IP Addressing. and Routing. Prepared by : Swapan Purkait Director. Nettech Private Ltd

Size: px
Start display at page:

Download "IP Addressing. and Routing. Prepared by : Swapan Purkait Director. Nettech Private Ltd. swapan@nettech.in + 91 93315 90003"

Transcription

1 For Summer Training on Computer Networking visit IP Addressing Prepared by : Swapan Purkait Director Nettech Private Limited and Routing

2 IP Addresses

3 Basic IP Addressing Each host connected to the Internet is identified by a unique IP address. An IP address is a 32-bit quantity. Expressed as a dotted-decimal notation W.X.Y.Z. Consists of two logical parts: A network number A host number This partition defines the IP address classes.

4 IP Address Classes There are five defined IP address classes. Class A UNICAST Class B UNICAST Class C UNICAST Class D MULTICAST Class E RESERVED There are some special-purpose IP addresses also.

5 Class Address Range Highorder bits Network bits Host bits A B C D E

6 Special-Purpose IP Addresses Address Range Purpose Unknown network, commonly represents default Reserved for private use Reserved for loopback/local address Reserved for private use Reserved for private use Limited broadcast

7 The class-based addressing is also known as the classful model. Different network classes lend themselves to different network configurations. Different network-to-hosts ratio.

8 Some Conventions Within a particular network (Class A, B or C), the first and last addresses serve special functions. The first address represents the network number (for example, ). The last address represents the directed broadcast address of the network (for example, ).

9 IP Subnetting

10 IP Subnet Basic concept: A subset of a class A, B or C network. IP addresses that do not use subnets consists of a network portion, and a host portion. Represents a static two-level hierarchical addressing model.

11 IP Subnet (contd.) IP subnets introduces a third level of hierarchy. a network portion a subnet portion a host portion Allow more efficient (and structured) utilization of the addresses. Uses network masks.

12 Natural Masks Network mask is applied to a class A network In binary, the mask is a series of contiguous 1 s followed by a series of contiguous 0 s Network portion Host portion

13 Natural Masks (contd.) Provide a mechanism to split the IP address into a network portion of 10, and a host portion of 20. Decimal Binary IP address: Mask: Network Host

14 Natural Masks (contd.) Class A, B and C addresses Have fixed division of network and host portions. Can be expressed as masks. Called natural masks. Natural Masks Class A :: Class B :: Class C ::

15 Creating Subnets using Masks Masks are very flexible. Using masks, networks can be divided into smaller subnets. How? By extending the network portion of the address into the host portion. Advantage gained: We can create a large number of subnets from one network. Can have less number of hosts per network.

16 Example: Subnets Network mask is applied to a class A network This divides the IP address into a network portion of 10, a subnet portion of 5, and a host portion of 20. The mask borrows a portion of the host space, and applies it to network space.

17 Subnets (contd.) What happens? Initially it was a single large Class A network ( hosts). We have now split the network into 256 subnets. From to The hosts pet subnet decreases to 65,534.

18 Subnets (contd.) Decimal Binary IP address: Mask: Host Network Subnet

19 Default Mask and Subnet mask IP Address AND Default Mask Network Address IP Address AND Subnet Mask Network Address : :

20 Subnets vrs Multiple Address Classes Subnets Management of subnets is done by local network administrator. Single entry in external router tables. Multiple Address Classes Multiple entries in external router tables. Additional overhead on the backbone (external) routers.

21 Comparison SUBNETS R R R R R R MULTIPLE ADDRESS CLASSES

22 Variable Length Subnet Mask (VLSM)

23 Variable Length Subnet Masks (VLSM) Basic concept The same network can be configured with different masks. Can have subnets of different sizes. Allows better utilization of available addresses.

24 Example: VLSM Suppose we are assigned a Class C network To be divided into three subnets. Corresponding to three departments. With 110, 45 and 50 hosts respectively. D1 (110) D2 (45) D3 (50)

25 The Example (contd.) Available subnet options The network mask will be the Class C natural mask Subnet masks of the form X Can be used to divide the network into more subnets.

26 The Subnet Options X X (in binary) No. of Subnets No. of Hosts Cannot satisfy the requirements.

27 The VLSM Option Basic concept: Use the mask to divide the network address into two subnets with 128 hosts each (.0 to.127) (.128 to.255)

28 The VLSM Option (contd.) Next subnet the second.128 subnet using a mask of Creates two subnets, 64 hosts each (.128 to.191) (.192 to.255)

29 The VLSM Option (contd.) Mask: (.0 to.127) (.128 to.255) Mask: (.128 to.191) (.192 to.255)

30 Interface 1 :: 128 hosts Network number: Network mask: Address: Interface 2 :: 64 hosts Network number: Network mask: Address: Interface 3 :: 64 hosts Network number: Network mask: Address:

31 128 Hosts E2 64 Hosts E3 ROUTER E4 64 Hosts Interface E2 :: 128 hosts Network number: Network mask: Address range: Interface E3 :: 64 hosts Network number: Network mask: Address range: Interface E4 :: 64 hosts Network number: Network mask: Address range:

32 VLSM :: Current Status All routing protocols do not support VLSM. Routing Information Protocol version 1 (RIP-1) do not carry network masks in routing updates. RIP-1 cannot implement VLSM. The following protocols support VLSM: Open Shortest Path First (OSPF) RIP-2 Enhanced IGRP (EIGRP) Administrators feel it difficult to move on to VLSM from older networks, where IP addresses were assigned somewhat haphazardly.

33 Classless Internet Domain Routing (Supernetting)

34 Running out of IP addresses Growing demand for IP addresses. Severe strain on the classful model. Due to wastage of address space. Measures taken: Creative allocation of IP addresses. Classless Inter-Domain Routing (CIDR). Private IP addresses, and Network Address Translation (NAT). IP version 6 (IPv6).

35 Creative IP Address Allocation The initial picture The IANA and the Internet Registry (IR) had complete control of address assignment. IP addresses were allocated to organizations sequentially. No concern about geographical factors. The modern approach Large, contiguous ranges of addresses are given to network service providers (NSP). NSP s allocate customer addresses from their own space. This funnel-down method results in more controlled and hierarchical method of IP address distribution.

36 A Partial Picture Address Space Area of Allocation Date Allocated APNIC Pacific Rim RIPE NCC Europe ARIN ARIN.. April 1997 April 1997 April 1997 July

37 Classless Inter-Domain Routing (CIDR) The size of the global routing tables have grown very fast in recent years. Caused routers to become saturated. Limits to processing power and available memory. Size of the tables have doubled every 10 months or so, between 1991 and 1995.

38 Without any remedial measure, the routing tables would have grown to about 80,000 routes in But early 2000 data shows that the size was around 76,000. Why this reduction? Planned IP address allocation. CIDR.

