MIETE & ISTE 2 Assistant Professor,

More information

SBSCET, Firozpur (Punjab), India

SBSCET, Firozpur (Punjab), India Volume 3, Issue 9, September 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Layer Based

More information

Traffic protection in MPLS networks using an off-line flow optimization model

Traffic protection in MPLS networks using an off-line flow optimization model Traffic protection in MPLS networks using an off-line flow optimization model A.E. Krzesinski and K.E. Müller Department of Computer Science University of Stellenbosch, 76 Stellenbosch, South Africa Phone:

More information

Implementation of Traffic Engineering and Addressing QoS in MPLS VPN Based IP Backbone

Implementation of Traffic Engineering and Addressing QoS in MPLS VPN Based IP Backbone International Journal of Computer Science and Telecommunications [Volume 5, Issue 6, June 2014] 9 ISSN 2047-3338 Implementation of Traffic Engineering and Addressing QoS in MPLS VPN Based IP Backbone Mushtaq

More information

VoIP versus VoMPLS Performance Evaluation

VoIP versus VoMPLS Performance Evaluation www.ijcsi.org 194 VoIP versus VoMPLS Performance Evaluation M. Abdel-Azim 1, M.M.Awad 2 and H.A.Sakr 3 1 ' ECE Department, Mansoura University, Mansoura, Egypt 2 ' SCADA and Telecom General Manager, GASCO,

More information

Traffic Engineering Management Concepts

Traffic Engineering Management Concepts 3 CHAPTER This chapter includes an overview of Cisco Prime Fulfillment and of some of the concepts used in this guide. This chapter includes the following sections: Prime Fulfillment TEM Overview, page

More information

Multiprotocol Label Switching Architecture & LDP. Introduction MPLS Basics LDP Procedures LDP Specification

Multiprotocol Label Switching Architecture & LDP. Introduction MPLS Basics LDP Procedures LDP Specification Multiprotocol Label Switching Architecture & LDP Introduction MPLS Basics LDP Procedures LDP Specification 1 MPLS&LDP->Introduction Conventional network forwarding Each router analyzes the coming packet

More information

Dynamic Sizing of Label Switching Paths in MPLS Networks

Dynamic Sizing of Label Switching Paths in MPLS Networks Dynamic Sizing of Label Switching Paths in MPLS Networks Gustavo B. Figueiredo 1 José. Augusto. S. Monteiro 2 Nelson. L. S da Fonseca 1 Antônio. A. A. Rocha 3 1 State University of Campinas Institute of

More information

OPNET simulation of voice over MPLS With Considering Traffic Engineering

OPNET simulation of voice over MPLS With Considering Traffic Engineering Master Thesis Electrical Engineering Thesis no: MEE 10:51 June 2010 OPNET simulation of voice over MPLS With Considering Traffic Engineering KeerthiPramukh Jannu Radhakrishna Deekonda School of Computing

More information

Performance Analysis of AQM Schemes in Wired and Wireless Networks based on TCP flow

Performance Analysis of AQM Schemes in Wired and Wireless Networks based on TCP flow International Journal of Soft Computing and Engineering (IJSCE) Performance Analysis of AQM Schemes in Wired and Wireless Networks based on TCP flow Abdullah Al Masud, Hossain Md. Shamim, Amina Akhter

More information

Overview. QoS, Traffic Engineering and Control- Plane Signaling in the Internet. Telematics group University of Göttingen, Germany. Dr.

Overview. QoS, Traffic Engineering and Control- Plane Signaling in the Internet. Telematics group University of Göttingen, Germany. Dr. Vorlesung Telematik (Computer Networks) WS2004/05 Overview QoS, Traffic Engineering and Control- Plane Signaling in the Internet Dr. Xiaoming Fu Recent trends in network traffic and capacity QoS principles:

More information

QUALITY OF SERVICE INTRODUCTION TO QUALITY OF SERVICE CONCEPTS AND PROTOCOLS

QUALITY OF SERVICE INTRODUCTION TO QUALITY OF SERVICE CONCEPTS AND PROTOCOLS QoS QUALITY OF SERVICE INTRODUCTION TO QUALITY OF SERVICE CONCEPTS AND PROTOCOLS Peter R. Egli INDIGOO.COM 1/20 Contents 1. Quality of Service in IP networks 2. QoS at layer 2: Virtual LAN (VLAN) IEEE

