Präzise Bahnbestimmung des GOCE- Satelliten mittels GPS. Heike Bock

Size: px
Start display at page:

Download "Präzise Bahnbestimmung des GOCE- Satelliten mittels GPS. Heike Bock"

Transcription

1 Präzise Bahnbestimmung des GOCE- Satelliten mittels GPS Redundante Antenne Hauptantenne Heike Bock

2 Entwicklung der LEO Bahnbestimmung am AIUB 1999: Gerhard Beutler initiiert die LEO Bahnbestimmung am AIUB im Hinblick auf die CHAMP-Mission 2003: Dissertation Heike Bock Efficient Methods for Determining Precise Orbits of Low Earth Orbiters Using the Global Positioning System 2006: Dissertation Adrian Jäggi Pseudo-Stochastic Orbit Modeling of Low Earth Satellites Using the Global Positioning System Diverse Projekte mit DLR, ESA, EUMETSAT, GFZ Seit 2004 ist das AIUB Mitglied des European GOCE Gravity Consortiums (EGG-C), welches die GOCE High-level Processing Facility (HPF) betreibt 2010: Dissertation Lars Prange Global Gravity Field Determination Using the GPS Measurements Made Onboard the Low Earth Orbiting Satellite CHAMP Weitere wichtige Arbeiten in der Gravitationsfeldbestimmung von Adrian Jäggi, Ulrich Meyer und Gerhard Beutler

3 Inhalt Übersicht über die GOCE Mission Status High-level Processing Facility Bahnbestimmung Allgemeines Precise Science Orbits (PSO) PSO-Prozedur Einfluss der PCVs (Phase Center Variations) Resultate und Validierung Datenqualität Zusammenfassung

4 Inhalt Übersicht über die GOCE Mission Status High-level Processing Facility Bahnbestimmung Allgemeines Precise Science Orbits (PSO) PSO-Prozedur Einfluss der PCVs (Phase Center Variations) Resultate und Validierung Datenqualität Zusammenfassung

5 GOCE satellite mission (1) Gravity and steady-state Ocean Circulation Explorer First Earth Explorer of the Living Planet Program of the European Space Agency Launch: 17 March 2009 from Plesetsk, Russia Sun-synchronous dusk-dawn orbit with inclination of 96.5 o Altitude: km Mass: 1050 kg at launch 5.3 m long, 1.1 m 2 cross section Courtesy:ESA

6 GOCE satellite mission (2) Three axes stabilised, nadir pointing, aerodynamically shaped satellite Drag free attitude control (DFAC) in flight direction (Xe electric propulsion system) Very rigid structure, no moving parts Attitude control by magnetorquers Courtesy:ESA

7 GOCE satellite mission (3) Core Payload: Electrostatic Gravity Gradiometer three pairs of accelerometers 0.5 m arm length Main mission goals: Determination of the Earth s gravity field with an accuracy of 1mGal (= 10-5 m/s 2 ) at a spatial resolution of 100 km Determination of the geoid on the 1 cm-level with a spatial resolution of 100 km Courtesy:ESA

8 GOCE satellite mission (4) Satellite to Satellite tracking instrument (SSTI) Dual frequency L1, L2 12 channel GPS receiver Real time position and velocity (3D, 3 sigma) < 100 m, < 0.3 m/s 1 Hz data rate Science and real time on board solution for navigation Hardly any data gaps Courtesy:ESA => Mission requirement for precise science orbits: 2 cm (1D)

9 GOCE satellite mission (5) Kuijper and Matatoros, 2011

10 GOCE satellite mission (5) Kuijper and Matatoros, 2011

11 GOCE satellite mission (5) Mission duration: Nominal mission has ended on March 2, 2011 Extended mission approved until end of 2012 Current altitude will be hold at least until (late) summer 2011 ESA, Fehringer, 2011

12 GOCE High-level Processing Facility (HPF)

13 GOCE High-level Processing Facility (HPF) Responsibilities for orbit generation: DEOS: => RSO (Rapid Science Orbit) AIUB: => PSO (Precise Science Orbit) IAPG: => Validation

14 Inhalt Übersicht über die GOCE Mission Status High-level Processing Facility Bahnbestimmung Allgemeines Precise Science Orbits (PSO) Einfluss der PCVs (Phase Center Variations) Resultate und Validierung Datenqualität Zusammenfassung

15 Kinematic orbit representation A kinematic orbit is an ephemeris at discrete measurement epochs Kinematic positions are fully independent of the force models used for LEO orbit determination Kinematic orbits are well suited for gravity field recovery of the longwavelength part

16 Dynamic orbit representation Satellite trajectory is a particular solution of the equation of motion defined by the force models used Dynamic orbits fully depend on the force models used, e.g., on the gravity field model The quality of dynamic orbits is fully dependent on the exact knowledge of the force models

17 Reduced-dynamic orbit representation Satellite trajectory is a particular solution of the equation of motion defined by the force models used. The strength of the force models is reduced, to some extent, by additional empirical parameters. Reduced-dynamic orbits heavily depend on the force models used, e.g., on the gravity field model (solving the equation of motion) Reduced-dynamic orbits are well suited to compute LEO orbits of highest quality

18 GOCE orbit generation Orbit solution Software GPS Observ. GPS products Sampling Data batches Latency reduceddynamic GEODYN triple-diff IGS rapid 10 sec 30 h 1 day RSO kinematic GHOST zero-diff CODE rapid 1 sec 24 h 1 day reduceddynamic BERNESE zero-diff CODE final 10 sec 30 h 7-10 days PSO kinematic BERNESE zero-diff CODE final 1 sec 30 h 7-10 days

19 GOCE orbit generation Orbit solution Software GPS Observ. GPS products Sampling Data batches Latency RSO GEODYN triple-diff kinematic GHOST zero-diff IGS rapid Accuracy requirement: 50 cm CODE rapid 10 sec 30 h 1 day 1 sec 24 h 1 day PSO reduceddynamic reduceddynamic BERNESE zero-diff kinematic BERNESE zero-diff CODE final Accuracy requirement: 2 cm CODE final 10 sec 30 h 1 sec 30 h 7-10 days 7-10 days