39 Growth of Internet Routing Tables '88 '94 '96 '98 '00 Year Routing Table Size

40 CIDR: Introduction CIDR is a new concept to manage IP networks. Classless Inter Domain Routing. No concept of class A, B, C networks. Reduces sizes of routing tables.

41 CIDR: Basic Idea An IP address is represented by a prefix, which is the IP address of the network. It is followed by a slash, followed by a number M. M: number of leftmost contiguous bits to be used for the network mask. Example: / 18

42 CIDR: An Important Rule The number of addresses in each block must be a power of 2. The beginning address in each block must be divisible by the number of addresses in the block. A block that contains 16 addresses cannot have beginning address as But the address is possible.

43 Example: CIDR An organization is allotted a block with beginning address: / 29 What is the range of the block? Start addr: End addr: There are 8 addresses in the block.

44 Example Suppose Company A needs IP addresses for 1000 machines Assign 4 contiguous Class C address blocks (last 8 bits 0)

45 Supernet: Address : Netmask: (last 10 bits 0) Also written as: /22 22 denotes size of network portion. Also called prefix. Routing done by prefix

46 Advantages Routing table at higher levels will have only one entry for the 4 networks. In classful addressing (that did not recognize masks), would have required 4 entries for the 4 networks. Possible only due to contiguous allocation. Higher level routers can just send it to lower level routers (in this case company A s router) using one entry only. Lower level router will distinguish.

47 Routing table at all higher level routers: /22 - send to host X (next hop on way to Company A s router RA) Routing table at RA: /24 send to router of first net /24 send to router of second net /24 send to router of third net /24 send to router of fourth net RA

48 Routers always do longest prefix match. If two entries match, longest match is taken. Example: two entries in table: one for /16 and one for /24. If address is , second entry will be used even though it matches both.

49 Recent Trend Move on to CIDR addressing. Existing classful networks can also be represented using this notation. Class A: W.X.Y.Z / 8 Class B: W.X.Y.Z / 16 Class C: W.X.Y.Z / 24 Recent routers support CIDR.

50 Routing Protocols

51 Connection Options 1. Connection-oriented Network layer protocol first makes a connection. All packets delivered as per the connection. 2. Connection-less Network layer protocol treats each packet independently. No relationship between packets.

52 Packet Delivery Options 1. Direct Delivery Host-to-host Router-to-host H1 Network H2 R

53 2. Indirect Delivery Through one or more routers. H1 N R1 N R2 H2 N

54 Routing Methods Several alternatives possible: a) Next-hop routing b) Network-specific routing c) Host-specific routing d) Default routing

55 a) Next-hop routing Routing tables based on next hop. H1 R1 R2 H2 Dest Next Hop Dest Next Hop Dest Next Hop H2 R1 H2 R2 H2 --

56 b) Network-specific routing Routing table based on destination network address. Dest N2 Next Hop R1 R1 H2 N1 N2 H1

57 c) Host-specific routing Can specify the address of a host. Dest Next Hop H2 R2 N2 N3 R1 R2 R1 N2 N1 R3 H1 R2 N3 H2

58 d) Default routing Follow a default path if no match found. H1 R1 N1 N2 Dest N2 Default Next Hop R1 R2 R2

59 Types of Routing Table 1. Static Contains information inserted manually. Does not change with time. 2. Dynamic Updated periodically depending on network condition. Uses protocols like RIP, OSPF, BGP, etc.

60 Typical Fields in a Routing Table Subnet mask Destination IP address Next hop address Flags U : router is up and running G : destination is in another network H : host-specific address D : added by redirection M : modified by redirection Interface

61 Example (Routing table for R1) Mask Dest NextHop Interface M M M0 M0 R R2 M

62 Routing Protocols RIP and OSPF

63 Routing Protocols Two classes of protocols: 1. Interior Routing Information Protocol (RIP) Open Shortest Path First (OSPF) 2. Exterior Border Gateway Protocol (BGP)

64 Autonomous Systems R N R N N AS R N AS R R N R N R N N AS R R N

65 What is an AS? A set of routers and networks managed by a single organization. The routers within the AS exchange information using a common routing protocol. The AS graph is connected (in the absence of failure).

66 Which class of protocols to use? Use interior router protocols to exchange information between routers within an AS. Use exterior routing protocol to pass exchange routing information between routers in different AS s.

67 Routing Information Protocol (RIP)

68 Routing Information Protocol (RIP) Routers within an autonomous system exchange messages. Distance vector routing using hop count. Table entries updated using values received from neighbors. Maintain timers to detect failed links. Used in first generation ARPANET.

69

70

71 Problems Slow convergence for larger networks. If a network becomes inaccessible, it may take a long time for all other routing tables to know this. After a number of message transfers. Routing loops may take a long time to be detected. Counting to infinity problem. Too much bandwidth consumed by routing updates.

72 Open Shortest Path First (OSPF)

73 Open Shortest Path First (OSPF) Widely used as the interior router protocol in TCP/IP networks. Basic concept: Computes a route that incurs the least cost. User configurable: delay, data rate, cost, etc. Each router maintains a database. Topology of the autonomous system to which the router belongs. Vertices and edges.

74 Two types of vertices: Router Network Two types of (weighted) edges: Two routers connected to each other by direct point-to-point link. A router is directly connected to a network. A router calculates the least-cost path to all destination networks. Using Dijkstra s algorithm. Only the next hop to the destination is used in the forwarding process.

75 At steady state All routers know the same network topology. Hello packets sent every 10 seconds (configurable) to neighbors. Link State Advertisement (LSA) flooded initially from each router. Absence of Hello packet for 40 seconds indicate failure of neighbour. Causes LSA to be flooded again. LSAs re-flooded every 30 minutes anyway.

76 OSPF Header Format Version T ype Message length SourceAddr AreaId Checksum Authentication type Authentication Authenticatio n

77 Packet types : 1 : Hello (check if neighbor is up) 2 : Database Description (synchronize database at beginning) 3 : Link State Request (request specific LSA) 4 : Link State Update (LSAs flooded) 5 : Link State Acknowledgement (flooded LSAs are explicitly ack ed reliable flooding)

78 Authentication type: Cleartext Encrypted (MD5 Hash, others possible)

79 Border Gateway Protocol (BGP)

80 What is BGP? Most widely used exterior router protocol for the Internet. Allows routers belonging to different autonomous systems to exchange routing information. Sent as messages over TCP connections. The router tables get updated.

81 Message Types in BGP Four types of messages: 1) Open: used to open a neighbor connection with another router. 2) Update: used to transmit information about a single route. 3) Keepalive: used to periodically confirm the neighbor connection. 4) Notification: used to notify about some error condition.

82 Types of error conditions reported: Message header error authentication and syntax. Open message error syntax errors and unrecognized options. Update message error. Hold timer expired used to close a connection if periodic messages are not received. Cease used by a router to close a connection with another router in the absence of any other error.