More information

A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman

A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman A Preferred Service Architecture for Payload Data Flows Ray Gilstrap, Thom Stone, Ken Freeman NASA Research and Engineering Network NASA Advanced Supercomputing Division NASA Ames Research Center Outline

More information

2004 Networks UK Publishers. Reprinted with permission.

2004 Networks UK Publishers. Reprinted with permission. Riikka Susitaival and Samuli Aalto. Adaptive load balancing with OSPF. In Proceedings of the Second International Working Conference on Performance Modelling and Evaluation of Heterogeneous Networks (HET

More information

Path Selection Methods for Localized Quality of Service Routing

Path Selection Methods for Localized Quality of Service Routing Path Selection Methods for Localized Quality of Service Routing Xin Yuan and Arif Saifee Department of Computer Science, Florida State University, Tallahassee, FL Abstract Localized Quality of Service

More information

A Power Efficient QoS Provisioning Architecture for Wireless Ad Hoc Networks

A Power Efficient QoS Provisioning Architecture for Wireless Ad Hoc Networks A Power Efficient QoS Provisioning Architecture for Wireless Ad Hoc Networks Didem Gozupek 1,Symeon Papavassiliou 2, Nirwan Ansari 1, and Jie Yang 1 1 Department of Electrical and Computer Engineering

More information

Adopting SCTP and MPLS-TE Mechanism in VoIP Architecture for Fault Recovery and Resource Allocation

Adopting SCTP and MPLS-TE Mechanism in VoIP Architecture for Fault Recovery and Resource Allocation Adopting SCTP and MPLS-TE Mechanism in VoIP Architecture for Fault Recovery and Resource Allocation Fu-Min Chang #1, I-Ping Hsieh 2, Shang-Juh Kao 3 # Department of Finance, Chaoyang University of Technology

More information

QoS Performance Evaluation in BGP/MPLS VPN

QoS Performance Evaluation in BGP/MPLS VPN 1 QoS Performance Evaluation in BGP/MPLS VPN M. C. Castro, N. A. Nassif and W. C. Borelli 1 Abstract-- The recent exponential growth of the Internet has encouraged more applications, users and services

More information

4 Internet QoS Management

4 Internet QoS Management 4 Internet QoS Management Rolf Stadler School of Electrical Engineering KTH Royal Institute of Technology [email protected] September 2008 Overview Network Management Performance Mgt QoS Mgt Resource Control

More information

Analysis of QoS Routing Approach and the starvation`s evaluation in LAN

Analysis of QoS Routing Approach and the starvation`s evaluation in LAN www.ijcsi.org 360 Analysis of QoS Routing Approach and the starvation`s evaluation in LAN 1 st Ariana Bejleri Polytechnic University of Tirana, Faculty of Information Technology, Computer Engineering Department,

More information

Transport Layer Protocols

Transport Layer Protocols Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements

More information

Management of Telecommunication Networks. Prof. Dr. Aleksandar Tsenov [email protected]

Management of Telecommunication Networks. Prof. Dr. Aleksandar Tsenov akz@tu-sofia.bg Management of Telecommunication Networks Prof. Dr. Aleksandar Tsenov [email protected] Part 1 Quality of Services I QoS Definition ISO 9000 defines quality as the degree to which a set of inherent characteristics

More information

Performance Evaluation of Multicast Transmission on MPLS Network Using PIM SM

Performance Evaluation of Multicast Transmission on MPLS Network Using PIM SM Performance Evaluation of Multicast Transmission on MPLS Network Using PIM SM Rose Ann Cyril Post Graduate Student, Department of Information Technology, Rajagiri School of Engineering & Technology, Kerala,

More information

PROTECTION ALGORITHMS FOR BANDWIDTH GUARANTEED CONNECTIONS IN MPLS NETWORKS WONG SHEK YOON

PROTECTION ALGORITHMS FOR BANDWIDTH GUARANTEED CONNECTIONS IN MPLS NETWORKS WONG SHEK YOON PROTECTION ALGORITHMS FOR BANDWIDTH GUARANTEED CONNECTIONS IN MPLS NETWORKS WONG SHEK YOON (B.Eng.(Hons), NUS) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF ENGINEERING DEPARTMENT OF ELECTRICAL & COMPUTER