20 Inhalt Übersicht über die GOCE Mission Status High-level Processing Facility Bahnbestimmung Allgemeines Precise Science Orbits (PSO) PSO-Prozedur Einfluss der PCVs (Phase Center Variations) Resultate und Validierung Datenqualität Zusammenfassung

21 GOCE PSO procedure CODE products GOCE GPS data Data preprocessing Reduceddynamic orbit solution (iterative) Preparation of GPS orbits, clocks and ERPs (30 hours) Pseudorange: first a priori orbit Receiver clock synchronization Phase: Iterative data screening a priori 10 sec Piece-wise constant accelerations (6 min) Auxiliary data GOCE attitude data Kinematic orbit solution 1 sec Tailored version of Bernese GPS Software used Un-differenced processing Automated procedure 30 h batches => overlaps CODE final products Consequent use of antenna phase center variation (PCV) map Final kinematic positions are only accepted, if five or more simultaneous observations were available => on average only 0.7% positions missing (max.5.2%)

22 GOCE GPS data GOCE clock is not steered to integer seconds => no equidistant 1 Hz observations Switch to B-computer in Feb 2010 made clock more stable Behaviour of receiver clock changed during mission time Switch to redundant receiver can be noticed

23 GOCE PSO procedure: PCV map Antenna PCVs are the most important systematic error source in LEO GPS data processing. They have to be taken into account to achieve a high accuracy level for POD. Ground calibrations for the GOCE antenna are available but no improvement of the orbits could be achieved. Therefore, we decided to do an in-flight calibration of the GOCE antenna PCVs.

24 GOCE PSO procedure: PCV map Ground calibrations Chamber calibration Calibration on roboter (with part of the wing)

25 GOCE PSO procedure: PCV map 20 July 2010: Mean values of carrier phase observation residuals (ionosphere-free linear combination) Generation of the PCV map: 1. Mean values of 154 days of carrier phase observation residuals from reduced-dynamic orbit determination => first PCV map 2. Use of PCV map for reduced-dynamic orbit determination of 154 days 3. Mean values of observation residuals => add-on to previous PCV map 4. Back to 2. => 10 iterations

26 GOCE PSO procedure: PCV map PCV map from first iteration Generation of the PCV map: 1. Mean values of 154 days of carrier phase observation residuals from reduced-dynamic orbit determination => first PCV map 2. Use of PCV map for reduced-dynamic orbit determination of 154 days 3. Mean values of observation residuals => add-on to previous PCV map 4. Back to 2. => 10 iterations

27 GOCE PSO procedure: PCV map PCV map from last iteration Generation of the PCV map: 1. Mean values of 154 days of carrier phase observation residuals from reduced-dynamic orbit determination => first PCV map 2. Use of PCV map for reduced-dynamic orbit determination of 154 days 3. Mean values of observation residuals => add-on to previous PCV map 4. Back to 2. => 10 iterations

28 GOCE PSO: Impact of PCV map Orbit differences in cross-track direction between orbit generated without PCV map and the orbits from all iterations

29 GOCE PSO: Impact of PCV map Satellite Laser Ranging (SLR) residuals in laser retro reflector system PCVs not corrected PCVs corrected

30 PSO: Comparison reduced-dynamic kinematic orbits PCV map not used Orbit differences between reduced-dynamic and kinematic PSO solutions Orbit differences > 1 m removed (only 60 positions for the entire period)

31 PSO: Comparison reduced-dynamic kinematic orbits PCV map used Orbit differences between reduced-dynamic and kinematic PSO solutions Orbit differences > 1 m removed (only 60 positions for the entire period) Consistency of reduced-dynamic and kinematic PSO is at 2 cm level => mean 3D-RMS 1.82 cm

32 GOCE PSO: Overlaps reduced-dynamic orbits 5 h overlaps (21:30 02:30) PCV map not used Mean 3D-RMS: 2.54 cm PCV map used Mean 3D-RMS: 0.55 cm

33 GOCE PSO procedure: PCV map Main antenna Redundant antenna from 154 days from 58 days

34 GOCE PSO procedure: PCV map Redundant antenna Simulation of PCVs based on ray tracing from 58 days

35 PSO: Results from the entire mission Differences red.-dynamic kinematic mean 3D-RMS 2.07 cm Overlaps red.-dynamic orbits mean 3D-RMS 0.98 cm

36 Validation: SLR residuals for reduced-dynamic orbits Mean 0.45 cm RMS 1.71 cm

37 Validation: SLR residuals for kinematic orbits Mean 0.43 cm RMS 2.00 cm

38 Comparison RSO and PSO Differences red.-dynamic RSO PSO Start of PCV correction Differences kinematic RSO PSO

39 PSO: Data quality Orbit differences between reduceddynamic and kinematic PSO solution are more pronounced after the summerbreak Differences are noisier at regular intervals What is the reason for this?

40 PSO: Data quality

41 PSO: Data quality Observations of the second frquency are missing at begin/middle/end of GPS satellite passes Possible correlation with solar activity?

42 Data quality - Geographical distribution of L2 losses

43 Data quality - Geographical distribution of L2 losses

44 Data quality L2 losses Time differences of geometry-free linear combination (left) => changes in the ionosphere/ionospheric scintillations L2 losses mainly occur at time intervals with larger ionospheric scintillations

45 Data quality: RMS of phase residuals (red.-dyn orbits)

46 Inhalt Übersicht über die GOCE Mission Status High-level Processing Facility Bahnbestimmung Allgemeines Precise Science Orbits (PSO) PSO-Prozedur Einfluss der PCVs (Phase Center Variations) Resultate und Validierung Datenqualität Zusammenfassung

47 Zusammenfassung GOCE hat eine erfolgreiche nominelle Missionsdauer hinter sich und mindestens 18 weitere spannende Monate stehen bevor. Bahnbestimmung bildet einen wichtigen Teil der Datenverarbeitungskette. Genauigkeitsanforderungen von 2 cm werden sowohl für die reduziertdynamischen als auch für die kinematischen Bahnen erfüllt. Untersuchungen zur teilweise reduzierten Datenqualität sind im Gange.