83 Functional Procedures in BGP Neighbor Acquisition Two routers agree to be neighbors by exchanging messages. Neighbor Reachability Check if the neighbor is still alive, and is maintaining the relationship. Network Reachability Each router maintains a list of the networks that it can reach, and the preferred routes.

84 All modern-day routers support BGP. The routers that are managed by ISP s actually run BGP. Organizational networks in many cases do not run BGP. Rely on the ISP s routers to route packets to the outside world. Default route will be to the ISP router.

85 Routing Examples

86 Configuration for routing example

87 Mask Dest. Next Hop I/f m m m m m m m0

88 Example 1 Router R1 receives 500 packets for destination ; the algorithm applies the masks row by row to the destination address until a match (with the value in the second column) is found.

89 Direct delivery & no match & no match & no match Host-specific & no match Network-specific & match

90 Example 2 Router R1 receives 100 packets for destination ; the algorithm applies the masks row by row to the destination address until a match is found.

91 Direct delivery & no match & match

92 Example 3 Router R1 receives 20 packets for destination ; the algorithm applies the masks row by row to the destination address until a match is found.

93 Direct delivery & no match & no match & no match Host-specific & no match

94 Network-specific & no match & no match Default & match

95 Example 4 Make the routing table for router R1 in the following figure.

96 Mask Destination Next Hop I/f m m m m0

97 Example 5 Make the routing table for router R1 in the following figure.

98 Mask Destination Next Hop I/f m m1 or or m m1 or or m ???????????? m0

99 Example 6 The routing table for router R1 is given below. Draw its topology. Mask Destination Next Hop I/f m m m m m m0

100

101 IP Version 6

102 Introduction The IP protocol forms the foundation of the Internet. IP version 4 is used widely today. IPv4 suffers from a number of drawbacks. Need to enhance the capabilities of the protocol. IP Next Generation IPng / IPv6

103 Problems with IPv4 Limited address space. 32-bit address is inadequate today. Applications demanding real-time response. Real-time audio or video. Must avoid changing routes frequently. Need for more complex addressing and routing capabilities. Two-level structure of IPv4 may not serve the purpose.

104 Main Features of IPv6 Something is common with IPv4: IPv6 is connectionless each datagram contains destination address and is routed independently. Header contains the maximum number of hops a datagram can make before being discarded. Some of the other general characteristics are also retained.

105 New features of IPv6: Address size: 128-bit addresses are used. 6x10 23 unique addresses per square meter of the earth s surface. Header format: IPv6 uses a series of fixed-length headers to handle optional information. A datagram consists of a base header followed by zero or more extension headers.

106 Support for real-time traffic: Allows a pair of stations to establish a high quality path between them. All datagrams flow through this path. Increased flexibility in addressing: Includes the concept of an anycast address, where a packet is delivered to one of a set of nodes. Provides for dynamic assignment of IP addresses.

107 IPv6 Datagram Format An IP datagram begins with a base header, followed by zero or more extension headers, followed by data (transport-layer PDU). 40 bytes base header Base Header Extension Header 1 Extension Header N Transport Layer PDU

108 IPv6 Base Header Format Version Priority Flow Label Payload Length Next Hdr Hop Limit Source Address (128 bits) Destination Address (128 bits)

109 The Fields Version (4 bits): contains the value 6. Priority (8 bits): specifies routing priority class. Flow Label (20 bits): used with applications that require performance guarantee. Payload Length (16 bits): total length of the extension headers and the transportlevel PDU. Next Header (8 bits): identifies the type of information that immediately follows the current header (IP extension, TCP or UDP).

110 Base Header Next=TCP TCP Data Base Header Next=Route Route Header Next=TCP TCP Data Hop Limit: decremented by 1 at each hop; discarded when it reaches 0. Source/destination addresses: 16 octets (128 bits) each.

111 IPv6 Extension Headers Routing Header Provides source routing. Hop-by-hop Options Header Defines special options that are processed at each hop. Fragment Header For fragmentation and reassembly. Authentication Header For packet integrity & authentication. All Extension headers chained in a linked list through Next Hdr field.

112 A Point About Fragmentation IPv6 fragmentation is similar to that in IPv4. Required information contained in a separate fragment extension header. Presence of the fragment header identifies the datagram as a fragment. Base header copied into all the fragments.

113 IPv6 Addressing Addresses do not have defined classes. A prefix length associated with each address (flexibility). Three types of addresses: Unicast: corresponds to a single computer. Multicast: Refers to a set of computers, possibly at different locations. Packet delivered to every member of the set.

114 Anycast: Refers to a set of computers with the same address prefix. Packet delivered to exactly one of the computers in the set. Required to support replication of services.

115 Colon Hexadecimal Notation An IPv6 address is 128 bits long. Dotted decimal notation too long. Use colon-hexadecimal notation. Each group of 16 bits written in hex, with a colon separating groups. Example: 7BD6:3DC:FFFF:FFFF:0:2D:F321:FFFF Sequence of zeros is written as two colons. 7BD6:0:0:0:0:0:0:B6 7BD6::B6

116 Aggregate Global Unicast Address 001 TLA Id (13) NLA Id (32) SLA Id (16) Interface Id (64) TLA: top-level aggregation NLA: next-level aggregation SLA: site-level aggregation Interface Id: typically based on hardware MAC address

117 IPv4-Mapped IPv6 Addresses Allow a host that supports both IPv4 and IPv6 to communicate with a host that supports only IPv4. IPv6 address is based on IPv4 address s, followed by 16 1 s, followed by a 32-bit IPv4 address.

118 IPv4 Compatible IPv6 Addresses Allows a host supporting IPv6 to talk IPv6 even if the local routers do not talk IPv6. Tell endpoint software to create a tunnel by encapsulating the IPv6 packet in an IPv4 packet s, followed by 16 0, followed by a 32-bit IP address.

119 Tunnelling Done automatically by the OS kernel when IPv4-compatible IPv6 addresses are used. IPv6 Host IPv4 Router IPv4 Router IPv6 Host IPv6 Datagram IPv4 Datagram

120 Transition from IPv4 to IPv6 Three alternate transition strategies: 1. Dual stack: Both IPv4 and IPv6 protocol stacks supported in the gateway. 2. Tunneling: An IPv6 datagram flows through an intermediate IPv4 network by encapsulating the whole IPv6 packet as payload. 3. Header translation: An IPv4 address is translated into a IPv6 address, and vice versa.

121 The Scenario Today Very few organizations have actually moved over to IPv6. IPv6 networks mostly confined to laboratories. Transition has to take anyway. The sooner the better.