More information

Lesson 13: MPLS Networks

Lesson 13: MPLS Networks Slide supporting material Lesson 13: MPLS Networks Giovanni Giambene Queuing Theor and Telecommunications: Networks and Applications 2nd edition, Springer All rights reserved IP Over ATM Once defined IP

More information

IP-Telephony Quality of Service (QoS)

IP-Telephony Quality of Service (QoS) IP-Telephony Quality of Service (QoS) Bernard Hammer Siemens AG, Munich Siemens AG 2001 1 Presentation Outline End-to-end OoS of VoIP services Quality of speech codecs Network-QoS IntServ RSVP DiffServ

More information

Routing architecture in DiffServ MPLS networks

Routing architecture in DiffServ MPLS networks Routing architecture in DiffServ MPLS networks Gonzalo Camarillo Advanced Signalling Research Laboratory Ericsson, FIN-02420 Jorvas, Finland [email protected] Abstract The Internet is currently

More information

Load Balancing by MPLS in Differentiated Services Networks

Load Balancing by MPLS in Differentiated Services Networks Load Balancing by MPLS in Differentiated Services Networks Riikka Susitaival, Jorma Virtamo, and Samuli Aalto Networking Laboratory, Helsinki University of Technology P.O.Box 3000, FIN-02015 HUT, Finland

More information

IRMA: Integrated Routing and MAC Scheduling in Multihop Wireless Mesh Networks

IRMA: Integrated Routing and MAC Scheduling in Multihop Wireless Mesh Networks IRMA: Integrated Routing and MAC Scheduling in Multihop Wireless Mesh Networks Zhibin Wu, Sachin Ganu and Dipankar Raychaudhuri WINLAB, Rutgers University 2006-11-16 IAB Research Review, Fall 2006 1 Contents

More information

A Survey on QoS Behavior in MPLS Networks

A Survey on QoS Behavior in MPLS Networks A Survey on QoS Behavior in MPLS Networks Shruti Thukral 1, Banita Chadha 2 M.Tech Scholar, CSE Department, IEC College of Engg & Technology, Greater Noida, India 1 Assistant Professor, CSE Department,

More information

Router Scheduling Configuration Based on the Maximization of Benefit and Carried Best Effort Traffic

Router Scheduling Configuration Based on the Maximization of Benefit and Carried Best Effort Traffic Telecommunication Systems 24:2 4, 275 292, 2003 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. Router Scheduling Configuration Based on the Maximization of Benefit and Carried Best Effort

More information

Internet, Part 2. 1) Session Initiating Protocol (SIP) 2) Quality of Service (QoS) support. 3) Mobility aspects (terminal vs. personal mobility)

Internet, Part 2. 1) Session Initiating Protocol (SIP) 2) Quality of Service (QoS) support. 3) Mobility aspects (terminal vs. personal mobility) Internet, Part 2 1) Session Initiating Protocol (SIP) 2) Quality of Service (QoS) support 3) Mobility aspects (terminal vs. personal mobility) 4) Mobile IP Session Initiation Protocol (SIP) SIP is a protocol

More information

APPLICATION NOTE 211 MPLS BASICS AND TESTING NEEDS. Label Switching vs. Traditional Routing

APPLICATION NOTE 211 MPLS BASICS AND TESTING NEEDS. Label Switching vs. Traditional Routing MPLS BASICS AND TESTING NEEDS By Thierno Diallo, Product Specialist Protocol Business Unit The continuing expansion and popularity of the Internet is forcing routers in the core network to support the

More information

Bandwidth Management in MPLS Networks

Bandwidth Management in MPLS Networks School of Electronic Engineering - DCU Broadband Switching and Systems Laboratory 1/17 Bandwidth Management in MPLS Networks Sanda Dragos & Radu Dragos Supervised by Dr. Martin Collier email: [email protected]