AUTOMATED OPERATIONAL MULTI-TRACKING HIGH PRECISION ORBIT DETERMINATION FOR LEO MISSIONS

AUTOMATED OPERATIONAL MULTI-TRACKING HIGH PRECISION ORBIT DETERMINATION FOR LEO MISSIONS AUTOMATED OPERATIONAL MULTI-TRACKING HIGH PRECISION ORBIT DETERMINATION FOR LEO MISSIONS J. Fernández Sánchez, F. M. Martínez Fadrique, A. Águeda Maté, D. Escobar Antón GMV S.A., Isaac Newton 11, 876 Tres

More information

Examination Space Missions and Applications I (AE2103) Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM

Examination Space Missions and Applications I (AE2103) Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM Examination Space Missions and Applications I AE2103 Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM Please read these instructions first: This are a series of multiple-choice

More information

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition

Günter Seeber. Satellite Geodesy 2nd completely revised and extended edition Günter Seeber Satellite Geodesy 2nd completely revised and extended edition Walter de Gruyter Berlin New York 2003 Contents Preface Abbreviations vii xvii 1 Introduction 1 1.1 Subject of Satellite Geodesy...

More information

Analysis on the Long-term Orbital Evolution and Maintenance of KOMPSAT-2

Analysis on the Long-term Orbital Evolution and Maintenance of KOMPSAT-2 Analysis on the Long-term Orbital Evolution and Maintenance of KOMPSAT-2 Ok-Chul Jung 1 Korea Aerospace Research Institute (KARI), 45 Eoeun-dong, Daejeon, South Korea, 305-333 Jung-Hoon Shin 2 Korea Advanced

More information

GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model

GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model 7 th FIG Regional Conference TS 1C Advances in GNSS Positioning and Applications I Volker Schwieger 1, Jürgen

More information

REeal data AnaLysis GOCE Gravity field determination from GOCE

REeal data AnaLysis GOCE Gravity field determination from GOCE REeal data AnaLysis GOCE Gravity field determination from GOCE J.M. Brockmann 1, O. Baur 3, J. Cai 3, A. Eicker 2, B. Kargoll 1, I. Krasbutter 1, J. Kusche 2, T. Mayer-Gürr 2, J. Schall 2, W.-D. Schuh

More information

Laser Ranging to Nano-Satellites

Laser Ranging to Nano-Satellites 13-0222 Laser Ranging to Nano-Satellites G. Kirchner (1), Ludwig Grunwaldt (2), Reinhard Neubert (2), Franz Koidl (1), Merlin Barschke (3), Zizung Yoon (3), Hauke Fiedler (4), Christine Hollenstein (5)

More information

Prospects for an Improved Lense-Thirring Test with SLR and the GRACE Gravity Mission

Prospects for an Improved Lense-Thirring Test with SLR and the GRACE Gravity Mission Prospects for an Improved Lense-Thirring Test with SLR and the GRACE Gravity Mission J. C. Ries, R. J. Eanes, B. D. Tapley Center for Space Research The University of Texas at Austin Austin, TX G. E. Peterson

More information

REaldatenAnaLyse GOCE (REAL GOCE) 5. Projekttreffen

REaldatenAnaLyse GOCE (REAL GOCE) 5. Projekttreffen REaldatenAnaLyse GOCE (REAL GOCE) 5. Projettreffen Michael Murböc, Claudia Stummer Institut für Astronomische und Physialische Geodäsie, TU München Stuttgart, 10/10/2011 REAL GOCE Projettreffen: Stuttgart,

More information

Dancing in the Dark: How GNSS Satellites Cross the Earth s Shadow

Dancing in the Dark: How GNSS Satellites Cross the Earth s Shadow Dancing in the Dark: How GNSS Satellites Cross the Earth s Shadow F. Dilssner, T. Springer, G. Gienger, R. Zandbergen European Space Operations Centre (ESOC), Darmstadt 24 January 2011 Technische Universität

More information

GNSS satellite attitude characteristics during eclipse season

GNSS satellite attitude characteristics during eclipse season GNSS satellite attitude characteristics during eclipse season F. Dilssner 1, T. Springer 1, J. Weiss 2, G. Gienger 1, W. Enderle 1 1 ESA/ESOC, Darmstadt, Germany 2 JPL, Pasadena, USA July 26, 2012 IGS

More information

GNSS satellites as co-locations for a combined GNSS and SLR analysis

GNSS satellites as co-locations for a combined GNSS and SLR analysis GNSS satellites as co-locations for a combined GNSS and SLR analysis D. Thaller 1), K. Sośnica 1), R. Dach 1), A. Jäggi 1), M. Mareyen 2), B. Richter 2), G. Beutler 1) (1) Astronomical Institute, University

More information

Ocean circulation, sea-level rise and the

Ocean circulation, sea-level rise and the GOCE Rune Floberghagen Ground Segment Department, Directorate of Earth Observation Programmes, ESRIN, Frascati, Italy Mark Drinkwater, Roger Haagmans & Michael Kern Science, Applications and Future Technologies

More information

Technologies for Re-entry Vehicles. SHEFEX and REX FreeFlyer, DLR s Re-Entry Program. Hendrik Weihs. Folie 1. Vortrag > Autor > Dokumentname > Datum

Technologies for Re-entry Vehicles. SHEFEX and REX FreeFlyer, DLR s Re-Entry Program. Hendrik Weihs. Folie 1. Vortrag > Autor > Dokumentname > Datum Technologies for Re-entry Vehicles SHEFEX and REX FreeFlyer, DLR s Re-Entry Program Hendrik Weihs Folie 1 DLR`s Re-Entry Program, Why? Re-entry or return technology respectively, is a strategic key competence

More information

How To Monitor Sea Level With Satellite Radar

How To Monitor Sea Level With Satellite Radar Satellite Altimetry Wolfgang Bosch Deutsches Geodätisches Forschungsinstitut (DGFI), München email: bosch@dgfi.badw.de Objectives You shall recognize satellite altimetry as an operational remote sensing

More information

DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON

DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON John A. Vint Survey Manager Thales GeoSolutions Norge AS Hønefoss, 7. november 2003 Scope of Presentation Introduction Summary of GPS Errors.