122 Connect with us at Facebook Visit

IP Subnetting and Addressing

IP Subnetting and Addressing Indian Institute of Technology Kharagpur IP Subnetting and Addressing Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology Kharagpur Lecture 6: IP Subnetting and Addressing

More information

Internet Protocol version 4 Part I

Internet Protocol version 4 Part I Internet Protocol version 4 Part I Claudio Cicconetti International Master on Information Technology International Master on Communication Networks Engineering Table of Contents

More information

(Refer Slide Time: 02:17)

(Refer Slide Time: 02:17) Internet Technology Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No #06 IP Subnetting and Addressing (Not audible: (00:46)) Now,

More information

Introduction to IP v6

Introduction to IP v6 IP v 1-3: defined and replaced Introduction to IP v6 IP v4 - current version; 20 years old IP v5 - streams protocol IP v6 - replacement for IP v4 During developments it was called IPng - Next Generation

More information

Route Discovery Protocols

Route Discovery Protocols Route Discovery Protocols Columbus, OH 43210 Jain@cse.ohio-State.Edu http://www.cse.ohio-state.edu/~jain/ 1 Overview Building Routing Tables Routing Information Protocol Version 1 (RIP V1) RIP V2 OSPF

More information

IP Addressing A Simplified Tutorial

IP Addressing A Simplified Tutorial Application Note IP Addressing A Simplified Tutorial July 2002 COMPAS ID 92962 Avaya Labs 1 All information in this document is subject to change without notice. Although the information is believed to

More information

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network.

Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. Course Name: TCP/IP Networking Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. TCP/IP is the globally accepted group of protocols

More information

8.2 The Internet Protocol

8.2 The Internet Protocol TCP/IP Protocol Suite HTTP SMTP DNS RTP Distributed applications Reliable stream service TCP UDP User datagram service Best-effort connectionless packet transfer Network Interface 1 IP Network Interface

More information

Module 7. Routing and Congestion Control. Version 2 CSE IIT, Kharagpur

Module 7. Routing and Congestion Control. Version 2 CSE IIT, Kharagpur Module 7 Routing and Congestion Control Lesson 4 Border Gateway Protocol (BGP) Specific Instructional Objectives On completion of this lesson, the students will be able to: Explain the operation of the

More information

Routing in Small Networks. Internet Routing Overview. Agenda. Routing in Large Networks

Routing in Small Networks. Internet Routing Overview. Agenda. Routing in Large Networks Routing in Small Networks Internet Routing Overview AS, IGP,, BGP in small networks distance vector or link state protocols like RIP or OSPF can be used for dynamic routing it is possible that every router

More information

The Internet. Internet Technologies and Applications

The Internet. Internet Technologies and Applications The Internet Internet Technologies and Applications Aim and Contents Aim: Review the main concepts and technologies used in the Internet Describe the real structure of the Internet today Contents: Internetworking

More information

IP Addressing Introductory material.

IP Addressing Introductory material. IP Addressing Introductory material. A module devoted to IP addresses. Addresses & Names Hardware (Layer 2) Lowest level Ethernet (MAC), Serial point-to-point,.. Network (Layer 3) IP IPX, SNA, others Transport

More information

Future Internet Technologies

Future Internet Technologies Future Internet Technologies Traditional Internet Dr. Dennis Pfisterer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Internet Protocol v4 (IPv4) IPv4 Model

More information

Advanced Networking Routing: RIP, OSPF, Hierarchical routing, BGP

Advanced Networking Routing: RIP, OSPF, Hierarchical routing, BGP Advanced Networking Routing: RIP, OSPF, Hierarchical routing, BGP Renato Lo Cigno Routing Algorithms: One or Many? Is there a single routing protocol in the Internet? How can different protocols and algorithms

More information

Internet Protocols. Addressing & Services. Updated: 9-29-2012

Internet Protocols. Addressing & Services. Updated: 9-29-2012 Internet Protocols Addressing & Services Updated: 9-29-2012 Virtual vs. Physical Networks MAC is the part of the underlying network MAC is used on the LAN What is the addressing mechanism in WAN? WAN is

More information

Introduction to TCP/IP

Introduction to TCP/IP Introduction to TCP/IP Raj Jain The Ohio State University Columbus, OH 43210 Nayna Networks Milpitas, CA 95035 Email: Jain@ACM.Org http://www.cis.ohio-state.edu/~jain/ 1 Overview! Internetworking Protocol

More information

Internet Protocol (IP) IP - Network Layer. IP Routing. Advantages of Connectionless. CSCE 515: Computer Network Programming ------ IP routing

Internet Protocol (IP) IP - Network Layer. IP Routing. Advantages of Connectionless. CSCE 515: Computer Network Programming ------ IP routing Process Process Process Layer CSCE 515: Computer Network Programming ------ IP routing Wenyuan Xu ICMP, AP & AP TCP IP UDP Transport Layer Network Layer Department of Computer Science and Engineering University

More information

Internet Protocols Fall 2005. Lectures 7-8 Andreas Terzis

Internet Protocols Fall 2005. Lectures 7-8 Andreas Terzis Internet Protocols Fall 2005 Lectures 7-8 Andreas Terzis Outline Internet Protocol Service Model Fragmentation Addressing Original addressing scheme Subnetting CIDR Forwarding ICMP ARP Address Shortage

More information

Internet Firewall CSIS 4222. Packet Filtering. Internet Firewall. Examples. Spring 2011 CSIS 4222. net15 1. Routers can implement packet filtering

Internet Firewall CSIS 4222. Packet Filtering. Internet Firewall. Examples. Spring 2011 CSIS 4222. net15 1. Routers can implement packet filtering Internet Firewall CSIS 4222 A combination of hardware and software that isolates an organization s internal network from the Internet at large Ch 27: Internet Routing Ch 30: Packet filtering & firewalls

More information

Internet Addresses (You should read Chapter 4 in Forouzan)

Internet Addresses (You should read Chapter 4 in Forouzan) Internet Addresses (You should read Chapter 4 in Forouzan) IP Address is 32 Bits Long Conceptually the address is the pair (NETID, HOSTID) Addresses are assigned by the internet company for assignment

More information

Savera Tanwir. Internet Protocol

Savera Tanwir. Internet Protocol Savera Tanwir Internet Protocol The IP Protocol The IPv4 (Internet Protocol) header. IP Packet Details Header and payload Header itself has a fixed part and variable part Version IPv4, IPv5 or IPv6 IHL,

More information

Network layer: Overview. Network layer functions IP Routing and forwarding

Network layer: Overview. Network layer functions IP Routing and forwarding Network layer: Overview Network layer functions IP Routing and forwarding 1 Network layer functions Transport packet from sending to receiving hosts Network layer protocols in every host, router application

More information

Lecture 15. IP address space managed by Internet Assigned Numbers Authority (IANA)