More information

Multiple Fault Tolerance in MPLS Network using Open Source Network Simulator

Multiple Fault Tolerance in MPLS Network using Open Source Network Simulator Multiple Fault Tolerance in MPLS Network using Open Source Network Simulator Muhammad Kamran 1 and Adnan Noor Mian 2 Department of Computer Sciences, FAST- National University of Computer & Emerging Sciences,

More information

6.6 Scheduling and Policing Mechanisms

6.6 Scheduling and Policing Mechanisms 02-068 C06 pp4 6/14/02 3:11 PM Page 572 572 CHAPTER 6 Multimedia Networking 6.6 Scheduling and Policing Mechanisms In the previous section, we identified the important underlying principles in providing

More information

Computer Network Architectures and Multimedia. Guy Leduc. Chapter 2 MPLS networks. Chapter 2: MPLS

Computer Network Architectures and Multimedia. Guy Leduc. Chapter 2 MPLS networks. Chapter 2: MPLS Computer Network Architectures and Multimedia Guy Leduc Chapter 2 MPLS networks Chapter based on Section 5.5 of Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross Addison-Wesley,

More information

An Adaptive Load Balancing to Provide Quality of Service

An Adaptive Load Balancing to Provide Quality of Service An Adaptive Load Balancing to Provide Quality of Service 1 Zahra Vali, 2 Massoud Reza Hashemi, 3 Neda Moghim *1, Isfahan University of Technology, Isfahan, Iran 2, Isfahan University of Technology, Isfahan,

More information

MULTIPLE FAULT TOLERANCE IN MPLS NETWORK USING OPEN SOURCE NETWORK SIMULATOR

MULTIPLE FAULT TOLERANCE IN MPLS NETWORK USING OPEN SOURCE NETWORK SIMULATOR MULTIPLE FAULT TOLERANCE IN MPLS NETWORK USING OPEN SOURCE NETWORK SIMULATOR Muhammad Kamran FAST National University of Computer and Emerging Sciences, Lahore, Pakistan. [email protected] ABSTRACT Multiprotocol

More information

Multi Protocol Label Switching with Quality of Service in High Speed Computer Network

Multi Protocol Label Switching with Quality of Service in High Speed Computer Network Multi Protocol Label Switching with Quality of Service in High Speed Computer Network Jitendra Joshi, Sonali Gupta, Priti Gupta, Nisha Singh, Manjari Kumari Department of Computer Science and Engineering

More information

QoS issues in Voice over IP

QoS issues in Voice over IP COMP9333 Advance Computer Networks Mini Conference QoS issues in Voice over IP Student ID: 3058224 Student ID: 3043237 Student ID: 3036281 Student ID: 3025715 QoS issues in Voice over IP Abstract: This

More information

IP Core Transport Network

IP Core Transport Network UDC 635.14:621.391 IP Core Transport Network VAkira Hakata VMasafumi Katoh VHaruo Yamashita VSatoshi Nojima (Manuscript received February 28, 2001) This paper proposes a next-generation IP core transport

More information

Chapter 7 outline. 7.5 providing multiple classes of service 7.6 providing QoS guarantees RTP, RTCP, SIP. 7: Multimedia Networking 7-71

Chapter 7 outline. 7.5 providing multiple classes of service 7.6 providing QoS guarantees RTP, RTCP, SIP. 7: Multimedia Networking 7-71 Chapter 7 outline 7.1 multimedia networking applications 7.2 streaming stored audio and video 7.3 making the best out of best effort service 7.4 protocols for real-time interactive applications RTP, RTCP,

More information

Performance Evaluation for VOIP over IP and MPLS

Performance Evaluation for VOIP over IP and MPLS World of Computer Science and Information Technology Journal (WCSIT) ISSN: 2221-0741 Vol. 2, No. 3, 110-114, 2012 Performance Evaluation for VOIP over IP and MPLS Dr. Reyadh Shaker Naoum Computer Information

More information

Comparative Analysis of Mpls and Non -Mpls Network

Comparative Analysis of Mpls and Non -Mpls Network Comparative Analysis of Mpls and Non -Mpls Network Madhulika Bhandure 1, Gaurang Deshmukh 2, Prof. Varshapriya J N 3 1, 2, 3 (Department of Computer Science and IT, VJTI, Mumbai-19 ABSTRACT A new standard

More information