More information

Orbital Mechanics and Space Geometry

Orbital Mechanics and Space Geometry Orbital Mechanics and Space Geometry AERO4701 Space Engineering 3 Week 2 Overview First Hour Co-ordinate Systems and Frames of Reference (Review) Kepler s equations, Orbital Elements Second Hour Orbit

More information

Introduction into Real-Time Network Adjustment with Geo++ GNSMART

Introduction into Real-Time Network Adjustment with Geo++ GNSMART Introduction into Real-Time Network Adjustment with Geo++ GNSMART Andreas Bagge Gerhard Wübbena, Martin Schmitz Geo++ GmbH D-30827 Garbsen, Germany www.geopp.de GeoInformation Workshop 2004, Istanbul Kultur

More information

IN-FLIGHT CALIBRATION OF THE MICROSCOPE SPACE MISSION INSTRUMENT: DEVELOPMENT OF THE SIMULATOR

IN-FLIGHT CALIBRATION OF THE MICROSCOPE SPACE MISSION INSTRUMENT: DEVELOPMENT OF THE SIMULATOR SF2A 2011 G. Alecian, K. Belkacem, R. Samadi and D. Valls-Gabaud (eds) IN-FLIGHT CALIBRATION OF THE MICROSCOPE SPACE MISSION INSTRUMENT: DEVELOPMENT OF THE SIMULATOR E. Hardy 1, A. Levy 1, G. Métris 2,

More information

Satellite Altimetry Missions

Satellite Altimetry Missions Satellite Altimetry Missions SINGAPORE SPACE SYMPOSIUM 30 TH SEPTEMBER 2015 AUTHORS: LUCA SIMONINI/ ERICK LANSARD/ JOSE M GONZALEZ www.thalesgroup.com Table of Content General Principles and Applications

More information

La Tecnica di RO, I dati e la loro Elaborazione. Agenzia Spaziale Italiana Centro di Geodesia Spaziale

La Tecnica di RO, I dati e la loro Elaborazione. Agenzia Spaziale Italiana Centro di Geodesia Spaziale La Tecnica di RO, I dati e la loro Elaborazione Agenzia Spaziale Italiana Centro di Geodesia Spaziale The GNSS Radio Occultation Technique In view GNSS Satellite In view GNSS Satellite In occultation GNSS

More information

The NASA Global Differential GPS System (GDGPS) and The TDRSS Augmentation Service for Satellites (TASS)

The NASA Global Differential GPS System (GDGPS) and The TDRSS Augmentation Service for Satellites (TASS) The Global Differential GPS System (GDGPS) and The TDRSS Augmentation Service for Satellites (TASS) Yoaz Bar-Sever, Larry Young, Frank Stocklin, Paul Heffernan and John Rush s Global Differential GPS System

More information

RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento

RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento RS platforms Platform vs. instrument Sensor Platform Instrument The remote sensor can be ideally represented as an instrument carried by a platform Platforms Remote Sensing: Ground-based air-borne space-borne

More information

Quasi-Synchronous Orbits

Quasi-Synchronous Orbits Quasi-Synchronous Orbits and Preliminary Mission Analysis for Phobos Observation and Access Orbits Paulo J. S. Gil Instituto Superior Técnico Simpósio Espaço 50 anos do 1º Voo Espacial Tripulado 12 de

More information

Real-Time Sub-cm Differential Orbit Determination of Two Low-Earth Orbiters with GPS Bias Fixing

Real-Time Sub-cm Differential Orbit Determination of Two Low-Earth Orbiters with GPS Bias Fixing Real-Time Sub-cm Differential Orbit Determination of Two Low-Earth Orbiters with GPS Bias Fixing Sien-Chong Wu, Jet Propulsion Laboratory, California Institute of Technology Yoaz E. Bar-Sever, Jet Propulsion

More information

On May 27, 2010, the U.S. Air. Satellite. Antenna Phase Center and Attitude Modeling

On May 27, 2010, the U.S. Air. Satellite. Antenna Phase Center and Attitude Modeling GPS IIF-1 Satellite Antenna Phase Center and Attitude Modeling Florian Dilssner Logica/European Space Agency Calculating the distances between satellites and user equipment is a basic operation for GNSS

More information

The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning

The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning The Applanix SmartBase TM Software for Improved Robustness, Accuracy, and Productivity of Mobile Mapping and Positioning Joe Hutton and Edith Roy, Applanix Corporation Introduction Applanix, along with

More information

Global Positioning System

Global Positioning System B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins Global Positioning System Theory and Practice Third, revised edition Springer-Verlag Wien New York Contents Abbreviations Numerical constants xix xxiii

More information

RESULTS OF MODELLING GPS SATELLITE CLOCKS V. Bröderbauer, R. Weber

RESULTS OF MODELLING GPS SATELLITE CLOCKS V. Bröderbauer, R. Weber RESULTS OF MODELLING GPS SATELLITE CLOCKS V. Bröderbauer, R. Weber Abstract The IGS (International GPS Service) Analysis Centers (ACs) provide GPS satellite clock offsets to GPS-Time (GPST) in the form

More information

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014 Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

More information

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12

2. Orbits. FER-Zagreb, Satellite communication systems 2011/12 2. Orbits Topics Orbit types Kepler and Newton laws Coverage area Influence of Earth 1 Orbit types According to inclination angle Equatorial Polar Inclinational orbit According to shape Circular orbit

More information

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1.