Lecture 15. IP address space managed by Internet Assigned Numbers Authority (IANA) Lecture 15 IP Address Each host and router on the Internet has an IP address, which consist of a combination of network number and host number. The combination is unique; no two machines have the same

More information

Layer 3 Routing User s Manual

Layer 3 Routing User s Manual User s Manual Second Edition, July 2011 www.moxa.com/product 2011 Moxa Inc. All rights reserved. User s Manual The software described in this manual is furnished under a license agreement and may be used

More information

Dynamic Routing Protocols II OSPF. Distance Vector vs. Link State Routing

Dynamic Routing Protocols II OSPF. Distance Vector vs. Link State Routing Dynamic Routing Protocols II OSPF Relates to Lab 4. This module covers link state routing and the Open Shortest Path First (OSPF) routing protocol. 1 Distance Vector vs. Link State Routing With distance

More information

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ 1 Lecture 7: Network Layer in the Internet Reference: Chapter 5 - Computer Networks, Andrew S. Tanenbaum, 4th Edition, Prentice Hall,

More information

Routing with OSPF. Introduction

Routing with OSPF. Introduction Routing with OSPF Introduction The capabilities of an internet are largely determined by its routing protocol. An internet's scalability, its ability to quickly route around failures, and the consumption

More information

Guide to Network Defense and Countermeasures Third Edition. Chapter 2 TCP/IP

Guide to Network Defense and Countermeasures Third Edition. Chapter 2 TCP/IP Guide to Network Defense and Countermeasures Third Edition Chapter 2 TCP/IP Objectives Explain the fundamentals of TCP/IP networking Describe IPv4 packet structure and explain packet fragmentation Describe

More information

IP Addressing. -Internetworking (with TCP/IP) -Classful addressing -Subnetting and Supernetting -Classless addressing

IP Addressing. -Internetworking (with TCP/IP) -Classful addressing -Subnetting and Supernetting -Classless addressing IP Addressing -Internetworking (with TCP/IP) -Classful addressing -Subnetting and Supernetting -Classless addressing Internetworking The concept of internetworking: we need to make different networks communicate

More information

Router and Routing Basics

Router and Routing Basics Router and Routing Basics Malin Bornhager Halmstad University Session Number 2002, Svenska-CNAP Halmstad University 1 Routing Protocols and Concepts CCNA2 Routing and packet forwarding Static routing Dynamic

More information

TCP/IP Basis. OSI Model

TCP/IP Basis. OSI Model TCP/IP Basis 高 雄 大 學 資 訊 工 程 學 系 嚴 力 行 Source OSI Model Destination Application Presentation Session Transport Network Data-Link Physical ENCAPSULATION DATA SEGMENT PACKET FRAME BITS 0101010101010101010

More information

ITRI CCL. IP Routing Primer. Paul C. Huang, Ph.D. ITRI / CCL / N300. CCL/N300; Paul Huang 1999/6/2 1

ITRI CCL. IP Routing Primer. Paul C. Huang, Ph.D. ITRI / CCL / N300. CCL/N300; Paul Huang 1999/6/2 1 IP Routing Primer Paul C. Huang, Ph.D. ITRI / / N300 /N300; Paul Huang 1999/6/2 1 Basic Addressing / Subnetting Class A 0 Network Host Host Host 127 networks / 16,777,216 hosts Class A natural mask 255.0.0.0

More information

CE363 Data Communications & Networking. Chapter 6 Network Layer: Logical Addressing

CE363 Data Communications & Networking. Chapter 6 Network Layer: Logical Addressing CE363 Data Communications & Networking Chapter 6 Network Layer: Logical Addressing TCP/IP and OSI model APPLICATION APPLICATION PRESENTATION SESSION TRANSPORT NETWORK Host-Network TRANSPORT NETWORK DATA

More information

Internetworking and Internet-1. Global Addresses

Internetworking and Internet-1. Global Addresses Internetworking and Internet Global Addresses IP servcie model has two parts Datagram (connectionless) packet delivery model Global addressing scheme awaytoidentifyall H in the internetwork Properties

More information

RARP: Reverse Address Resolution Protocol

RARP: Reverse Address Resolution Protocol SFWR 4C03: Computer Networks and Computer Security January 19-22 2004 Lecturer: Kartik Krishnan Lectures 7-9 RARP: Reverse Address Resolution Protocol When a system with a local disk is bootstrapped it

More information

Inter-domain Routing Basics. Border Gateway Protocol. Inter-domain Routing Basics. Inter-domain Routing Basics. Exterior routing protocols created to:

Inter-domain Routing Basics. Border Gateway Protocol. Inter-domain Routing Basics. Inter-domain Routing Basics. Exterior routing protocols created to: Border Gateway Protocol Exterior routing protocols created to: control the expansion of routing tables provide a structured view of the Internet by segregating routing domains into separate administrations

More information

IP Addressing. IP Addresses. Introductory material.

IP Addressing. IP Addresses. Introductory material. IP Addressing Introductory material. An entire module devoted to IP addresses. IP Addresses Structure of an IP address Classful IP addresses Limitations and problems with classful IP addresses Subnetting

More information

WHITE PAPER. Understanding IP Addressing: Everything You Ever Wanted To Know

WHITE PAPER. Understanding IP Addressing: Everything You Ever Wanted To Know WHITE PAPER Understanding IP Addressing: Everything You Ever Wanted To Know Understanding IP Addressing: Everything You Ever Wanted To Know CONTENTS Internet Scaling Problems 1 Classful IP Addressing 3

More information

Based on Computer Networking, 4 th Edition by Kurose and Ross

Based on Computer Networking, 4 th Edition by Kurose and Ross Computer Networks Internet Routing Based on Computer Networking, 4 th Edition by Kurose and Ross Intra-AS Routing Also known as Interior Gateway Protocols (IGP) Most common Intra-AS routing protocols:

More information

Chapter 19 Network Layer: Logical Addressing 19.1

Chapter 19 Network Layer: Logical Addressing 19.1 Chapter 19 Network Layer: Logical Addressing 19.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 19-1 IPv4 ADDRESSES An IPv4 address is a 32-bit address that

More information

CS 457 Lecture 19 Global Internet - BGP. Fall 2011

CS 457 Lecture 19 Global Internet - BGP. Fall 2011 CS 457 Lecture 19 Global Internet - BGP Fall 2011 Decision Process Calculate degree of preference for each route in Adj-RIB-In as follows (apply following steps until one route is left): select route with

More information

Advanced IP Addressing

Advanced IP Addressing Advanced IP Addressing CS-765 A Aspects Of Systems Administration Spring-2005 Instructure: Jan Schauman Stevens Institute Of Technology, NJ. Prepared By: Modh, Jay A. M.S. NIS SID: 999-14-0352 Date: 05/02/2005