Use the following information to deduce that the gravitational field strength at the surface of the Earth is approximately 10 N kg 1. IB PHYSICS: Gravitational Forces Review 1. This question is about gravitation and ocean tides. (b) State Newton s law of universal gravitation. Use the following information to deduce that the gravitational

More information

Bi-Directional DGPS for Range Safety Applications

Bi-Directional DGPS for Range Safety Applications Bi-Directional DGPS for Range Safety Applications Ranjeet Shetty 234-A, Avionics Engineering Center, Russ College of Engineering and Technology, Ohio University Advisor: Dr. Chris Bartone Outline Background

More information

Prof. Ludovico Biagi. Satellite Navigation and Monitoring

Prof. Ludovico Biagi. Satellite Navigation and Monitoring Prof. Ludovico Biagi Satellite Navigation and Monitoring Navigation: trajectories control positions estimations in real time, at high frequency popular applications: low accuracy (10 m) required specific

More information

Mobile Communications: Satellite Systems

Mobile Communications: Satellite Systems Mobile Communications: Satellite Systems Mobile Communication: Satellite Systems - Jochen Schiller http://www.jochenschiller.de 1 History of satellite communication 1945 Arthur C. Clarke publishes an essay

More information

DEOS. Deutsche Orbitale Servicing Mission. The In-flight Technology Demonstration of Germany s Robotics Approach to Service Satellites

DEOS. Deutsche Orbitale Servicing Mission. The In-flight Technology Demonstration of Germany s Robotics Approach to Service Satellites DEOS Deutsche Orbitale Servicing Mission The In-flight Technology Demonstration of Germany s Robotics Approach to Service Satellites B. Sommer, K. Landzettel, T. Wolf, D. Reintsema, German Aerospace Center

More information

APOPHIS 2029 A UNIQUE MISSION OPPORTUNITY

APOPHIS 2029 A UNIQUE MISSION OPPORTUNITY APOPHIS 2029 A UNIQUE MISSION OPPORTUNITY Jean-Yves Prado CNES Toulouse - France Presentation Outline APOPHIS reminder The April 2029 flyby Mission objectives Sequence of events Launch Orbit transfer Relative

More information

Status, Development and Application

Status, Development and Application Federal Space Agency GLONASS GLONASS Status, Development and Application Sergey G. Revnivykh International Committee on Global Navigation Satellite Systems (ICG) Second Meeting, September 4-7, 2007, Bangalore,

More information

GRAS. Första operationella instrumentet för temperaturmätning med GPS-signaler ger förbättrade väderprognoser och klimatmodeller.

GRAS. Första operationella instrumentet för temperaturmätning med GPS-signaler ger förbättrade väderprognoser och klimatmodeller. GRAS Första operationella instrumentet för temperaturmätning med GPS-signaler ger förbättrade väderprognoser och klimatmodeller. Magnus Bonnedal, RUAG Stefan Nilsson, SMHI RUAG Space AB 1 Radio Occultation

More information

REAL-TIME GPS MONITORING OF ATOMIC FREQUENCY STANDARDS IN THE CANADIAN ACTIVE CONTROL SYSTEM (CACS)

REAL-TIME GPS MONITORING OF ATOMIC FREQUENCY STANDARDS IN THE CANADIAN ACTIVE CONTROL SYSTEM (CACS) 30th Annual Pmbe Time and Time Internal (PTTI) Meeting REAL-TIME GPS MONITORING OF ATOMIC FREQUENCY STANDARDS IN THE CANADIAN ACTIVE CONTROL SYSTEM (CACS) F. Lahaye, M. Caissy, J. Popelar Geodetic Survey

More information

SURVEYING WITH GPS. GPS has become a standard surveying technique in most surveying practices

SURVEYING WITH GPS. GPS has become a standard surveying technique in most surveying practices SURVEYING WITH GPS Key Words: Static, Fast-static, Kinematic, Pseudo- Kinematic, Real-time kinematic, Receiver Initialization, On The Fly (OTF), Baselines, Redundant baselines, Base Receiver, Rover GPS

More information

16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future

16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future 16 th IOCCG Committee annual meeting Plymouth, UK 15 17 February 2011 The Meteor 3M Mt satellite mission: Present status and near future plans MISSION AIMS Satellites of the series METEOR M M are purposed

More information

Development of BeiDou Navigation Satellite System

Development of BeiDou Navigation Satellite System The 7th Meeting of International Committee on GNSS Development of BeiDou Navigation Satellite System China Satellite Navigation Office November 5, 2012 Beijing, China Part Ⅰ Development Plan Part Ⅱ System

More information

DEVELOPING A MULTI-GNSS ANALYSIS SOFTWARE FOR SCIENTIFIC PURPOSES

DEVELOPING A MULTI-GNSS ANALYSIS SOFTWARE FOR SCIENTIFIC PURPOSES DEVELOPING A MULTI-GNSS ANALYSIS SOFTWARE FOR SCIENTIFIC PURPOSES Michael Meindl (1), Rolf Dach (1), Stefan Schaer (2), Urs Hugentobler (3), Gerhard Beutler (1) (1) Astronomical Institute, University of

More information

Orbit Modeling and Multi-GNSS in the IGS

Orbit Modeling and Multi-GNSS in the IGS Orbit Modeling and Multi-GNSS in the IGS G. Beutler Astronomical Institute, University of Bern O. Montenbruck, P. Steigenberger DLR, German Space Operations Center 14 th Meeting of the National Space-Based

More information

SARAL ACCESS TO OFF-LINE DATA

SARAL ACCESS TO OFF-LINE DATA SARAL AltiKa introduction Plot of the SARAL/AltiKa ground track over Africa (Credits: Google). S ARAL/AltiKa is a new mission in cooperation between CNES and ISRO (Indian Space Research Organization),

More information

Sentinel-1 Mission Overview

Sentinel-1 Mission Overview Sentinel-1 Mission Overview Pierre Potin Sentinel-1 Mission Manager, ESA Advanced Course on Radar Polarimetry ESRIN, Frascati, 19 January 2011 Global Monitoring for Environment and Security GMES is established

More information

Penn State University Physics 211 ORBITAL MECHANICS 1

Penn State University Physics 211 ORBITAL MECHANICS 1 ORBITAL MECHANICS 1 PURPOSE The purpose of this laboratory project is to calculate, verify and then simulate various satellite orbit scenarios for an artificial satellite orbiting the earth. First, there

More information

European Position Determination System. Guideline for EUPOS Reference Frame Fixing

European Position Determination System. Guideline for EUPOS Reference Frame Fixing European Position Determination System Guideline for EUPOS Reference Frame Fixing Version 1.0 21 September 2007 Copyright: Publisher: 2007 by the International EUPOS Steering Committee Office of the International

More information

C-S TEAM. Page 1 of 5

C-S TEAM. Page 1 of 5 Title: Medium/large vehicle tracking system Primary POC: Jacoba Auret Organization: C-S Team (Cape Peninsula University of Technology-Stellenbosch University) POC email: 14807599@sun.ac.za Need We exist