More information

CS335 Sample Questions for Exam #2

CS335 Sample Questions for Exam #2 CS335 Sample Questions for Exam #2.) Compare connection-oriented with connectionless protocols. What type of protocol is IP? How about TCP and UDP? Connection-oriented protocols Require a setup time to

More information

We Are HERE! Subne\ng

We Are HERE! Subne\ng TELE 302 Network Design Lecture 21 Addressing Strategies Source: McCabe 12.1 ~ 12.4 Jeremiah Deng TELE Programme, University of Otago, 2013 We Are HERE! Requirements analysis Flow Analysis Logical Design

More information

04 Internet Protocol (IP)

04 Internet Protocol (IP) SE 4C03 Winter 2007 04 Internet Protocol (IP) William M. Farmer Department of Computing and Software McMaster University 29 January 2007 Internet Protocol (IP) IP provides a connectionless packet delivery

More information

IP Routing Configuring RIP, OSPF, BGP, and PBR

IP Routing Configuring RIP, OSPF, BGP, and PBR 13 IP Routing Configuring RIP, OSPF, BGP, and PBR Contents Overview..................................................... 13-6 Routing Protocols.......................................... 13-6 Dynamic Routing

More information

- IPv4 Addressing and Subnetting -

- IPv4 Addressing and Subnetting - 1 Hardware Addressing - IPv4 Addressing and Subnetting - A hardware address is used to uniquely identify a host within a local network. Hardware addressing is a function of the Data-Link layer of the OSI

More information

Transport and Network Layer

Transport and Network Layer Transport and Network Layer 1 Introduction Responsible for moving messages from end-to-end in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a

More information

IP - The Internet Protocol

IP - The Internet Protocol Orientation IP - The Internet Protocol IP (Internet Protocol) is a Network Layer Protocol. IP s current version is Version 4 (IPv4). It is specified in RFC 891. TCP UDP Transport Layer ICMP IP IGMP Network

More information

Computer Networks. Main Functions

Computer Networks. Main Functions Computer Networks The Network Layer 1 Routing. Forwarding. Main Functions 2 Design Issues Services provided to transport layer. How to design network-layer protocols. 3 Store-and-Forward Packet Switching

More information

1. How many unique network IDs are there in class A addresses? # of unique hosts?

1. How many unique network IDs are there in class A addresses? # of unique hosts? CS445: IPv4 Addresses In-class activity Names: Part 1: Address Classes Original three classes of IPv4 addresses: A: 0 network (7 bits) host (24 bits) B: 10 network (14 bits) host (16 bits) C: 110 network

More information

Routing Protocols. Interconnected ASes. Hierarchical Routing. Hierarchical Routing

Routing Protocols. Interconnected ASes. Hierarchical Routing. Hierarchical Routing Routing Protocols scale: with 200 million destinations: can t store all dest s in routing tables! routing table exchange would swamp links! Hierarchical Routing Our routing study thus far - idealization

More information

Computer Network Foundation. Chun-Jen (James) Chung. Arizona State University

Computer Network Foundation. Chun-Jen (James) Chung. Arizona State University Computer Network Foundation Chun-Jen (James) Chung 1 Outline Network Addressing Subnetting Classless Inter-Domain Routing (CIDR) Route Aggregation Network Addressing How does the network decide where to

More information

Efficient Addressing. Outline. Addressing Subnetting Supernetting CS 640 1

Efficient Addressing. Outline. Addressing Subnetting Supernetting CS 640 1 Efficient Addressing Outline Addressing Subnetting Supernetting CS 640 1 IPV4 Global Addresses Properties IPv4 uses 32 bit address space globally unique hierarchical: network + host 7 24 Dot Notation 10.3.2.4

More information

Distance Vector Routing Protocols. Routing Protocols and Concepts Ola Lundh

Distance Vector Routing Protocols. Routing Protocols and Concepts Ola Lundh Distance Vector Routing Protocols Routing Protocols and Concepts Ola Lundh Objectives The characteristics of distance vector routing protocols. The network discovery process of distance vector routing

More information

256 4 = 4,294,967,296 ten billion. 256 16 = 18,446,744,073,709,551,616 ten quintillion. IP Addressing. IPv4 Address Classes

256 4 = 4,294,967,296 ten billion. 256 16 = 18,446,744,073,709,551,616 ten quintillion. IP Addressing. IPv4 Address Classes IP Addressing With the exception of multicast addresses, Internet addresses consist of a network portion and a host portion. The network portion identifies a logical network to which the address refers,

More information

Internet Protocol Version 6 (IPv6)

Internet Protocol Version 6 (IPv6) Internet Protocol Version 6 (IPv6) Raj Jain Washington University Saint Louis, MO 63131 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse473-05/ 14-1 Overview

More information

Chapter 4. Distance Vector Routing Protocols

Chapter 4. Distance Vector Routing Protocols Chapter 4 Distance Vector Routing Protocols CCNA2-1 Chapter 4 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario.

More information

Address Resolution Protocol (ARP), Reverse ARP, Internet Protocol (IP)

Address Resolution Protocol (ARP), Reverse ARP, Internet Protocol (IP) Tik-110.350 Computer Networks (3 cr) Spring 2000 Address Resolution Protocol (ARP), Reverse ARP, Internet Protocol (IP) Professor Arto Karila Helsinki University of Technology E-mail: Arto.Karila@hut.fi

More information

Routing Protocols (RIP, OSPF, BGP)

Routing Protocols (RIP, OSPF, BGP) Chapter 13 Routing Protocols (RIP, OSPF, BGP) INTERIOR AND EXTERIOR ROUTING RIP OSPF BGP 1 The McGraw-Hill Companies, Inc., 2000 1 Introduction Packets may pass through several networks on their way to

More information

Module 2: Assigning IP Addresses in a Multiple Subnet Network

Module 2: Assigning IP Addresses in a Multiple Subnet Network Module 2: Assigning IP Addresses in a Multiple Subnet Network Contents Overview 1 Lesson: Assigning IP Addresses 2 Lesson: Creating a Subnet 19 Lesson: Using IP Routing Tables 29 Lesson: Overcoming Limitations

More information

BGP overview BGP operations BGP messages BGP decision algorithm BGP states

BGP overview BGP operations BGP messages BGP decision algorithm BGP states BGP overview BGP operations BGP messages BGP decision algorithm BGP states 1 BGP overview Currently in version 4. InterAS (or Interdomain) routing protocol for exchanging network reachability information

More information

Network Layer Scalability. Routing Scalability Considerations

Network Layer Scalability. Routing Scalability Considerations Network Layer Scalability Goals: Review scalable routing technologies (BGP) & IPv6 (IPNG) Topics: 1. BGP 2. IPv6 D C C c Y. Yemini, 1998 Routing Scalability Considerations The Internet is a federation

More information

VLSM and CIDR Malin Bornhager Halmstad University

VLSM and CIDR Malin Bornhager Halmstad University VLSM and CIDR Malin Bornhager Halmstad University Session Number 2002, Svenska-CNAP Halmstad University 1 Objectives Classless routing VLSM Example of a VLSM calculation 2 Classless routing CIDR (Classless

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Scaling the Network: Subnetting and Other Protocols. Networking CS 3470, Section 1

Scaling the Network: Subnetting and Other Protocols. Networking CS 3470, Section 1 Scaling the Network: Subnetting and Other Protocols Networking CS 3470, Section 1 Today CIDR Subnetting Private IP addresses ICMP, IMAP, and DHCP Protocols 2 Packet Encapsulation ** Creative Commons: http://en.wikipedia.org/wiki/file:udp_encapsulation.svg

More information

Chapter 3: Review of Important Networking Concepts. Magda El Zarki Dept. of CS UC Irvine elzarki@uci.edu http://www.ics.uci.