More information

LED Anti-Collision Lighting System for Airbus A320 Family

LED Anti-Collision Lighting System for Airbus A320 Family LED Anti-Collision Lighting System for Airbus A320 Family LEDs established in anti-collision lighting For the first time, UTC Aerospace Systems has implemented state-ofthe-art LED technology into an anti-collision

More information

Satellite technology

Satellite technology Satellite technology Overview What is a satellite? The key elements of orbital position Satellite manufacturers and design The components of a satellite: payload and bus Digital versus analogue How do

More information

International Global Navigation Satellite Systems Service

International Global Navigation Satellite Systems Service International Global Navigation Satellite Systems Service IGS Multi-GNSS Experiment IGS M-GEX Call for Participation www.igs.org Response to this Call for Participation in IGS M-GEX via Web Form Submission

More information

GPS Precise Point Positioning with a Difference*

GPS Precise Point Positioning with a Difference* GPS Precise Point Positioning with a Difference* Pierre Héroux and Jan Kouba Geodetic Survey Division, Geomatics Canada Natural Resources Canada 615 Booth Street Ottawa, Ontario K1A E9 heroux@geod.nrcan.gc.ca

More information

GPS Receiver Test. Conducted by the Department of Mathematical Geodesy and Positioning Delft University of Technology

GPS Receiver Test. Conducted by the Department of Mathematical Geodesy and Positioning Delft University of Technology GPS Receiver Test Conducted by the Department of Mathematical Geodesy and Positioning Delft University of Technology A. Amiri-Simkooei R. Kremers C. Tiberius May 24 Preface For the purpose of a receiver

More information

GPS Positioning Modes

GPS Positioning Modes 5 GPS Positioning Modes Positioning with GPS can be performed in either of two ways: point (absolute) positioning or relative positioning. Classical GPS point positioning employs one GPS receiver that

More information

Mobile Communications Chapter 5: Satellite Systems

Mobile Communications Chapter 5: Satellite Systems Mobile Communications Chapter 5: Satellite Systems History Basics Localization Handover Routing Systems History of satellite communication 1945 Arthur C. Clarke publishes an essay about Extra Terrestrial

More information

A GPS Digital Phased Array Antenna and Receiver

A GPS Digital Phased Array Antenna and Receiver A GPS Digital Phased Array Antenna and Receiver Dr. Alison Brown, Randy Silva; NAVSYS Corporation ABSTRACT NAVSYS High Gain Advanced GPS Receiver (HAGR) uses a digital beam-steering antenna array to enable

More information

AP Series Autopilot System. AP-202 Data Sheet. March,2015. Chengdu Jouav Automation Tech Co.,L.t.d

AP Series Autopilot System. AP-202 Data Sheet. March,2015. Chengdu Jouav Automation Tech Co.,L.t.d AP Series Autopilot System AP-202 Data Sheet March,2015 Chengdu Jouav Automation Tech Co.,L.t.d AP-202 autopilot,from Chengdu Jouav Automation Tech Co., Ltd, provides complete professional-level flight

More information

COMPARISON OF EISCAT RADAR DATA ON SPACE DEBRIS WITH MODEL PREDICTIONS BY THE MASTER MODEL OF ESA

COMPARISON OF EISCAT RADAR DATA ON SPACE DEBRIS WITH MODEL PREDICTIONS BY THE MASTER MODEL OF ESA PEDAS1-B1.4-0003-02 COMPARISON OF EISCAT RADAR DATA ON SPACE DEBRIS WITH MODEL PREDICTIONS BY THE MASTER MODEL OF ESA M. Landgraf 1, R. Jehn 1, and W. Flury 1 1 ESA/ESOC, Robert-Bosch-Str. 5, 64293 Darmstadt,

More information

The RapidEye optical satellite family for high resolution imagery

The RapidEye optical satellite family for high resolution imagery 'Photogrammetric Week 01' D. Fritsch & R. Spiller, Eds. Wichmann Verlag, Heidelberg 2001. Scherer, Krischke 139 The RapidEye optical satellite family for high resolution imagery STEFAN SCHERER and MANFRED

More information

From Single to Formation Flying CubeSats: An Update of the Delfi Programme

From Single to Formation Flying CubeSats: An Update of the Delfi Programme From Single to Formation Flying CubeSats: An Update of the Delfi Programme Jian Guo, Jasper Bouwmeester & Eberhard Gill 1 Outline Introduction Delfi-C 3 Mission Delfi-n3Xt Mission Lessons Learned DelFFi

More information

5. Satellite Systems. History of Satellite Communications

5. Satellite Systems. History of Satellite Communications 5. Satellite Systems History and Orbits Routing, Localization, and Hand-over Systems 2005 Burkhard Stiller and Jochen Schiller FU Berlin M5 1 History of Satellite Communications 1945 Arthur C. Clarke about

More information

CBERS Program Update Jacie 2011. Frederico dos Santos Liporace AMS Kepler liporace@amskepler.com

CBERS Program Update Jacie 2011. Frederico dos Santos Liporace AMS Kepler liporace@amskepler.com CBERS Program Update Jacie 2011 Frederico dos Santos Liporace AMS Kepler liporace@amskepler.com Overview CBERS 3 and 4 characteristics Differences from previous CBERS satellites (CBERS 1/2/2B) Geometric

More information

Trimble CenterPoint RTX Post-Processing Services FAQs

Trimble CenterPoint RTX Post-Processing Services FAQs Trimble CenterPoint RTX Post-Processing Services FAQs What is Trimble RTX technology? 30 September 2013 Trimble RTX TM (Real Time extended) is a high-accuracy, global GNSS correction technology that combines

More information

Procedure for Marine Traffic Simulation with AIS Data

Procedure for Marine Traffic Simulation with AIS Data http://www.transnav.eu the International Journal on Marine Navigation and Safety of Sea Transportation Volume 9 Number 1 March 2015 DOI: 10.12716/1001.09.01.07 Procedure for Marine Traffic Simulation with

More information

Robot Perception Continued

Robot Perception Continued Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart

More information

TOPO Trajectory Operations Officer

TOPO Trajectory Operations Officer ISS Live! was developed at NASA s Johnson Space Center (JSC) under NASA Contracts NNJ14RA02C and NNJ11HA14C wherein the U.S. Government retains certain rights. Console Handbook TOPO Trajectory Operations

More information

Deutsches Fernerkundungsdatenzentrum Nationales Bodensegment Neustrelitz. Holger Maass. Storagetechnology 2008 4.-6. Juni 2008, Fleesensee

Deutsches Fernerkundungsdatenzentrum Nationales Bodensegment Neustrelitz. Holger Maass. Storagetechnology 2008 4.-6. Juni 2008, Fleesensee Deutsches Fernerkundungsdatenzentrum Nationales Bodensegment Neustrelitz Holger Maass Storagetechnology 2008 4.-6. Juni 2008, Fleesensee German Remote Sensing Data Center ( DFD ) with 2 locations in Germany

More information

Robotic Pre-Cursor Contribution to Human NEA Mission. H. Kuninaka JSPEC/JAXA

Robotic Pre-Cursor Contribution to Human NEA Mission. H. Kuninaka JSPEC/JAXA Robotic Pre-Cursor Contribution to Human NEA Mission H. Kuninaka JSPEC/JAXA Asteroid Explorer Hayabusa Dimensions 1.0m x 1.6m x 1.1m Weight : 380kg(Dry) Chemical Fuel 70kg Xe Propellant 60kg Total 510kg

More information

Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k

Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k Physics 1C Midterm 1 Summer Session II, 2011 Solutions 1. If F = kx, then k m is (a) A (b) ω (c) ω 2 (d) Aω (e) A 2 ω Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of

More information

How Long Do You Need To Achieve Your Scientific Objectives?

How Long Do You Need To Achieve Your Scientific Objectives? How Long Do You Need To Achieve Your Scientific Objectives? Time seconds minutes days/weeks months Drop Towers/Drop Tubes KC-135 Parabolic Flights Balloons* Sounding Rockets Alternate Carriers* Shuttle

More information

High Accuracy Articulated Robots with CNC Control Systems

High Accuracy Articulated Robots with CNC Control Systems Copyright 2012 SAE International 2013-01-2292 High Accuracy Articulated Robots with CNC Control Systems Bradley Saund, Russell DeVlieg Electroimpact Inc. ABSTRACT A robotic arm manipulator is often an

More information

SCADE Suite in Space Applications

SCADE Suite in Space Applications SCADE Suite in Space Applications at EADS David Lesens 09/10/2008 Overview Introduction Historical use of SCADE at EADS Astrium ST Why using SCADE? The Automatic Transfer Vehicle (ATV) M51 and Vega R&T

More information

The HEMP Thruster - An Alternative to Conventional Ion Sources?

The HEMP Thruster - An Alternative to Conventional Ion Sources? The HEMP Thruster - An Alternative to Conventional Ion Sources? Günter Kornfeld Norbert Koch Gregory Coustou Feasibility study sponsored by DLR Thrust measurements at ONERA, Palaiseau,, sponsored by CNES

More information

AS COMPETITION PAPER 2008

AS COMPETITION PAPER 2008 AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

More information

DEVELOPMENT OF AN ARCHITECTURE OF SUN-SYNCHRONOUS ORBITAL SLOTS TO MINIMIZE CONJUNCTIONS. Brian Weeden Secure World Foundation

DEVELOPMENT OF AN ARCHITECTURE OF SUN-SYNCHRONOUS ORBITAL SLOTS TO MINIMIZE CONJUNCTIONS. Brian Weeden Secure World Foundation DEVELOPMENT OF AN ARCHITECTURE OF SUN-SYNCHRONOUS ORBITAL SLOTS TO MINIMIZE CONJUNCTIONS Brian Weeden Secure World Foundation Sun-synchronous orbit (SSO) satellites serve many important functions, primarily

More information

GFZ prototype for GPS-based realtime deformation monitoring

GFZ prototype for GPS-based realtime deformation monitoring GFZ prototype for GPS-based realtime deformation monitoring Junping Chen, Maorong Ge, Markus Vennebusch, Gerd Gendt, Markus Rothacher Department of Geodesy and Remote Sensing, GeoForschungsZentrum, Postdam

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE

Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE Interaction of Energy and Matter Gravity Measurement: Using Doppler Shifts to Measure Mass Concentration TEACHER GUIDE EMR and the Dawn Mission Electromagnetic radiation (EMR) will play a major role in

More information

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5 Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

More information

Absolute GNSS Antenna Calibration with a Robot: Repeatability, GLONASS and Carrier-to-Noise Pattern

Absolute GNSS Antenna Calibration with a Robot: Repeatability, GLONASS and Carrier-to-Noise Pattern Absolute GNSS Antenna Calibration with a Robot: Repeatability, GLONASS and Carrier-to-Noise Pattern Gerhard Wübbena, Martin Schmitz, Gerald Boettcher Geo++ GmbH 30827 Garbsen Germany www.geopp.com Content

More information

Chapter 2. Mission Analysis. 2.1 Mission Geometry

Chapter 2. Mission Analysis. 2.1 Mission Geometry Chapter 2 Mission Analysis As noted in Chapter 1, orbital and attitude dynamics must be considered as coupled. That is to say, the orbital motion of a spacecraft affects the attitude motion, and the attitude

More information

The Moon. Nicola Loaring, SAAO

The Moon. Nicola Loaring, SAAO The Moon Nicola Loaring, SAAO Vital Statistics Mean distance from Earth Orbital Period Rotational Period Diameter 384,400 km 27.322 days 27.322 days 3476 km (0.272 x Earth) Mass 7.3477 10 22 kg (0.0123

More information

Propsim enabled Aerospace, Satellite and Airborne Radio System Testing

Propsim enabled Aerospace, Satellite and Airborne Radio System Testing www.anite.com Propsim enabled Aerospace, Satellite and Airborne Radio System Testing Anite is now part of Keysight Technologies Realistic and repeatable real-time radio channel emulation solutions for

More information

Real Time Services for Space Applications Holger Maass, Susanne Lehner

Real Time Services for Space Applications Holger Maass, Susanne Lehner Real Time Services for Space Applications Holger Maass, Susanne Lehner Holger.Maass@dlr.de German Remote Sensing Data Center ( DFD ) with 2 locations in Germany Neustrelitz in Mecklenburg-Vorpommern Oberpfaffenhofen