Chapter 3: Review of Important Networking Concepts. Magda El Zarki Dept. of CS UC Irvine elzarki@uci.edu http://www.ics.uci. Chapter 3: Review of Important Networking Concepts Magda El Zarki Dept. of CS UC Irvine elzarki@uci.edu http://www.ics.uci.edu/~magda 1 Networking Concepts Protocol Architecture Protocol Layers Encapsulation

More information

Network layer" 1DT066! Distributed Information Systems!! Chapter 4" Network Layer!! goals: "

Network layer 1DT066! Distributed Information Systems!! Chapter 4 Network Layer!! goals: 1DT066! Distributed Information Systems!! Chapter 4" Network Layer!! Network layer" goals: "! understand principles behind layer services:" " layer service models" " forwarding versus routing" " how a

More information

TCP/IP Fundamentals. Edmund Lam IT Audit Manager University of California edmund.lam@ucop.edu 7/25/99 1

TCP/IP Fundamentals. Edmund Lam IT Audit Manager University of California edmund.lam@ucop.edu 7/25/99 1 TCP/IP Fundamentals Edmund Lam IT Audit Manager University of California edmund.lam@ucop.edu 7/25/99 1 What we will discuss: TCP/IP related to OSI Layers History of TCP/IP and what is it? TCP/IP Structure

More information

Border Gateway Protocol (BGP-4)

Border Gateway Protocol (BGP-4) Vanguard Applications Ware IP and LAN Feature Protocols Border Gateway Protocol (BGP-4) Notice 2008 Vanguard Networks 25 Forbes Blvd Foxboro, MA 02035 Phone: (508) 964 6200 Fax: (508) 543 0237 All rights

More information

Gary Hecht Computer Networking (IP Addressing, Subnet Masks, and Packets)

Gary Hecht Computer Networking (IP Addressing, Subnet Masks, and Packets) Gary Hecht Computer Networking (IP Addressing, Subnet Masks, and Packets) The diagram below illustrates four routers on the Internet backbone along with two companies that have gateways for their internal

More information

Ch.9 Classless And Subnet Address Extensions (CIDR)

Ch.9 Classless And Subnet Address Extensions (CIDR) CSC521 Communication Protocols 網 路 通 訊 協 定 Ch.9 Classless And Subnet Address Extensions (CIDR) 吳 俊 興 國 立 高 雄 大 學 資 訊 工 程 學 系 Outline 1. Introduction 2. Review Of Relevant Facts 3. Minimizing Network Numbers

More information

Lecture Computer Networks

Lecture Computer Networks Prof. Dr. H. P. Großmann mit M. Rabel sowie H. Hutschenreiter und T. Nau Sommersemester 2012 Institut für Organisation und Management von Informationssystemen Thomas Nau, kiz Lecture Computer Networks

More information

Interconnecting Cisco Networking Devices Part 2

Interconnecting Cisco Networking Devices Part 2 Interconnecting Cisco Networking Devices Part 2 Course Number: ICND2 Length: 5 Day(s) Certification Exam This course will help you prepare for the following exam: 640 816: ICND2 Course Overview This course

More information

Networking Test 4 Study Guide

Networking Test 4 Study Guide Networking Test 4 Study Guide True/False Indicate whether the statement is true or false. 1. IPX/SPX is considered the protocol suite of the Internet, and it is the most widely used protocol suite in LANs.

More information

SUBNETS, CIDR, AND CLASSLESS ADDRESSING

SUBNETS, CIDR, AND CLASSLESS ADDRESSING Announcements SUBNETS, CIDR, AND CLASSLESS ADDRESSING Internet Protocols CSC / ECE 573 Fall, 005 No office hours tomorrow (Wednesday) out of town No class on Thursday Fall break! Midterm exam next Tuesday!

More information

Introduction. Internet Address Depletion and CIDR. Introduction. Introduction

Introduction. Internet Address Depletion and CIDR. Introduction. Introduction Introduction Internet Address Depletion and A subnet is a subset of class A, B, or C networks IP addresses are formed of a network and host portions network mask used to separate the information Introduction

More information

BGP. 1. Internet Routing

BGP. 1. Internet Routing BGP 1. Internet Routing (C) Herbert Haas 2005/03/11 1 Internet Routing Interior Gateway Protocols (IGPs) not suitable for Inter-ISP routing Technical metrics only No policy features Inter-ISP routing is

More information

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31

IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31 IP address format: 7 24 Class A 0 Network ID Host ID 14 16 Class B 1 0 Network ID Host ID 21 8 Class C 1 1 0 Network ID Host ID 28 Class D 1 1 1 0 Multicast Address Dotted decimal notation: 10000000 00001011

More information

IP addressing and forwarding Network layer

IP addressing and forwarding Network layer The Internet Network layer Host, router network layer functions: IP addressing and forwarding Network layer Routing protocols path selection RIP, OSPF, BGP Transport layer: TCP, UDP forwarding table IP

More information

Subnetting,Supernetting, VLSM & CIDR

Subnetting,Supernetting, VLSM & CIDR Subnetting,Supernetting, VLSM & CIDR WHAT - IP Address Unique 32 or 128 bit Binary, used to identify a system on a Network or Internet. Network Portion Host Portion CLASSFULL ADDRESSING IP address space

More information

Technology Brief IPv6 White Paper.

Technology Brief IPv6 White Paper. Technology Brief White Paper. Page 1 of 37 Table of Contents 1 Overview... 3 1.1 Background... 3 1.2 Advantages of... 5 2 Packet... 9 2.1 Basic Header... 9 2.1.1 Extension Headers... 11 2.1.2 ICMP Packet...