More information

European Gravity Service for Improved Emergency Management

European Gravity Service for Improved Emergency Management European Gravity Service for Improved Emergency Management a new Horizon2020 project to serve the international community and improve the accessibility to gravity field products A. Jäggi 1, M. Weigelt

More information

The Elwing Company THE ELWING COMPANY. EPIC Workshop 2014. Products and Systems 2015 2020

The Elwing Company THE ELWING COMPANY. EPIC Workshop 2014. Products and Systems 2015 2020 The Elwing Company THE ELWING COMPANY EPIC Workshop 2014 Products and Systems 2015 2020 Elwing E IMPAcT technology key features Erosion free Contamination free Short circuit free Multiple modes Thurst/

More information

Local monitoring by low cost devices and free and open sources softwares

Local monitoring by low cost devices and free and open sources softwares Local monitoring by low cost devices and free and open sources softwares Abstract Ludovico Biagi, Florin-Catalin Grec, Marco Negretti, Maria Grazia Visconti Politecnico di Milano, DICA@ComoCampus The purpose

More information

wie Ihnen mit Sicherheit bereits bekannt ist, ist die Global Aviation + Piper Parts GmbH Distributor der ELT s von Artex.

wie Ihnen mit Sicherheit bereits bekannt ist, ist die Global Aviation + Piper Parts GmbH Distributor der ELT s von Artex. Liebe Kunden und Geschäftspartner, wie Ihnen mit Sicherheit bereits bekannt ist, ist die Global Aviation + Piper Parts GmbH Distributor der ELT s von Artex. Zu den bewährten ME406 Modellen mit Rod und

More information

GOCE: SPACE TECHNOLOGY FOR THE REFERENCE EARTH GRAVITY FIELD DETERMINATION

GOCE: SPACE TECHNOLOGY FOR THE REFERENCE EARTH GRAVITY FIELD DETERMINATION GOCE: SPACE TECHNOLOGY FOR THE REFERENCE EARTH GRAVITY FIELD DETERMINATION A.Allasio 1 - D.Muzi 2 B.Vinai 1, S.Cesare 1, G. Catastini 1, M.Bard 3, J.P. Marque 4 1) Thales Alenia Space, Italy 2) ESA, ESTEC,

More information

Spacecraft Dynamics and Control. An Introduction

Spacecraft Dynamics and Control. An Introduction Brochure More information from http://www.researchandmarkets.com/reports/2328050/ Spacecraft Dynamics and Control. An Introduction Description: Provides the basics of spacecraft orbital dynamics plus attitude

More information

Satellite Posi+oning. Lecture 5: Satellite Orbits. Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013

Satellite Posi+oning. Lecture 5: Satellite Orbits. Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013 Lecture 5: Satellite Orbits Jan Johansson jan.johansson@chalmers.se Chalmers University of Technology, 2013 Geometry Satellite Plasma Posi+oning physics Antenna theory Geophysics Time and Frequency GNSS

More information

Advanced GPS/GLONASS ASIC (AGGA2)

Advanced GPS/GLONASS ASIC (AGGA2) Advanced GPS/GLONASS ASIC (AGGA2) ESTEC - 6/7 March, 2001 Martin Hollreiser Head of Microelectronics Section Tel. +31-71-565-4284 Fax. +31-71-565-4295 Martin.Hollreiser@esa.int Overview History of the

More information

The Use and Integrity Monitoring of IGS Products at Geoscience Australia (GA)

The Use and Integrity Monitoring of IGS Products at Geoscience Australia (GA) Australian Government Geoscience Australia The Use and Integrity Monitoring of IGS Products at Geoscience Australia (GA) Ramesh Govind, John Dawson, John Manning IGS-2004 Workshop and Symposium Berne,

More information

How Raising TRMM s Altitude to 400km Impacts PR Operation. June 1, 2001 NASDA EORC with support of PR team

How Raising TRMM s Altitude to 400km Impacts PR Operation. June 1, 2001 NASDA EORC with support of PR team How Raising TRMM s Altitude to 400km Impacts PR Operation June 1, 2001 NASDA EORC with support of PR team 1. Background and Introduction TRMM is planned to make a controlled reentry at the end of its life

More information

USE OF SCILAB FOR SPACE MISSION ANALYSIS AND FLIGHT DYNAMICS ACTIVITIES

USE OF SCILAB FOR SPACE MISSION ANALYSIS AND FLIGHT DYNAMICS ACTIVITIES USE OF SCILAB FOR SPACE MISSION ANALYSIS AND FLIGHT DYNAMICS ACTIVITIES Thierry Martin CNES Scilabtec 09 Use of Scilab for space mission analysis Page 1 Use of Scilab in CNES Scilab is now widely used

More information

INTEGRITY AND CONTINUITY ANALYSIS OCTOBER TO DECEMBER 2013 QUARTERLY REPORT FROM GPS. Integrity and Continuity Analysis 08/01/14 08/01/14 08/01/14

INTEGRITY AND CONTINUITY ANALYSIS OCTOBER TO DECEMBER 2013 QUARTERLY REPORT FROM GPS. Integrity and Continuity Analysis 08/01/14 08/01/14 08/01/14 INTEGRITY AND CONTINUITY ANALYSIS FROM GPS OCTOBER TO DECEMBER 2013 QUARTERLY REPORT Prepared by: M Pattinson (NSL) 08/01/14 Checked by: L Banfield (NSL) 08/01/14 Approved by: M Dumville (NSL) 08/01/14

More information

circular motion & gravitation physics 111N

circular motion & gravitation physics 111N circular motion & gravitation physics 111N uniform circular motion an object moving around a circle at a constant rate must have an acceleration always perpendicular to the velocity (else the speed would

More information

ADS-B over Satellite Global Air Traffic Surveillance from Space

ADS-B over Satellite Global Air Traffic Surveillance from Space www.dlr.de Chart 1 ADS-B over Satellite Global Air Traffic Surveillance from Space ATM World Congress, March 11 th 2015 in Madrid K. Werner, German Aerospace Center (DLR) Institute of Flight Guidance T.

More information