More information

Chapter 5: Sample Questions, Problems and Solutions Bölüm 5: Örnek Sorular, Problemler ve Çözümleri Örnek Sorular (Sample Questions):

Chapter 5: Sample Questions, Problems and Solutions Bölüm 5: Örnek Sorular, Problemler ve Çözümleri Örnek Sorular (Sample Questions): Chapter 5: Sample Questions, Problems and Solutions Bölüm 5: Örnek Sorular, Problemler ve Çözümleri Örnek Sorular (Sample Questions): What is Store-and-Forward packet switching? What is a connectionless

More information

Inter-domain Routing. Outline. Border Gateway Protocol

Inter-domain Routing. Outline. Border Gateway Protocol Inter-domain Routing Outline Border Gateway Protocol Internet Structure Original idea Backbone service provider Consumer ISP Large corporation Consumer ISP Small corporation Consumer ISP Consumer ISP Small

More information

IPv6 Fundamentals Ch t ap 1 er I : ntroducti ti t on I o P IPv6 Copyright Cisco Academy Yannis Xydas

IPv6 Fundamentals Ch t ap 1 er I : ntroducti ti t on I o P IPv6 Copyright Cisco Academy Yannis Xydas IPv6 Fundamentals Chapter 1: Introduction ti to IPv6 Copyright Cisco Academy Yannis Xydas The Network Today The Internet of today is much different that it was 30, 15 or 5 years ago. 2 Technology Tomorrow

More information

Network and Host Addresses 1.3. 2003, Cisco Systems, Inc. All rights reserved. INTRO v1.0a 6-4

Network and Host Addresses 1.3. 2003, Cisco Systems, Inc. All rights reserved. INTRO v1.0a 6-4 IP Addressing To facilitate the routing of packets over a network, the TCP/IP protocol suite uses a 32-bit logical address known as an IP address. This topic introduces the components of an IP address.

More information

http://computernetworkingnotes.com/ccna-study-guide/basic-of-network-addressing.html

http://computernetworkingnotes.com/ccna-study-guide/basic-of-network-addressing.html Subnetting is a process of dividing large network into the smaller networks based on layer 3 IP address. Every computer on network has an IP address that represent its location on network. Two version

More information

Border Gateway Protocol (BGP)

Border Gateway Protocol (BGP) Border Gateway Protocol (BGP) Petr Grygárek rek 1 Role of Autonomous Systems on the Internet 2 Autonomous systems Not possible to maintain complete Internet topology information on all routers big database,

More information

Ref: A. Leon Garcia and I. Widjaja, Communication Networks, 2 nd Ed. McGraw Hill, 2006 Latest update of this lecture was on 16 10 2010

Ref: A. Leon Garcia and I. Widjaja, Communication Networks, 2 nd Ed. McGraw Hill, 2006 Latest update of this lecture was on 16 10 2010 IPv4 Addressing There are several non-profit organizations in the world that have the authority for assigning IP addresses to institutions that need access to the Internet. These organizations are (for

More information

Subnetting and Network Management Omer F. Rana. Networks and Data Communications 1

Subnetting and Network Management Omer F. Rana. Networks and Data Communications 1 Subnetting and Network Management Omer F. Rana Networks and Data Communications 1 Subnetting Subnetting is an important concept in establishing TCP/IP based networks important in integrating small Local

More information

Computer Networks. Lecture 3: IP Protocol. Marcin Bieńkowski. Institute of Computer Science University of Wrocław

Computer Networks. Lecture 3: IP Protocol. Marcin Bieńkowski. Institute of Computer Science University of Wrocław Computer Networks Lecture 3: IP Protocol Marcin Bieńkowski Institute of Computer Science University of Wrocław Computer networks (II UWr) Lecture 3 1 / 24 In previous lectures We learned about layer 1

More information

TCP/IP Fundamentals. OSI Seven Layer Model & Seminar Outline

TCP/IP Fundamentals. OSI Seven Layer Model & Seminar Outline OSI Seven Layer Model & Seminar Outline TCP/IP Fundamentals This seminar will present TCP/IP communications starting from Layer 2 up to Layer 4 (TCP/IP applications cover Layers 5-7) IP Addresses Data

More information

Lecture 8. IP Fundamentals

Lecture 8. IP Fundamentals Lecture 8. Internet Network Layer: IP Fundamentals Outline Layer 3 functionalities Internet Protocol (IP) characteristics IP packet (first look) IP addresses Routing tables: how to use ARP Layer 3 functionalities

More information

Mobile IP Network Layer Lesson 02 TCP/IP Suite and IP Protocol

Mobile IP Network Layer Lesson 02 TCP/IP Suite and IP Protocol Mobile IP Network Layer Lesson 02 TCP/IP Suite and IP Protocol 1 TCP/IP protocol suite A suite of protocols for networking for the Internet Transmission control protocol (TCP) or User Datagram protocol

More information

CLASSLESS INTER DOMAIN ROUTING - CIDR

CLASSLESS INTER DOMAIN ROUTING - CIDR CLASSLESS INTER DOMAIN ROUTING - CIDR Marko Luoma Helsinki University of Technology Laboratory of Telecommunications Technology Marko.Luoma@hut.fi ABSTRACT As the Internet evolved and become more familiar

More information

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP

IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP CSCE 515: Computer Network Programming TCP/IP IP Network Layer Wenyuan Xu Department of Computer Science and Engineering University of South Carolina IP Datagrams IP is the network layer packet delivery

More information

CIDR: Classless Interdomain Routing

CIDR: Classless Interdomain Routing 1/10 CIDR: Classless Interdomain Routing Surasak Sanguanpong nguan@ku.ac.th http://www.cpe.ku.ac.th/~nguan Last updated: July 9, 2002 Address allocation problem 2/10 Exhaustion of the class B network address

More information

Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012. Network Chapter# 19 INTERNETWORK OPERATION

Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012. Network Chapter# 19 INTERNETWORK OPERATION Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012 Network Chapter# 19 INTERNETWORK OPERATION Review Questions ٢ Network Chapter# 19 INTERNETWORK OPERATION 19.1 List

More information

COMP 631: COMPUTER NETWORKS. IP Addressing. Jasleen Kaur. Fall 2014. How to Deal With Heterogeneity & Scale?

COMP 631: COMPUTER NETWORKS. IP Addressing. Jasleen Kaur. Fall 2014. How to Deal With Heterogeneity & Scale? COMP 631: COMPUTER NETWORKS IP Addressing Jasleen Kaur Fall 2014 1 How to Deal With Heterogeneity & Scale? Requirements from IP addressing: Should be globally unique Should facilitate easy mapping to link-layer

More information

Chapter 3. TCP/IP Networks. 3.1 Internet Protocol version 4 (IPv4)

Chapter 3. TCP/IP Networks. 3.1 Internet Protocol version 4 (IPv4) Chapter 3 TCP/IP Networks 3.1 Internet Protocol version 4 (IPv4) Internet Protocol version 4 is the fourth iteration of the Internet Protocol (IP) and it is the first version of the protocol to be widely

More information